1. Damage Preserving Transformation for Materials with Microstructure
- Author
-
Müller, Philip P., Wittel, Falk K., and Kammer, David S.
- Subjects
Condensed Matter - Materials Science - Abstract
The failure of heterogeneous materials with microstructures is a complex process of damage nucleation, growth and localisation. This process spans multiple length scales and is challenging to simulate numerically due to its high computational cost. One option is to use domain decomposed multi-scale methods with dynamical refinement. If needed, these methods refine coarse regions into a fine-scale representation to explicitly model the damage in the microstructure. However, damage evolution is commonly restricted to fine-scale regions only. Thus, they are unable to capture the full complexity and breath of the degradation process in the material. In this contribution, a generic procedure that allows to account for damage in all representations is proposed. The approach combines a specially designed orthotropic damage law, with a scheme to generate pre-damaged fine-scale microstructures. Results indicate that the damage approximation for the coarse representation works well. Furthermore, the generated fine-scale damage patterns are overall consistent with explicitly simulated damage patterns. Minor discrepancies occur in the generation but subsequently vanish when explicit damage evolution continuous; for instance under increased load. The presented approach provides a methodological basis for adaptive multi-scale simulation schemes with consistent damage evolution.
- Published
- 2023
- Full Text
- View/download PDF