1. A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2
- Author
-
Jing Zhou, An-Chi Tien, John A. Alberta, Scott B. Ficarro, Amelie Griveau, Yu Sun, Janhavee S. Deshpande, Joseph D. Card, Meghan Morgan-Smith, Wojciech Michowski, Rintaro Hashizume, C. David James, Keith L. Ligon, William D. Snider, Peter Sicinski, Jarrod A. Marto, David H. Rowitch, and Charles D. Stiles
- Subjects
Olig2 ,phosphorylation ,protein kinase ,cyclin-dependent kinase ,CDK ,casein kinase 2 ,CK2 ,glycogen synthase kinase 3 ,GSK3 ,neural progenitor cells ,NPCs ,glioma ,Biology (General) ,QH301-705.5 - Abstract
During development of the vertebrate CNS, the basic helix-loop-helix (bHLH) transcription factor Olig2 sustains replication competence of progenitor cells that give rise to neurons and oligodendrocytes. A pathological counterpart of this developmental function is seen in human glioma, wherein Olig2 is required for maintenance of stem-like cells that drive tumor growth. The mitogenic/gliomagenic functions of Olig2 are regulated by phosphorylation of a triple serine motif (S10, S13, and S14) in the amino terminus. Here, we identify a set of three serine/threonine protein kinases (glycogen synthase kinase 3α/β [GSK3α/β], casein kinase 2 [CK2], and cyclin-dependent kinases 1/2 [CDK1/2]) that are, collectively, both necessary and sufficient to phosphorylate the triple serine motif. We show that phosphorylation of the motif itself serves as a template to prime phosphorylation of additional serines and creates a highly charged “acid blob” in the amino terminus of Olig2. Finally, we show that small molecule inhibitors of this forward-feeding phosphorylation cascade have potential as glioma therapeutics.
- Published
- 2017
- Full Text
- View/download PDF