855 results on '"Wiens, R"'
Search Results
2. Radiation-induced alteration of apatite on the surface of Mars: first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., and Wiens, R. C.
- Published
- 2024
- Full Text
- View/download PDF
3. The Mars Microphone onboard SuperCam
- Author
-
Mimoun, D., Cadu, A., Murdoch, N., Sournac, A., Parot, Y., Bernardi, P., Chide, B., Pilleri, P., Stott, A., Gillier, M., Sridhar, V., Maurice, S., Wiens, R. C., and team, the SuperCam
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Mars Microphone is one of the five measurement techniques of SuperCam, an improved version of the ChemCam instrument that has been functioning aboard the Curiosity rover for several years. SuperCam is located on the Rover's Mast Unit, to take advantage of the unique pointing capabilities of the rover's head. In addition to being the first instrument to record sounds on Mars, the SuperCam Microphone can address several original scientific objectives: the study of sound associated with laser impacts on Martian rocks to better understand their mechanical properties, the improvement of our knowledge of atmospheric phenomena at the surface of Mars: atmospheric turbulence, convective vortices, dust lifting processes and wind interactions with the rover itself. The microphone will also help our understanding of the sound signature of the different movements of the rover: operations of the robotic arm and the mast, driving on the rough floor of Mars, monitoring of the pumps, etc ... The SuperCam Microphone was delivered to the SuperCam team in early 2019 and integrated at the Jet Propulsion Laboratory (JPL, Pasadena, CA) with the complete SuperCam instrument. The Mars 2020 Mission launched in July 2020 and landed on Mars on February 18th 2021. The mission operations are expected to last until at least August 2023. The microphone is operating perfectly., Comment: 40 pages
- Published
- 2022
- Full Text
- View/download PDF
4. Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars
- Author
-
l'Haridon, J, Mangold, N, Fraeman, A, Johnson, J, Cousin, A, Rapin, W, David, G, Dehouck, E, Sun, V, Frydenvang, J, Gasnault, O, Gasda, P, Lanza, N, Forni, O, Meslin, P. -Y, Schwenzer, S, Bridges, J, Horgan, B, House, C, Maurice, S, and Wiens, R
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
The Curiosity rover investigated a topographic structure known as Vera Rubin ridge, associated with a hematite signature in orbital spectra. There, Curiosity encountered mudstones interpreted as lacustrine deposits, in continuity with the 300 m-thick underlying sedimentary rocks of the Murray formation at the base of Mount Sharp. While the presence of hematite ($\alpha$-Fe2O3) was confirmed insitu by both Mastcam and ChemCam spectral observations and by the CheMin instrument, neither ChemCam nor APXS observed any significant increase in FeO$_T$ (total iron oxide) abundances compared to the Murray formation. Instead, Curiosity discovered dark-toned diagenetic features displaying anomalously high FeO$_T$ abundances, commonly observed in association with light-toned Ca-sulfate veins but also as crystal pseudomorphs in the host rock. These iron-rich diagenetic features are predominantly observed in "grey" outcrops on the upper part of the ridge, which lack the telltale ferric signature of other Vera Rubin ridge outcrops. Their composition is consistent with anhydrous Fe-oxide, as the enrichment in iron is not associated with enrichment in any other elements, nor with detections of volatiles. The lack of ferric absorption features in the ChemCam reflectance spectra and the hexagonal crystalline structure associated with dark-toned crystals points toward coarse "grey" hematite. In addition, the host rock adjacent to these features appears bleached and show low-FeO$_T$ content as well as depletion in Mn, indicating mobilization of these redox-sensitive elements during diagenesis. Thus, groundwater fluid circulations could account for the remobilization of iron and recrystallization as crystalline hematite during diagenesis as well as color variations observed in the Vera Rubin ridge outcrops.
- Published
- 2021
- Full Text
- View/download PDF
5. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
6. Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen
- Author
-
Laming, J. Martin, Heber, V. S., Burnett, D. S., Guan, Y., Hervig, R., Huss, G. R., Jurewicz, A. J. G., Koeman-Shields, E. C., McKeegan, K. D., Nittler, L. R., Reisenfeld, D. B., Rieck, K. D., Wang, J., Wiens, R. C., and Woolum, D. S.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples., Comment: 6 pages, accepted by Astrophysical Journal Letters
- Published
- 2017
- Full Text
- View/download PDF
7. The sound of a Martian dust devil
- Author
-
Murdoch, N., Stott, A. E., Gillier, M., Hueso, R., Lemmon, M., Martinez, G., Apéstigue, V., Toledo, D., Lorenz, R. D., Chide, B., Munguira, A., Sánchez-Lavega, A., Vicente-Retortillo, A., Newman, C. E., Maurice, S., de la Torre Juárez, M., Bertrand, T., Banfield, D., Navarro, S., Marin, M., Torres, J., Gomez-Elvira, J., Jacob, X., Cadu, A., Sournac, A., Rodriguez-Manfredi, J. A., Wiens, R. C., and Mimoun, D.
- Published
- 2022
- Full Text
- View/download PDF
8. Identifying Shocked Feldspar on Mars Using Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on Returned Samples
- Author
-
Shkolyar, S., Jaret, S. J., Cohen, B. A., Johnson, J. R., Beyssac, O., Madariaga, J. M., Wiens, R. C., Ollila, A., Holm-Alwmark, S., and Liu, Y.
- Published
- 2022
- Full Text
- View/download PDF
9. Manganese‐Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars
- Author
-
Gasda, P. J., primary, Lanza, N. L., additional, Meslin, P.‐Y., additional, Lamm, S. N., additional, Cousin, A., additional, Anderson, R., additional, Forni, O., additional, Swanner, E., additional, L’Haridon, J., additional, Frydenvang, J., additional, Thomas, N., additional, Gwizd, S., additional, Stein, N., additional, Fischer, W. W., additional, Hurowitz, J., additional, Sumner, D., additional, Rivera‐Hernández, F., additional, Crossey, L., additional, Ollila, A., additional, Essunfeld, A., additional, Newsom, H. E., additional, Clark, B., additional, Wiens, R. C., additional, Gasnault, O., additional, Clegg, S. M., additional, Maurice, S., additional, Delapp, D., additional, and Reyes‐Newell, A., additional
- Published
- 2024
- Full Text
- View/download PDF
10. Depositional Facies and Sequence Stratigraphy of Kodiak Butte, Western Delta of Jezero Crater, Mars
- Author
-
Caravaca, G., primary, Dromart, G., additional, Mangold, N., additional, Gupta, S., additional, Kah, L. C., additional, Tate, C., additional, Williams, R. M. E., additional, Le Mouélic, S., additional, Gasnault, O., additional, Bell, J., additional, Beyssac, O., additional, Nuñez, J. I., additional, Randazzo, N., additional, Rice, J., additional, Crumpler, L. S., additional, Williams, A., additional, Russel, P., additional, Stack, K. M., additional, Farley, K. A., additional, Maurice, S., additional, and Wiens, R. C., additional
- Published
- 2024
- Full Text
- View/download PDF
11. Manganese-Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars
- Author
-
Gasda, P. J., Lanza, N. L., Meslin, P. Y., Lamm, S. N., Cousin, A., Anderson, R., Forni, O., Swanner, E., L’Haridon, J., Frydenvang, J., Thomas, N., Gwizd, S., Stein, N., Fischer, W. W., Hurowitz, J., Sumner, D., Rivera-Hernández, F., Crossey, L., Ollila, A., Essunfeld, A., Newsom, H. E., Clark, B., Wiens, R. C., Gasnault, O., Clegg, S. M., Maurice, S., Delapp, D., Reyes-Newell, A., Gasda, P. J., Lanza, N. L., Meslin, P. Y., Lamm, S. N., Cousin, A., Anderson, R., Forni, O., Swanner, E., L’Haridon, J., Frydenvang, J., Thomas, N., Gwizd, S., Stein, N., Fischer, W. W., Hurowitz, J., Sumner, D., Rivera-Hernández, F., Crossey, L., Ollila, A., Essunfeld, A., Newsom, H. E., Clark, B., Wiens, R. C., Gasnault, O., Clegg, S. M., Maurice, S., Delapp, D., and Reyes-Newell, A.
- Abstract
Manganese has been observed on Mars by the NASA Curiosity rover in a variety of contexts and is an important indicator of redox processes in hydrologic systems on Earth. Within the Murray formation, an ancient primarily fine-grained lacustrine sedimentary deposit in Gale crater, Mars, have observed up to 45× enrichment in manganese and up to 1.5× enrichment in iron within coarser grained bedrock targets compared to the mean Murray sediment composition. This enrichment in manganese coincides with the transition between two stratigraphic units within the Murray: Sutton Island, interpreted as a lake margin environment, and Blunts Point, interpreted as a lake environment. On Earth, lacustrine environments are common locations of manganese precipitation due to highly oxidizing conditions in the lakes. Here, we explore three mechanisms for ferromanganese oxide precipitation at this location: authigenic precipitation from lake water along a lake shore, authigenic precipitation from reduced groundwater discharging through porous sands along a lake shore, and early diagenetic precipitation from groundwater through porous sands. All three scenarios require highly oxidizing conditions and we discuss oxidants that may be responsible for the oxidation and precipitation of manganese oxides. This work has important implications for the habitability of Mars to microbes that could have used Mn redox reactions, owing to its multiple redox states, as an energy source for metabolism.
- Published
- 2024
12. Sedimentology and Stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars
- Author
-
Stack, K. M., Ives, L. R. W., Gupta, S., Lamb, M. P., Tebolt, M., Caravaca, G., Grotzinger, J. P., Russell, P., Shuster, D. L., Williams, A. J., Amundsen, H., Alwmark, S., Annex, A. M., Barnes, R., Bell, J., Beyssac, O., Bosak, T., Crumpler, L. S., Dehouck, E., Gwizd, S. J., Hickman-Lewis, K., Horgan, B. H. N., Hurowitz, J., Kalucha, H., Kanine, O., Lesh, C., Maki, J., Mangold, N., Randazzo, N., Seeger, C., Williams, R. M. E., Brown, A., Cardarelli, E., Dypvik, H., Flannery, D., Frydenvang, J., Hamran, S.-E., Núñez, J. I., Paige, D., Simon, J. I., Tice, M., Tate, C., Wiens, R. C., Stack, K. M., Ives, L. R. W., Gupta, S., Lamb, M. P., Tebolt, M., Caravaca, G., Grotzinger, J. P., Russell, P., Shuster, D. L., Williams, A. J., Amundsen, H., Alwmark, S., Annex, A. M., Barnes, R., Bell, J., Beyssac, O., Bosak, T., Crumpler, L. S., Dehouck, E., Gwizd, S. J., Hickman-Lewis, K., Horgan, B. H. N., Hurowitz, J., Kalucha, H., Kanine, O., Lesh, C., Maki, J., Mangold, N., Randazzo, N., Seeger, C., Williams, R. M. E., Brown, A., Cardarelli, E., Dypvik, H., Flannery, D., Frydenvang, J., Hamran, S.-E., Núñez, J. I., Paige, D., Simon, J. I., Tice, M., Tate, C., and Wiens, R. C.
- Abstract
Sedimentary fans are key targets of exploration on Mars because they record the history of surface aqueous activity and habitability. The sedimentary fan extending from the Neretva Vallis breach of Jezero crater's western rim is one of the Mars 2020 Perseverance rover's main exploration targets. Perseverance spent ∼250 sols exploring and collecting seven rock cores from the lower ∼25 m of sedimentary rock exposed within the fan's eastern scarp, a sequence informally named the “Shenandoah” formation. This study describes the sedimentology and stratigraphy of the Shenandoah formation at two areas, “Cape Nukshak” and “Hawksbill Gap,” including a characterization, interpretation, and depositional framework for the facies that comprise it. The five main facies of the Shenandoah formation include: laminated mudstone, laminated sandstone, low-angle cross stratified sandstone, thin-bedded granule sandstone, and thick-bedded granule-pebble sandstone and conglomerate. These facies are organized into three facies associations (FA): FA1, comprised of laminated and soft sediment-deformed sandstone interbedded with broad, unconfined coarser-grained granule and pebbly sandstone intervals; FA2, comprised predominantly of laterally extensive, soft-sediment deformed laminated, sulfate-bearing mudstone with lenses of low-angle cross-stratified and scoured sandstone; and FA3, comprised of dipping planar, thin-bedded sand-gravel couplets. The depositional model favored for the Shenandoah formation involves the transition from a sand-dominated distal alluvial fan setting (FA1) to a stable, widespread saline lake (FA2), followed by the progradation of a river delta system (FA3) into the lake basin. This sequence records the initiation of a relatively long-lived, habitable lacustrine and deltaic environment within Jezero crater.
- Published
- 2024
13. Radiation-induced alteration of apatite on the surface of Mars:first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, Zastrow, Allison, Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, and Zastrow, Allison
- Abstract
Planetary exploration relies considerably on mineral characterization to advance our understanding of the solar system, the planets and their evolution. Thus, we must understand past and present processes that can alter materials exposed on the surface, affecting space mission data. Here, we analyze the first dataset monitoring the evolution of a known mineral target in situ on the Martian surface, brought there as a SuperCam calibration target onboard the Perseverance rover. We used Raman spectroscopy to monitor the crystalline state of a synthetic apatite sample over the first 950 Martian days (sols) of the Mars2020 mission. We note significant variations in the Raman spectra acquired on this target, specifically a decrease in the relative contribution of the Raman signal to the total signal. These observations are consistent with the results of a UV-irradiation test performed in the laboratory under conditions mimicking ambient Martian conditions. We conclude that the observed evolution reflects an alteration of the material, specifically the creation of electronic defects, due to its exposure to the Martian environment and, in particular, UV irradiation. This ongoing process of alteration of the Martian surface needs to be taken into account for mineralogical space mission data analysis.
- Published
- 2024
14. Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results
- Author
-
Pilleri, P., Reisenfeld, D. B., Zurbuchen, T. H., Lepri, S. T., Shearer, P., Gilbert, J. A., von Steiger, R., and Wiens, R. C.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
We use ACE/SWICS elemental composition data to compare the variations in solar wind fractionation as measured by SWICS during the last solar maximum (1999-2001), the solar minimum (2006-2009) and the period in which the Genesis spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate our analysis in terms of solar wind regimes (i.e. originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-FIP ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of solar wind speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances., Comment: Accepted for publication in ApJ
- Published
- 2015
- Full Text
- View/download PDF
15. Probable Concretions Observed in the Shenandoah Formation of Jezero Crater, Mars and Comparison With Terrestrial Analogs.
- Author
-
Kalucha, H., Broz, A., Randazzo, N., Aramendia, J., Madariaga, J. M., Garczynski, B., Lanza, N., Mandon, L., Fouchet, T., Catling, D. C., Fairén, A. G., Kivrak, L., Gasda, P. J., Núñez, J. I., Cloutis, E., Hand, K. P., Rice, J. W., Fischer, W. W., Maurice, S., and Wiens, R. C.
- Subjects
MARTIAN craters ,BEDROCK ,MICROBIAL metabolism ,CLAY minerals ,CALCIUM salts - Abstract
The Mars 2020 Perseverance Rover imaged diagenetic textural features in four separate sedimentary units in its exploration of the 25‐m‐thick Shenandoah formation at Jezero Crater, Mars, that we interpreted as probable concretions. These concretions were most abundant in the Hogwallow Flats member of the Shenandoah formation and were restricted to the light‐toned, platy, sulfur‐cemented bedrock at outcrop surfaces, whereas the finely laminated, darker toned, mottled and deformed strata lack concretions. The concretions also had a wide range of morphologies including concentric, oblate, urn, and spheroidal shaped forms that were not clustered, and ranged in size from ∼1 to 16 mm with a median of 2.65 mm. The elemental composition of the concretions compared to the bedrock had greater abundance of magnesium and calcium salts, silicates, and possibly hematite. We compared these Jezero Crater concretions to the geochemistry of concretions from previously published studies and from two new terrestrial analog sites (Gallup Formation, New Mexico and Torrey Pines, California). In addition, we measured organic carbon content of three terrestrial sedimentary analogs of increasing age that contain concretions (Torrey Pines (Pleistocene), Gallup Formation (∼89 Ma), and Moodies Group (∼3.2 Ga)). All measured concretions contained significant concentrations of organic carbon with the maximum organic carbon content (∼2 wt. % Total organic carbon) found in the Moodies Group concretions. Organic carbon abundances in terrestrial concretions was controlled more by the formation mechanism and relative timing of concretion development rather than deposit age. These findings suggested that concretions at Jezero Crater reflect local sites of enhanced biosignature preservation potential. Plain Language Summary: The Perseverance Rover discovered concretions in its exploration of the rock packages at Jezero Crater, Mars and one of the sample return cores was collected from concretion‐rich bedrock. Concretions are resistant cement in the rock that are found in many shapes (usually spherical or oblate) and range from millimeter to meter size scales on Earth; they can be formed through inorganic water‐rock reactions or facilitated by microbial metabolisms. We documented the abundance, size, composition, and shape of the concretions to understand how these features were formed. We found that the concretions are mixtures of salts, clay minerals, and iron oxides. We compared these results to terrestrial concretions with similar mineral compositions and measured the organic carbon in four terrestrial analogs. Comparisons with terrestrial concretions in this study and the literature suggested that the concretion composition in Jezero Crater could have high organic preservation potential. Thus, the concretions in Jezero Crater may retain organic carbon and other biosignatures and might therefore be considered as high priority samples of astrobiological interest out of the current sample suite for return to Earth. Key Points: Jezero Crater concretions are variably enriched in Si, Ca, and Mg salts, and Fe oxidesTerrestrial concretions of similar mineralogy analyzed in this study contain significant organic carbon phasesBased on terrestrial analogs, Jezero Crater concretions may represent sites of enhanced biosignature preservation potential [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
16. Variable Iron Mineralogy and Redox Conditions Recorded in Ancient Rocks Measured by In Situ Visible/Near‐Infrared Spectroscopy at Jezero Crater, Mars.
- Author
-
Mandon, L., Ehlmann, B. L., Wiens, R. C., Garczynski, B. J., Horgan, B. H. N., Fouchet, T., Loche, M., Dehouck, E., Gasda, P., Johnson, J. R., Broz, A., Núñez, J. I., Rice, M. S., Vaughan, A., Royer, C., Gómez, F., Annex, A. M., Beyssac, O., Forni, O., and Brown, A.
- Subjects
HEMATITE ,SEDIMENTARY rocks ,SEDIMENTATION & deposition ,REFLECTANCE measurement ,IGNEOUS rocks - Abstract
Using relative reflectance measurements from the Mastcam‐Z and SuperCam instruments on the Mars 2020 Perseverance rover, we assess the variability of Fe mineralogy in Noachian/Hesperian‐aged rocks at Jezero crater. The results reveal diverse Fe3+ and Fe2+ minerals. The igneous crater floor, where small amounts of Fe3+‐phyllosilicates and poorly crystalline Fe3+‐oxyhydroxides have been reported, is spectrally similar to most oxidized basalts observed at Gusev crater. At the base of the western Jezero sedimentary fan, new spectral type points to an Fe‐bearing mineral assemblage likely dominated by Fe2+. By contrast, most strata exposed at the fan front show signatures of Fe3+‐oxides (mostly fine‐grained crystalline hematite), Fe3+‐sulfates (potentially copiapites), strong signatures of hydration, and among the strongest signatures of red hematite observed in situ, consistent with materials having experienced vigorous water‐rock interactions and/or higher degrees of diagenesis under oxidizing conditions. The fan top strata show hydration but little to no signs of Fe oxidation likely implying that some periods of fan construction occurred either during a reduced atmosphere era or during short‐lived aqueous activity of liquid water in contact with an oxidized atmosphere. We also report the discovery of alternating cm‐scale bands of red and gray layers correlated with hydration and oxide variability, which has not yet been observed elsewhere on Mars. This could result from syn‐depositional fluid chemistry variations, possibly as seasonal processes, or diagenetic overprint of oxidized fluids percolating through strata having variable permeability. Plain Language Summary: The oxidation states of the atmosphere and waters (whether rich or poor in oxidants such as oxygen) of Mars and their evolution are poorly constrained but can be recorded in the iron (Fe) mineralogy of rocks. Using data from the Perseverance rover, we analyzed the Fe mineralogy of ∼4–3 Ga old rocks from an ancient lake at Jezero crater. Oxidized Fe is found in igneous rocks and lowermost portions of sedimentary rocks, carried by clays and poorly crystalline oxides in the former and by sulfates and crystalline oxides in the latter, pointing to past action of oxidizing fluids, affecting more intensely the sedimentary rocks. Fe shows poor to no signs of oxidation in the uppermost strata, which might be evidence for a reducing atmosphere during sediment deposition or that the aqueous environment was too cold or too short‐lived to oxidize minerals. We also report Fe mineralogy variability at the cm‐scale in alternating colored layers, which has not been observed previously on Mars and could possibly mean that seasonal processes are recorded at Jezero crater. Key Points: In situ reflectance data measured with Mars 2020 show variable Fe mineralogy in sedimentary rocks at Jezero craterStrata exposed at the fan front experienced stronger oxidative water‐rock interactions compared to the upper fan and igneous crater floorWe identify cm‐scale color banding correlated with Fe‐oxide variability that likely indicates time variation in redox [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
17. Architecture of Fluvial and Deltaic Deposits Exposed Along the Eastern Edge of the Western Fan of Jezero Crater, Mars
- Author
-
Mangold, N., primary, Caravaca, G., additional, Gupta, S., additional, Williams, R. M. E., additional, Dromart, G., additional, Gasnault, O., additional, Le Mouélic, S., additional, Paar, G., additional, Bell, J., additional, Beyssac, O., additional, Carlot, N., additional, Cousin, A., additional, Dehouck, E., additional, Horgan, B., additional, Kah, L. C., additional, Lasue, J., additional, Maurice, S., additional, Núñez, J. I., additional, Shuster, D., additional, Stack, K. M., additional, Weiss, B. P., additional, and Wiens, R. C., additional
- Published
- 2024
- Full Text
- View/download PDF
18. Sedimentology and Stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars
- Author
-
Stack, K. M., primary, Ives, L. R. W., additional, Gupta, S., additional, Lamb, M. P., additional, Tebolt, M., additional, Caravaca, G., additional, Grotzinger, J. P., additional, Russell, P., additional, Shuster, D. L., additional, Williams, A. J., additional, Amundsen, H., additional, Alwmark, S., additional, Annex, A. M., additional, Barnes, R., additional, Bell, J., additional, Beyssac, O., additional, Bosak, T., additional, Crumpler, L. S., additional, Dehouck, E., additional, Gwizd, S. J., additional, Hickman‐Lewis, K., additional, Horgan, B. H. N., additional, Hurowitz, J., additional, Kalucha, H., additional, Kanine, O., additional, Lesh, C., additional, Maki, J., additional, Mangold, N., additional, Randazzo, N., additional, Seeger, C., additional, Williams, R. M. E., additional, Brown, A., additional, Cardarelli, E., additional, Dypvik, H., additional, Flannery, D., additional, Frydenvang, J., additional, Hamran, S.‐E., additional, Núñez, J. I., additional, Paige, D., additional, Simon, J. I., additional, Tice, M., additional, Tate, C., additional, and Wiens, R. C., additional
- Published
- 2024
- Full Text
- View/download PDF
19. Sub‐Diurnal Methane Variations on Mars Driven by Barometric Pumping and Planetary Boundary Layer Evolution
- Author
-
Ortiz, J. P., primary, Rajaram, H., additional, Stauffer, P. H., additional, Lewis, K. W., additional, Wiens, R. C., additional, and Harp, D. R., additional
- Published
- 2024
- Full Text
- View/download PDF
20. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
21. In Situ Geologic Context Mapping Transect on the Floor of Jezero Crater From Mars 2020 Perseverance Rover Observations
- Author
-
Crumpler, L. S., primary, Horgan, B. H. N., additional, Simon, J. I., additional, Stack, K. M., additional, Alwmark, S., additional, Dromart, G., additional, Wiens, R. C., additional, Udry, A., additional, Brown, A. J., additional, Russell, P., additional, Amundson, H. E. F., additional, Hamran, S.‐E., additional, Bell, J., additional, Shuster, D., additional, Calef, F. J., additional, Núñez, J., additional, Cohen, B. A., additional, Flannery, D., additional, Herd, C. D. K., additional, Hand, K. P., additional, Maki, J. N., additional, Schmidt, M., additional, Golombek, M. P., additional, and Williams, N. R., additional
- Published
- 2023
- Full Text
- View/download PDF
22. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J.-M., Deleuze, M., Rull, F., Manrique, J.-A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J.-P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J.-C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q.-M., Legett, IV, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J.-F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H.-C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Published
- 2021
- Full Text
- View/download PDF
23. An interval of high salinity in ancient Gale crater lake on Mars
- Author
-
Rapin, W., Ehlmann, B. L., Dromart, G., Schieber, J., Thomas, N. H., Fischer, W. W., Fox, V. K., Stein, N. T., Nachon, M., Clark, B. C., Kah, L. C., Thompson, L., Meyer, H. A., Gabriel, T. S. J., Hardgrove, C., Mangold, N., Rivera-Hernandez, F., Wiens, R. C., and Vasavada, A. R.
- Published
- 2019
- Full Text
- View/download PDF
24. Redox stratification of an ancient lake in Gale crater, Mars
- Author
-
Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., McLennan, S. M., Milliken, R. E., Stein, N., Vasavada, A. R., Blake, D. F., Dehouck, E., Eigenbrode, J. L., Fairén, A. G., Frydenvang, J., Gellert, R., Grant, J. A., Gupta, S., Herkenhoff, K. E., Ming, D. W., Rampe, E. B., Schmidt, M. E., Siebach, K. L., Stack-Morgan, K., Sumner, D. Y., and Wiens, R. C.
- Published
- 2017
25. SuperCam Calibration Targets: Design and Development
- Author
-
Manrique, J. A., Lopez-Reyes, G., Cousin, A., Rull, F., Maurice, S., Wiens, R. C., Madsen, M. B., Madariaga, J. M., Gasnault, O., Aramendia, J., Arana, G., Beck, P., Bernard, S., Bernardi, P., Bernt, M. H., Berrocal, A., Beyssac, O., Caïs, P., Castro, C., Castro, K., Clegg, S. M., Cloutis, E., Dromart, G., Drouet, C., Dubois, B., Escribano, D., Fabre, C., Fernandez, A., Forni, O., Garcia-Baonza, V., Gontijo, I., Johnson, J., Laserna, J., Lasue, J., Madsen, S., Mateo-Marti, E., Medina, J., Meslin, P.-Y., Montagnac, G., Moral, A., Moros, J., Ollila, A. M., Ortega, C., Prieto-Ballesteros, O., Reess, J. M., Robinson, S., Rodriguez, J., Saiz, J., Sanz-Arranz, J. A., Sard, I., Sautter, V., Sobron, P., Toplis, M., and Veneranda, M.
- Published
- 2020
- Full Text
- View/download PDF
26. Characterisation of Float Rocks at Ireson Hill, Gale Crater
- Author
-
Bowden, D. L, Bridges, J. C, Schwenzer, S. P, Wiens, R. C, Gasnault, O, Thompson, L, Gasda, P, and Bedford, C
- Subjects
Space Sciences (General) - Abstract
Float rocks discovered by surface missions on Mars have given unique insights into the sedimentary, diagenetic and igneous processes that have operated throughout the planet’s history. In addition, Gale sedimentary rocks, both float and in situ, record a combination of source compositions and diagenetic overprints. We examine a group of float rocks that were identified by the Mars Science Laboratory mission’s Curiosity rover at the Ireson Hill site, circa. sol 1600 using ChemCam LIBS, APXS and images from the MastCam, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro-Imager (RMI) cameras. Geochemical data provided by the APXS and ChemCam instruments allow us to compare the compositions of these rocks to known rock types from Gale crater, as well as elsewhere on Mars. Ireson Hill is a 15 m long butte in the Murray formation with a dark cap-ping unit with chemical and stratigraphic consistency with the Stimson formation. A total of 6 float rocks have been studied on the butte.
- Published
- 2020
27. The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument
- Author
-
Frydenvang, J, Mangold, N, Wiens, R. C, Fraeman, A. A, Edgar, L. A, Fedo, C, L’Haridon, J, Bedford, C. C, Gupta, S, Grotzinger, J. P, Bridges, J. C, Clark, B. C, Rampe, E. B, Gasnault, O, Maurice, S, Gasda, P. J, Lanza, N. L, Olilla, A. M, Meslin, P.-Y, Payr, V, Calef, F, Salvatore, M, House, C. H, and Gabriel, T. S. J
- Subjects
Space Sciences (General) - Abstract
The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign.
- Published
- 2020
28. First Gale Western Butte Capping-Unit Compositions, and Relationships to Earlier Units Along Curiosity's Traverse
- Author
-
Wiens, R. C, Mangold, N, Forni, O, Anderson, R. B, Gasnault, O, Bryk, A, Dietrich, W. E, Johnson, J. R, Dehouck, E, Deit, L. Le, Frydenvang, J, Bedford, C, and Maurice, S
- Subjects
Space Sciences (General) - Abstract
The Curiosity rover has been traversing through the clay-bearing unit (Glen Torridon; GT), approaching Greenheugh pediment, a large, fan-shaped surface surrounding the mouth of Gediz Vallis on the lower slope of Mt. Sharp. The pediment unconformably overlies the underlying bedrock, and is hence younger than units of the Mt. Sharp group. Orbital imaging of the pediment has shown it to have a slightly lower albedo and higher thermal inertia than neighboring units, to be relatively retentive of craters (e.g., erosion resistant), and to exhibit curved bedforms suggestive of lithified eolian bedforms. No diagnostic spectral signature has been observed from orbit. Recent rover positions allowed remote imaging of the contact between Greenheugh pediment and the eroded Murray formation strata below it, showing that the pediment capping material is cross-bedded and relatively thin (1-3 m), and suggesting that the pediment may have been much larger at one time. As Curiosity approached the edge of the pediment, the team investigated two buttes named Central and Western. The latter butte contains dark capping material that initially looked similar to the pediment cap, but close inspection revealed important physical differences. Here we report on compositions from ChemCam of two float rocks that appear to have rolled down from the capping unit, and on potential relation-ships to other targets along the traverse of the rover.
- Published
- 2020
29. The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact
- Author
-
Bryk, A. B, Dietrich, W. E, Fox, V. K, Bennett, K. A, Banham, S. G, Lamb, M. P, Grotzinger, J. P, Vasavada, A. R, Stack, K. M, Arvidson, R, Fedo, C. M, Gupta, S, Wiens, R. C, Williams, R. M. E, Kronyak, R.E, Turner, M. L, Lewis, K. W, Rubin, D. M, Rapin, W. N, Deit, L. Le, Mouélic, S. Le, Edgett, K. S, Fraeman, A. A, Hughes, M. N, Kah, L. C, and Bedford, C. C
- Subjects
Space Sciences (General) - Abstract
The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiosity’s traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit.
- Published
- 2020
30. Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., primary, Hickman‐Lewis, K., additional, Cohen, B. A., additional, Mayhew, L. E., additional, Shuster, D. L., additional, Debaille, V., additional, Hausrath, E. M., additional, Weiss, B. P., additional, Bosak, T., additional, Zorzano, M.‐P., additional, Amundsen, H. E. F., additional, Beegle, L. W., additional, Bell, J. F., additional, Benison, K. C., additional, Berger, E. L., additional, Beyssac, O., additional, Brown, A. J., additional, Calef, F., additional, Casademont, T. M., additional, Clark, B., additional, Clavé, E., additional, Crumpler, L., additional, Czaja, A. D., additional, Fairén, A. G., additional, Farley, K. A., additional, Flannery, D. T., additional, Fornaro, T., additional, Forni, O., additional, Gómez, F., additional, Goreva, Y., additional, Gorin, A., additional, Hand, K. P., additional, Hamran, S.‐E., additional, Henneke, J., additional, Herd, C. D. K., additional, Horgan, B. H. N., additional, Johnson, J. R., additional, Joseph, J., additional, Kronyak, R. E., additional, Madariaga, J. M., additional, Maki, J. N., additional, Mandon, L., additional, McCubbin, F. M., additional, McLennan, S. M., additional, Moeller, R. C., additional, Newman, C. E., additional, Núñez, J. I., additional, Pascuzzo, A. C., additional, Pedersen, D. A., additional, Poggiali, G., additional, Pinet, P., additional, Quantin‐Nataf, C., additional, Rice, M., additional, Rice, J. W., additional, Royer, C., additional, Schmidt, M., additional, Sephton, M., additional, Sharma, S., additional, Siljeström, S., additional, Stack, K. M., additional, Steele, A., additional, Sun, V. Z., additional, Udry, A., additional, VanBommel, S., additional, Wadhwa, M., additional, Wiens, R. C., additional, Williams, A. J., additional, and Williford, K. H., additional
- Published
- 2023
- Full Text
- View/download PDF
31. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., Quantin-Nataf, C., Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., Pilleri, P., Mangold, N., Schmidt, M., Liu, Y., Núñez, J. I., Castro, K., Madariaga, J. M., Kizovski, T., Beck, P., Bernard, S., Bosak, T., Brown, A., Clegg, S., Cloutis, E., Cohen, B., Connell, S., Crumpler, L., Debaille, V., Flannery, D., Fouchet, T., Gabriel, T. S.J., Gasnault, O., Herd, C. D.K., Johnson, J., Manrique, J. A., Maurice, S., McCubbin, F. M., McLennan, S., Ollila, A., Pinet, P., and Quantin-Nataf, C.
- Abstract
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine-rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non-vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic-andesitic compositions. Their mineralogy is dominated by Fe-rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe-Ti oxides and Si-rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth-based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars.
- Published
- 2023
32. In Situ Geologic Context Mapping Transect on the Floor of Jezero Crater from Mars 2020 Perseverance Rover Observations
- Author
-
Crumpler, L. S., Horgan, B., Simon, J., Stack, K., Alwmark, S., Gilles, D., Wiens, R., Udry, A., Brown, A., Russell, P., Amundson, H., Hamran, S‐e., Bell, J., Shuster, D., Calef, F., Núñez, J., Cohen, B., Flannery, D., Herd, C. D. K., Hand, K., Maki, J., Schmidt, M., Golombek, M., Williams, N., Crumpler, L. S., Horgan, B., Simon, J., Stack, K., Alwmark, S., Gilles, D., Wiens, R., Udry, A., Brown, A., Russell, P., Amundson, H., Hamran, S‐e., Bell, J., Shuster, D., Calef, F., Núñez, J., Cohen, B., Flannery, D., Herd, C. D. K., Hand, K., Maki, J., Schmidt, M., Golombek, M., and Williams, N.
- Abstract
In situ geologic context mapping (GXM) based on rover and helicopter observations provides documentation of a nearly continuous record of geology and exposed surface structure over a 120 m-wide corridor along the traverse of the Mars 2020 /Perseverance rover. The results record the geologic context of Mars 2020 campaign sites and sample sites including the local extent of bedrock outcrops, stratigraphy, attitude, and structure from imaging and rover-based remote sensing, and outcrop lithology based on in situ proximity science. Mapping identifies a sequence of igneous lithologies including: (1) early mafic, possibly intrusive, rocks; (2) pervasively fractured and deeply altered massive bedrock of undetermined protolith; (3) buried and exhumed lava flows with pahoehoe and aa textures; (4) several varieties of regolith; and (5) small impact craters.
- Published
- 2023
33. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., Williford, K. H., Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., and Williford, K. H.
- Abstract
The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet’s interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
- Published
- 2023
34. Compositional Variations in Sedimentary Deposits in Gale Crater as Observed by ChemCam Passive and Active Spectra
- Author
-
Manelski, H. T., Sheppard, R. Y., Fraeman, A. A., Wiens, R. C., Johnson, J. R., Rampe, E. B., Frydenvang, J., Lanza, N. L., Gasnault, O., Manelski, H. T., Sheppard, R. Y., Fraeman, A. A., Wiens, R. C., Johnson, J. R., Rampe, E. B., Frydenvang, J., Lanza, N. L., and Gasnault, O.
- Abstract
During the first 2934 sols of the Curiosity rover's mission 33,468 passive visible/near-infrared (NIR) reflectance spectra were taken of the surface by the mast-mounted Chemistry and Camera (ChemCam) instrument on a range of target types. ChemCam spectra of bedrock targets from the Murray and Carolyn Shoemaker formations on Mt. Sharp were investigated using principal component analysis and various spectral parameters including the band depth at 535 nm and the slope between 840 and 750 nm. Four end-member spectra were identified. Passive spectra were compared to Laser Induced Breakdown Spectroscopy (LIBS) data to search for correlations between spectral properties and elemental abundances. The correlation coefficient between FeOT reported by LIBS and BD535 from passive spectra was used to search for regions where iron may have been added to the bedrock through oxidation of ferrous-bearing fluids but no correlations were found. Rocks in the Blunts Point-Sutton Island transition that have unique spectral properties compared to surrounding rocks, that is flat NIR slopes and weak 535 nm absorptions, are associated with higher Mn and Mg in the LIBS spectra of bedrock. Additionally, calcium-sulfate cements, previously identified by Ca and S enrichments in the LIBS spectra of bedrock, were also shown to be associated with spectral trends seen in Blunts Point. A shift toward a steeper NIR slope is seen in the Hutton interval, indicative of changing depositional conditions or increased diagenesis.
- Published
- 2023
35. Compositional Variations in Sedimentary Deposits in Gale Crater as Observed by ChemCam Passive and Active Spectra
- Author
-
Manelski, H. T., primary, Sheppard, R. Y., additional, Fraeman, A. A., additional, Wiens, R. C., additional, Johnson, J. R., additional, Rampe, E. B., additional, Frydenvang, J., additional, Lanza, N. L., additional, and Gasnault, O., additional
- Published
- 2023
- Full Text
- View/download PDF
36. ChemCam results from the Shaler outcrop in Gale crater, Mars
- Author
-
Anderson, Ryan, Bridges, J.C., Williams, A., Edgar, L., Ollila, A., Williams, J., Nachon, M., Mangold, N., Fisk, M., Schieber, J., Gupta, S., Dromart, G., Wiens, R., Le Mouélic, S., Forni, O., Lanza, N., Mezzacappa, A., Sautter, V., Blaney, D., Clark, B., Clegg, S., Gasnault, O., Lasue, J., Léveillé, R., Lewin, E., Lewis, K.W., Maurice, S., Newsom, H., Schwenzer, S.P., and Vaniman, D.
- Published
- 2015
- Full Text
- View/download PDF
37. CHEMCAM SULFUR ABUNDANCES IN THE KNOCKFARRIL HILL MEMBER, GALE CRATER MARS
- Author
-
Hoffman, M. E., Newsom, H. E., Clegg, S. M., Gasda, P. J., Lanza, N., Gasnault, O., Wiens, R. C., Delapp, D. M., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
38. VARIABILITY IN MT. SHARP GROUP BEDROCK AS SEEN BY CHEMCAM PASSIVE AND ACTIVE
- Author
-
Manelski, H. T., Sheppard, R. Y., Fraeman, A. A., Wiens, R. C., Johnson, J. R., Rampe, E. B., Frydenvang, J., Lanza, N. L., Gasnault, O., Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
39. IRRADIATION OF ORGANICS ON MARS: EVOLUTION OF THE RAMAN SIGNAL OF THE ERTALYTE TARGET ABOARD PERSEVERANCE
- Author
-
Bernard, S., Beyssac, O., Ollila, A., Lopez-Reyes, G., Manrique, J., Mouélic, S. Le, Beck, P., Forni, O., Pilleri, P., Cousin, A., Gasnault, O., Meslin, P.Y, Travis, G., Clavé, E., Royer, C., Wiens, R., Maurice, S., Team, The Supercam, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Universidad de Valladolid [Valladolid] (UVa), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lunar and Planetary Institute, Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
40. The fate of manganese: fractionation of mn and fe during the kinetic alteration process
- Author
-
Loche, M., Fabre, S., Cousin, A., Treiman, A., Lanza, N., Meslin, P-Y., Gasda, P., Das, D., Tutolo, B., Gasnault, O., Maurice, S., Wiens, R., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Lunar and Planetary Institute [Houston] (LPI), Los Alamos National Laboratory (LANL), University of Calgary, Purdue University [West Lafayette], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
41. Soil diversity on Mars: comparison between Gale and Jezero craters
- Author
-
Cousin, A., Beyssac, O., Forni, O., Meslin, P.Y, Martin, N., Chide, B., Hausrath, E.M., Sullivan, R., Poulet, F., Dehouck, E., Lasue, J., Schröder, S., Gasnault, O., Pilleri, P., Wiens, R., Team, The Supercam Science, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], University of Nevada [Las Vegas] (WGU Nevada), Cornell University [New York], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
42. CHEMCAM: ZAPPING MARS FOR 10 YEARS (AND MORE)
- Author
-
Gasnault, Olivier, Lanza, N., Wiens, R., Maurice, S., Mangold, N., Johnson, J., Dehouck, E., Beck, P., Cousin, A., Pinet, P., Bridges, J., Dromart, G., Mcconnochie, T., Mouélic, S. Le, Team, The Chemcam, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Leicester, Space Science Institute [Boulder] (SSI), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
43. Acoustics of martian geological material from the shock waves of the laser-induced sparks of supercam
- Author
-
Alvarez, C., Laserna, J., Moros, J., Purohit, P., Angel, S. M., Bernardi, P., Beyssac, O., Bousquet, B., Cadu, A., Chide, B., Clavé, E., Dauson, E., Forni, O., Fouchet, T., Gasnault, O., Jacob, Xavier, Lacombe, G., Lanza, N.L., Larmat, C., Lasue, J., Lorenz, R.D., Meslin, P.-Y., Mimoun, D., Montmessin, Franck, Murdoch, N., Ollila, A. M., Pilleri, P., Reyes-Newell, A. L., Schröder, S., Stott, A., Cate, J. Ten, Vogt, D., Clegg, S., Cousin, A., Maurice, S., Wiens, R. C., Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université de Toulouse (UT), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Purdue University [West Lafayette], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
44. Analysis of co-located supercam and sherloc observations on abrasion patches in Jezero crater
- Author
-
Connell, S. A., Wiens, R. C., Cardarelli, E. L., Deen, R., Mandon, L., Sharma, S., Beyssac, O., Clavé, E., Siljeström, S., Czaja, A.I., Pilleri, P., Gasnault, O., Lopez-Reyes, G., Johnson, J.R., Bhartia, R., Maurice, S., Teams, Supercam And Sherloc, Purdue University [West Lafayette], California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), University of Cincinnati (UC), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Photon Systems Inc., and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
45. Reflectance of Jezero crater floor: 2. Mineralogical interpretation
- Author
-
Mandon, Lucia, Quantin-Nataf, Cathy, Royer, Clément, Beck, Pierre, Fouchet, Thierry, Johnson, Jeffrey, Dehouck, Erwin, Le Mouélic, S., Poulet, François, Montmessin, Franck, Pilorget, Cédric, Gasnault, O., FORNI, Olivier, Mayhew, L., Beyssac, O., Bertrand, T., Clavé, E., Pinet, P., Brown, A., Legett, C., Tarnas, J., Cloutis, E., Poggiali, G., Fornaro, T., Maurice, Sylvestre, Wiens, R., Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Boulder], University of Colorado [Boulder], Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Los Alamos National Laboratory (LANL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Winnipeg, INAF - Osservatorio Astrofisico di Arcetri (OAA), and Istituto Nazionale di Astrofisica (INAF)
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,Earth and Planetary Sciences (miscellaneous) - Abstract
International audience; The Perseverance rover landed in the ancient lakebed of Jezero crater, Mars on February 2021. Here we assess the mineralogy of the rocks, regolith, and dust measured during the first year of the mission on the crater floor, using the visible and near-infrared spectrometer of SuperCam onboard the Perseverance rover. Most of the minerals detected from orbit are present in the bedrock, with olivine-bearing rocks at the bottom of the stratigraphy and high-Ca pyroxene-bearing rocks at the top. This is distinct from the overall low-Ca pyroxene-bearing composition of the watershed of Jezero, and points towards an igneous origin. Alteration mineral phases were detected in most of the rocks analyzed in low proportions, suggesting that aqueous alteration of the crater floor has been spatially widespread, but limited in intensity and/or time. The diverse aqueous mineralogy suggests that the aqueous alteration history of the crater floor consists of at least two stages, to form phyllosilicates and oxyhydroxides, and later sulfates. We interpret their formation in a lake or under deeper serpentinization conditions, and in an evaporative environment, respectively. Spectral similarities of dust with some rock coatings suggest widespread past processes of dust induration under liquid water activity late in the history of Jezero. Analysis of the regolith revealed some local inputs from the surrounding rocks. Relevant to the Mars Sample Return mission, the spectral features exhibited by the rocks sampled on the crater floor are representative of the diversity of spectra measured on the geological units investigated by the rover.
- Published
- 2023
- Full Text
- View/download PDF
46. Reflectance of Jezero Crater Floor: 1. Data Processing and Calibration of the Infrared Spectrometer (IRS) on SuperCam
- Author
-
Royer, Clément, Fouchet, T., Mandon, L., Montmessin, Franck, Poulet, F., Forni, O., Johnson, J., Legett, C., Le Mouélic, S., Gasnault, O., Quantin-Nataf, C., Beck, Pierre, Dehouck, E., Clavé, E., Ollila, A., Pilorget, C., Bernardi, P., Reess, J.‐M., Pilleri, P., Brown, A., Newell, R., Cloutis, E., Maurice, S., Wiens, R., Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Plancius Research LLC, Department of Geography [Winnipeg], University of Winnipeg, Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette] (EAPS), and Purdue University [West Lafayette]
- Subjects
Geophysics ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Abstract
International audience; The $Perseverance$ rover, Mars 2020 mission, landed on the surface of the Jezero Crater, on February, 18th 2021. This Martian crater is suspected to have hosted a paleolake as evidenced by the numerous detections of aqueously-altered phases and thus is a promising candidate for the search for past Martian life. The SuperCam instrument, a collaboration by a consortium of American and European laboratories, plays a leading role in this investigation thanks to its highly versatile payload providing rapid, synergistic, fine-scale mineralogy, chemistry, and color imaging. After its landing, the first measurements of Martian targets with the infrared spectrometer of SuperCam (IRS) showed new instrumental behaviors that had to be characterized and calibrated to derive unbiased science data. The IRS radiometric response has thus been calibrated using periodic observations of the Aluwhite SuperCam Calibration Target (SCCT). Parasitic effects were understood and mitigated, and the instrumental dark and noise are characterized and modeled. The reflectance calibrated data products, provided periodically on the NASA Planetary Data System, are corrected for the main instrumental features. This radiometric calibration allowed us to study the 2.5 μm absorption band which has been discovered in the Séítah unit and is associated with phyllosilicates-carbonates mixtures.
- Published
- 2023
- Full Text
- View/download PDF
47. SHERLOC investigation for Mars 2020
- Author
-
Beegle, L. W, Bhartia, R, DeFlores, L, Abbey, W, Asher, S, Burton, A, Carrier, B, Conrad, P, Clegg, S, Edgett, K.S, Ehlmann, B, Fries, M, Hug, W, Kah, L, Nealson, K, Nelson, Tony, Minitti, M, Popp, J, Langenhorst, F, Orphan, V, Ravine, M.A, Reid, R, Sobron, P, Steele, A, Tarcea, N, Wanger, G, Wiens, R, Williford, K, and Yingst, R. A
- Published
- 2019
48. SHERLOC investigation for Mars 2020
- Author
-
Yingst, R. A, Williford, K, Wiens, R, Wanger, G, Tarcea, N, Steele, A, Sobron, P, Reid, R, Ravine, M.A, Orphan, V, Langenhorst, F, Popp, J, Minitti, M, Nelson, Tony, Nealson, K, Kah, L, Hug, W, Fries, M, Ehlmann, B, Edgett, K.S, Clegg, S, Conrad, P, Carrier, B, Burton, A, Asher, S, Abbey, W, DeFlores, L, Bhartia, R, and Beegle, L. W
- Abstract
UNKNOWN
- Published
- 2019
49. Using Chemcam Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Banham, S, Wiens, R. C, Frydenvang, J, Gasnault, O, Rampe, E. B, and Gasda, P. J
- Subjects
Space Sciences (General) - Abstract
The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition.
- Published
- 2019
50. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
- Author
-
Grotzinger, J. P., Gupta, S., Malin, M. C., Rubin, D. M., Schieber, J., Siebach, K., Sumner, D. Y., Stack, K. M., Vasavada, A. R., Arvidson, R. E., Calef, F., Edgar, L., Fischer, W. F., Grant, J. A., Griffes, J., Kah, L. C., Lamb, M. P., Lewis, K. W., Mangold, N., Minitti, M. E., Palucis, M., Rice, M., Williams, R. M. E., Yingst, R. A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W. E., Dromart, G., Edgett, K. S., Ewing, R. C., Gellert, R., Hurowitz, J. A., Kocurek, G., Mahaffy, P., McBride, M. J., McLennan, S. M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T. J., Vaniman, D., Wiens, R. C., and Wilson, S. A.
- Published
- 2015
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.