1. Transcriptomics reveals in vivo efficacy of PARP inhibitor combinatorial synergy with platinum-based chemotherapy in human non-small cell lung carcinoma models.
- Author
-
Stolzenburg LR, Ainsworth B, Riley-Gillis B, Pakozdi T, Ammar A, Ellis PA, Wilsbacher JL, and Ramathal CY
- Subjects
- Adenosine Diphosphate, Cholesterol, Cisplatin, Humans, Integrins genetics, Platinum therapeutic use, Poly(ADP-ribose) Polymerase Inhibitors pharmacology, Poly(ADP-ribose) Polymerase Inhibitors therapeutic use, Poly(ADP-ribose) Polymerases metabolism, Ribose therapeutic use, Transcriptome, Transforming Growth Factor beta genetics, Antineoplastic Agents pharmacology, Antineoplastic Agents therapeutic use, Carcinoma, Non-Small-Cell Lung drug therapy, Carcinoma, Non-Small-Cell Lung genetics, Carcinoma, Non-Small-Cell Lung pathology, Lung Neoplasms drug therapy, Lung Neoplasms genetics, Lung Neoplasms pathology
- Abstract
Inhibitors of poly(ADP)-ribose polymerase (PARP) exploit defective DNA repair pathways existing in several forms of cancer, such as those with BRCA mutations, and have proven clinical efficacy as chemosensitizers. However, platinum-based chemopotentiation by PARP inhibitors (PARPi), particularly for non-small cell lung cancer (NSCLC), has only been confirmed in a few preclinical models and the molecular mechanisms that drive PARPi combinatorial synergy with chemotherapeutics remains poorly defined. To better understand these mechanisms, we characterized cisplatin and veliparib efficacy in A549 and Calu6 NSCLC in vivo tumor xenograft models and observed combinatorial synergy in the Calu6 model. Transcriptome-wide analysis of xenografts revealed several differentially expressed genes (DEGs) between untreated and cisplatin + veliparib-treated groups, which were unique from genes identified in either of the single-agent treatment arms. Particularly at 10- and 21-days post-treatment, these DEGs were enriched within pathways involved in DNA damage repair, cell cycle regulation, and senescence. Furthermore, TGF-β- and integrin-related pathways were enriched in the combination treatment arm, while pathways involved in cholesterol metabolism were identified at earlier time points in both the combination and cisplatin-only groups. These data advance the biological underpinnings of PARPi combined with platinum-based chemotherapy and provides additional insight into the diverse sensitivity of NSCLC models., Competing Interests: CONFLICTS OF INTEREST BRG, AA, PAE, JLW, and CYR are employees of AbbVie and may hold AbbVie stock. LRS, BA and TP were employees of AbbVie at the time of the study., (Copyright: © 2022 Stolzenburg et al.)
- Published
- 2022
- Full Text
- View/download PDF