1. Diffusion magnetic resonance spectroscopy captures microglial reactivity related to gut-derived systemic lipopolysaccharide: A preliminary study.
- Author
-
Birg A, van der Horn HJ, Ryman SG, Branzoli F, Deelchand DK, Quinn DK, Mayer AR, Lin HC, Erhardt EB, Caprihan A, Zotev V, Parada AN, Wick TV, Matos YL, Barnhart KA, Nitschke SR, Shaff NA, Julio KR, Prather HE, and Vakhtin AA
- Subjects
- Animals, Male, Neuroinflammatory Diseases metabolism, Creatine metabolism, Aspartic Acid metabolism, Aspartic Acid analogs & derivatives, Brain metabolism, Diffusion Magnetic Resonance Imaging methods, Thalamus metabolism, Female, Lipopolysaccharides pharmacology, Microglia metabolism, Choline metabolism, Magnetic Resonance Spectroscopy methods
- Abstract
Neuroinflammation is a key component underlying multiple neurological disorders, yet non-invasive and cost-effective assessment of in vivo neuroinflammatory processes in the central nervous system remains challenging. Diffusion weighted magnetic resonance spectroscopy (dMRS) has shown promise in addressing these challenges by measuring diffusivity properties of different neurometabolites, which can reflect cell-specific morphologies. Prior work has demonstrated dMRS utility in capturing microglial reactivity in the context of lipopolysaccharide (LPS) challenges and serious neurological disorders, detected as changes of microglial metabolite diffusivity properties. However, the extent to which such dMRS metrics are capable of detecting subtler and more nuanced levels of neuroinflammation in populations without overt neuropathology is unknown. Here we examined the relationship between intrinsic, gut-derived levels of systemic LPS and dMRS-based apparent diffusion coefficients (ADC) of choline, creatine, and N-acetylaspartate (NAA) in two brain regions: the thalamus and the corona radiata. Higher plasma LPS concentrations were significantly associated with increased ADC of choline and NAA in the thalamic region, with no such relationships observed in the corona radiata for any of the metabolites examined. As such, dMRS may have the sensitivity to measure microglial reactivity across populations with highly variable levels of neuroinflammation, and holds promising potential for widespread applications in both research and clinical settings., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF