176 results on '"Whiteway J"'
Search Results
2. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Vandaele, A. C., Lopez-Moreno, J.-J., Patel, M. R., Bellucci, G., Daerden, F., Ristic, B., Robert, S., Thomas, I. R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, B., González-Galindo, F., Geminale, A., Gérard, J.-C., Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, M., López-Valverde, M., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Willame, Y., Wolff, M., and the NOMAD Team
- Published
- 2018
- Full Text
- View/download PDF
3. Global Vertical Distribution of Water Vapor on Mars: Results From 3.5 Years of ExoMars‐TGO/NOMAD Science Operations
- Author
-
Aoki, S., primary, Vandaele, A. C., additional, Daerden, F., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Clancy, R. T., additional, Lopez‐Valverde, M. A., additional, Brines, A., additional, Thomas, I. R., additional, Trompet, L., additional, Erwin, J. T., additional, Neary, L., additional, Robert, S., additional, Piccialli, A., additional, Holmes, J. A., additional, Patel, M. R., additional, Yoshida, N., additional, Whiteway, J., additional, Smith, M. D., additional, Ristic, B., additional, Bellucci, G., additional, Lopez‐Moreno, J. J., additional, and Fedorova, A. A., additional
- Published
- 2022
- Full Text
- View/download PDF
4. Planet‐Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Daerden, F., Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, S., Thomas, I. R., Ristic, B., Erwin, J., Gérard, J.‐C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, J. P., Patel, M. R., Villanueva, G. L., Liuzzi, G., Bellucci, G., Lopez‐Moreno, J.‐J., Vandaele, A. C., Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, and UK Space Agency
- Subjects
Ozone ,Geophysics ,Atmosphere ,Mars ,NOMAD ,General Earth and Planetary Sciences ,General circulation model ,Global dust storm - Abstract
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes., The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust storms. © 2022 The Authors., This work was made possible thanks to the reconstructed gridded maps of column dust optical depth from Mars Climate Sounder observations provided by L. Montabone. The dust maps were prepared using MCS v5.3 provided by A. Kleinböhl and D. Kass. Dust climatologies can be found at the following link: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/. ExoMars is a space mission of the European Space Agency (ESA) and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASB-BIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by the UK Space Agency (grants ST/V002295/1, ST/P001262/1, ST/V005332/1 and ST/S00145X/1), by the Spanish Ministry of Science and Innovation (MCIU), and by European funds (grants PGC2018-101836-B-I00 and ESP2017-87143-R, MINECO/FEDER), as well as by the Italian Space Agency (Grant 2018-2-HH.0). This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS (Grant Nos. 30442502, ET_HOME). This work has received funding from the European Union's Horizon 2020 research and innovation programme (grant agreement No 101004052, RoadMap project). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). US investigators were supported by the National Aeronautics and Space Administration, by NASA's Mars Program Office (under WBS 604796, “Participation in the TGO/NOMAD Investigation of Trace Gases on Mars.”), and by NASA (award number 80GSFC21M0002). Canadian investigators were supported by the Canadian Space Agency.
- Published
- 2022
5. Planet‐Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Daerden, F., primary, Neary, L., additional, Wolff, M. J., additional, Clancy, R. T., additional, Lefèvre, F., additional, Whiteway, J. A., additional, Viscardy, S., additional, Piccialli, A., additional, Willame, Y., additional, Depiesse, C., additional, Aoki, S., additional, Thomas, I. R., additional, Ristic, B., additional, Erwin, J., additional, Gérard, J.‐C., additional, Sandor, B. J., additional, Khayat, A., additional, Smith, M. D., additional, Mason, J. P., additional, Patel, M. R., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Bellucci, G., additional, Lopez‐Moreno, J.‐J., additional, and Vandaele, A. C., additional
- Published
- 2022
- Full Text
- View/download PDF
6. Explaining NOMAD D/H Observations by Cloud‐Induced Fractionation of Water Vapor on Mars
- Author
-
Daerden, F., Neary, L., Villanueva, G., Liuzzi, G., Aoki, S., Clancy, R. T., Whiteway, J. A., Sandor, B. J., Smith, M. D., Wolff, M. J., Pankine, A., Khayat, A., Novak, R., Cantor, B., Crismani, M., Mumma, M. J., Viscardy, S., Erwin, J., Depiesse, C., Mahieux, A., Piccialli, A., Robert, S., Trompet, L., Willame, Y., Neefs, E., Thomas, I. R., Ristic, B., and Vandaele, A. C.
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) - Published
- 2022
- Full Text
- View/download PDF
7. Mars Water-Ice Clouds and Precipitation
- Author
-
Whiteway, J. A., Komguem, L., Dickinson, C., Cook, C., Illnicki, M., Seabrook, J., Popovici, V., Duck, T. J., Davy, R., Taylor, P. A., Pathak, J., Fisher, D., Carswell, A. I., Daly, M., Hipkin, V., Zent, A. P., Hecht, M. H., Wood, S. E., Tamppari, L. K., Renno, N., Moores, J. E., Lemmon, M. T., Daerden, F., and Smith, P. H.
- Published
- 2009
- Full Text
- View/download PDF
8. H₂O at the Phoenix Landing Site
- Author
-
Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., Carswell, A., Catling, D. C., Clark, B. C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H. P., Hecht, M. H., Hipkin, V., Hoffman, J., Hviid, S. F., Keller, H. U., Kounaves, S. P., Lange, C. F., Lemmon, M. T., Madsen, M. B., Markiewicz, W. J., Marshall, J., McKay, C. P., Mellon, M. T., Ming, D. W., Morris, R. V., Pike, W. T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J. A., and Zent, A. P.
- Published
- 2009
- Full Text
- View/download PDF
9. Measurements at the Eureka Arctic NDSC Station with a Raman DIAL System
- Author
-
Carswell, A. I., Donovan, D. P., Bird, J. C., Duck, T. J., Pal, S. R., Whiteway, J. A., Ansmann, Albert, editor, Neuber, Roland, editor, Rairoux, Patrick, editor, and Wandinger, Ulla, editor
- Published
- 1997
- Full Text
- View/download PDF
10. Global Vertical Distribution of Water Vapor on Mars: Results From 3.5 Years of ExoMars-TGO/NOMAD Science Operations
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, Geronimo L., Liuzzi, G., Clancy, R. T., López-Valverde, M. A., Brines, Adrian, Thomas, I. R., Trompet, L., Erwin, J. T., Neary, L., Robert, S., Piccialli, A., Holmes, J. A., Patel, M. R., Yoshida, N., Whiteway, J., Smith, M. D., Ristic, B., Bellucci, G., López-Moreno, José Juan, Fedorova, A. A., Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Aoki, S., Vandaele, A. C., Daerden, F., Villanueva, Geronimo L., Liuzzi, G., Clancy, R. T., López-Valverde, M. A., Brines, Adrian, Thomas, I. R., Trompet, L., Erwin, J. T., Neary, L., Robert, S., Piccialli, A., Holmes, J. A., Patel, M. R., Yoshida, N., Whiteway, J., Smith, M. D., Ristic, B., Bellucci, G., López-Moreno, José Juan, and Fedorova, A. A.
- Abstract
We present water vapor vertical distributions on Mars retrieved from 3.5 years of solar occultation measurements by Nadir and Occultation for Mars Discovery onboard the ExoMars Trace Gas Orbiter, which reveal a strong contrast between aphelion and perihelion water climates. In equinox periods, most of water vapor is confined into the low-middle latitudes. In aphelion periods, water vapor sublimated from the northern polar cap is confined into very low altitudes—water vapor mixing ratios observed at the 0–5 km lower boundary of measurement decrease by an order of magnitude at the approximate altitudes of 15 and 30 km for the latitudes higher than 50°N and 30–50°N, respectively. The vertical confinement of water vapor at northern middle latitudes around aphelion is more pronounced in the morning terminators than evening, perhaps controlled by the diurnal cycle of cloud formation. Water vapor is also observed over the low latitude regions in the aphelion southern hemisphere (0–30°S) mostly below 10–20 km, which suggests north-south transport of water still occurs. In perihelion periods, water vapor sublimated from the southern polar cap directly reaches high altitudes (>80 km) over high southern latitudes, suggesting more effective transport by the meridional circulation without condensation. We show that heating during perihelion, sporadic global dust storms, and regional dust storms occurring annually around 330° of solar longitude (LS) are the main events to supply water vapor to the upper atmosphere above 70 km. © 2022. The Authors.
- Published
- 2022
11. Planet-Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm
- Author
-
Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Daerden, Frank, Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, Shohei, Thomas, Ian R., Ristic, Bojan, Erwin, Justin T., Gérard, J. -C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, Jonathon P., Patel, Manish R., Villanueva, Geronimo L., Liuzzi, Giuliano, Bellucci, Giancarlo, López-Moreno, José Juan, Vandaele, Ann Carine, Ministerio de Ciencia e Innovación (España), European Commission, Belgian Science Policy Office, UK Space Agency, Daerden, Frank, Neary, L., Wolff, M. J., Clancy, R. T., Lefèvre, F., Whiteway, J. A., Viscardy, S., Piccialli, A., Willame, Y., Depiesse, C., Aoki, Shohei, Thomas, Ian R., Ristic, Bojan, Erwin, Justin T., Gérard, J. -C., Sandor, B. J., Khayat, A., Smith, M. D., Mason, Jonathon P., Patel, Manish R., Villanueva, Geronimo L., Liuzzi, Giuliano, Bellucci, Giancarlo, López-Moreno, José Juan, and Vandaele, Ann Carine
- Abstract
The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust storms. © 2022 The Authors.
- Published
- 2022
12. Arctic Lidar Measurements of the Middle Atmosphere
- Author
-
Donovan, D. P., Whiteway, J. A., Steinbrecht, W., Carswell, A. I., Lampropoulos, George A., editor, Chrostowski, Jacek, editor, and Measures, Raymond M., editor
- Published
- 1995
- Full Text
- View/download PDF
13. European Venus Explorer (EVE): an in-situ mission to Venus
- Author
-
Chassefière, E., Korablev, O., Imamura, T., Baines, K. H., Wilson, C. F., Titov, D. V., Aplin, K. L., Balint, T., Blamont, J. E., Cochrane, C. G., Ferencz, Cs., Ferri, F., Gerasimov, M., Leitner, J. J., Lopez-Moreno, J., Marty, B., Martynov, M., Pogrebenko, S. V., Rodin, A., Whiteway, J. A., Zasova, L. V., Michaud, J., Bertrand, R., Charbonnier, J.-M., Carbonne, D., Raizonville, P., and EVE team
- Published
- 2009
- Full Text
- View/download PDF
14. Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD
- Author
-
Aoki, S., primary, Daerden, F., additional, Viscardy, S., additional, Thomas, I. R., additional, Erwin, J. T., additional, Robert, S., additional, Trompet, L., additional, Neary, L., additional, Villanueva, G. L., additional, Liuzzi, G., additional, Crismani, M. M. J., additional, Clancy, R. T., additional, Whiteway, J., additional, Schmidt, F., additional, Lopez‐Valverde, M. A., additional, Ristic, B., additional, Patel, M. R., additional, Bellucci, G., additional, Lopez‐Moreno, J.‐J., additional, Olsen, K. S., additional, Lefèvre, F., additional, Montmessin, F., additional, Trokhimovskiy, A., additional, Fedorova, A. A., additional, Korablev, O., additional, and Vandaele, A. C., additional
- Published
- 2021
- Full Text
- View/download PDF
15. Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD
- Author
-
Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, European Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Belgian Science Policy Office, National Aeronautics and Space Administration (US), UK Space Agency, Aoki, Shohei, Daerden, Frank, Viscardy, S., Thomas, Ian R., Erwin, Justin T., Robert, S., Trompet, L., Neary, L., Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Clancy, R. Todd, Whiteway, J., Schmidt, F., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Olsen, K. S., Lefèvre, F., Montmessin, Franck, Trokhimovskiy, A., Fedorova, A. A., Korablev, O., Vandaele, Ann Carine, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, European Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Belgian Science Policy Office, National Aeronautics and Space Administration (US), UK Space Agency, Aoki, Shohei, Daerden, Frank, Viscardy, S., Thomas, Ian R., Erwin, Justin T., Robert, S., Trompet, L., Neary, L., Villanueva, Geronimo L., Liuzzi, Giuliano, Crismani, M. M. J., Clancy, R. Todd, Whiteway, J., Schmidt, F., López-Valverde, M. A., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, López-Moreno, José Juan, Olsen, K. S., Lefèvre, F., Montmessin, Franck, Trokhimovskiy, A., Fedorova, A. A., Korablev, O., and Vandaele, Ann Carine
- Abstract
Hydrogen chloride (HCl) was recently discovered in the atmosphere of Mars by two spectrometers onboard the ExoMars Trace Gas Orbiter. The reported detection made in Martian Year 34 was transient, present several months after the global dust storm during the southern summer season. Here, we present the full data set of vertically resolved HCl detections obtained by the NOMAD instrument, which covers also Martian year 35. We show that the particular increase of HCl abundances in the southern summer season is annually repeated, and that the formation of HCl is independent from a global dust storm event. We also find that the vertical distribution of HCl is strikingly similar to that of water vapor, which suggests that the uptake by water ice clouds plays an important role. The observed rapid decrease of HCl abundances at the end of the southern summer would require a strong sink independent of photochemical loss. © 2021. American Geophysical Union.
- Published
- 2021
16. Solar-System-Wide Significance of Mars Polar Science
- Author
-
Smith, Isaac, primary, Calvin, W. M., additional, Smith, D. E., additional, Hansen, C., additional, Diniega, S., additional, McEwen, A., additional, Thomas, N., additional, Banfield, D., additional, Titus, T. N., additional, Becerra, P., additional, Kahre, M., additional, Forget, F., additional, Hecht, M., additional, Byrne, S., additional, Hvidberg, C. S., additional, Hayne, P. O., additional, III, J. W. Head,, additional, Mellon, M., additional, Horgan, B., additional, Mustard, J., additional, Holt, J. W., additional, Howard, A., additional, McCleese, D., additional, Stoker, C., additional, James, P., additional, Putzig, N. E., additional, Whitten, J., additional, Buhler, P., additional, Spiga, A., additional, Crismani, M., additional, Aye, K. M., additional, Portyankina, A., additional, Orosei, R., additional, Bramson, A., additional, Hanley, J., additional, Sori, M., additional, Aharonson, O., additional, Clifford, S., additional, Sizemore, H., additional, Morgan, G., additional, Hartmann, B., additional, Schorghofer, N., additional, Clark, R., additional, Berman, D., additional, Crown, D., additional, Chuang, F., additional, Siegler, M., additional, Dobrea, E. N., additional, Lynch, K., additional, Obbard, R. W., additional, Elmaary, M. R., additional, Fisher, D., additional, Kleinboehl, A., additional, Balme, M., additional, Schmitt, B., additional, Daly, M., additional, Ewing, R. C., additional, Herkenhoff, K. E., additional, Fenton, L., additional, Guzewich, S. D., additional, Koutnik, M., additional, Levy, J., additional, Massey, R., additional, Łosiak, A., additional, Eke, V., additional, Goldsby, D., additional, Cross, A., additional, Hager, T., additional, Piqueux, S., additional, Kereszturi, A., additional, Seelos, K., additional, Wood, S., additional, Hauber, E., additional, Amos, C., additional, Russell, P., additional, Jaumann, R., additional, Michael, G., additional, Conway, S., additional, Khayat, A., additional, Lewis, S., additional, Luizzi, G., additional, Martinez, G., additional, Mesick, K., additional, Montabone, L., additional, Johnsson, A., additional, Pankine, A., additional, Phillips-Lander, C., additional, Read, P., additional, Edgar, L., additional, Zacny, K., additional, McAdam, A., additional, Rutledge, A., additional, Bertrand, T., additional, Widmer, J., additional, Stillman, D., additional, Soto, A., additional, Yoldi, Z., additional, Young, R., additional, Svensson, A., additional, Sam, L., additional, Landis, M., additional, Bhardwaj, A., additional, Chojnacki, M., additional, Kite, E., additional, Thomas, P., additional, Plaut, J., additional, Bapst, J., additional, Milkovich, S., additional, Whiteway, J., additional, Moores, J., additional, Rezza, C., additional, Karimova, R., additional, Mishev, I., additional, Brenen, A. Van, additional, Acharya, P., additional, Chesal, J., additional, Pascuzzo, A., additional, Vos, E., additional, Osinski, G., additional, Andres, C., additional, Neisch, C., additional, Hibbard, S., additional, Sinha, P., additional, Knightly, J. P., additional, Cartwright, S., additional, Kounaves, S., additional, Orgel, C., additional, Skidmore, M., additional, MacGregor, J., additional, Staehle, R., additional, Rabassa, J., additional, Gallagher, C., additional, Coronato, A., additional, Galofre, A. G., additional, Wilson, J., additional, McKeown, L., additional, Oliveira, N., additional, Fawdon, P., additional, Gayathri, U., additional, Stuurman, C., additional, Herny, C., additional, Butcher, F., additional, Bernardini, F., additional, Perry, M., additional, Hu, R., additional, Mukherjee, S., additional, Chevrier, V., additional, Banks, M. E., additional, Meng, T., additional, Johnson, P. A., additional, Tober, B., additional, Johnson, J. C., additional, Ulamsec, S., additional, Echaurren, J. C., additional, Khuller, A., additional, Dinwiddie, C., additional, Adeli, S., additional, Henderson, B. L., additional, Lozano, L. R., additional, Lalich, D., additional, Rivera-Valentín, E., additional, Nerozzi, S., additional, Petersen, E., additional, Foss, F., additional, Lorenz, R., additional, Eigenbrode, J., additional, Day, M., additional, Brown, A., additional, Pajola, M., additional, Karatekin, Ö., additional, Lucchetti, A., additional, Cesar, C., additional, Newman, C., additional, Cave, T. G., additional, Tamppari, L., additional, Mischna, M., additional, Patel, M., additional, Streeter, P., additional, Stern, J. C., additional, and Dundas, C. M., additional
- Published
- 2021
- Full Text
- View/download PDF
17. 'Is concomitant carcinoma in situ a relative contraindication to neoadjuvant chemotherapy for muscle invasive TCC bladder': B12
- Author
-
Ahmad, S, Vasdev, N, Whiteway, J, and Thorpe, A
- Published
- 2011
18. Explanation for the Increase in High‐Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm
- Author
-
Neary, L., primary, Daerden, F., additional, Aoki, S., additional, Whiteway, J., additional, Clancy, R. T., additional, Smith, M., additional, Viscardy, S., additional, Erwin, J.T., additional, Thomas, I. R., additional, Villanueva, G., additional, Liuzzi, G., additional, Crismani, M., additional, Wolff, M., additional, Lewis, S. R., additional, Holmes, J. A., additional, Patel, M. R., additional, Giuranna, M., additional, Depiesse, C., additional, Piccialli, A., additional, Robert, S., additional, Trompet, L., additional, Willame, Y., additional, Ristic, B., additional, and Vandaele, A. C., additional
- Published
- 2020
- Full Text
- View/download PDF
19. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Ristic, Bojan, Patel, Manish R., Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Smith, M.D., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, S., Gomez, A., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Perez-grande, I., Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), and Canadian Space Agency
- Subjects
010504 meteorology & atmospheric sciences ,Storm ,Atmosphere of Mars ,Mars Exploration Program ,Atmospheric sciences ,01 natural sciences ,Trace gas ,Atmosphere ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,Dust storm ,Earth and Planetary Sciences (miscellaneous) ,Environmental science ,Hadley cell ,Water vapor ,0105 earth and related environmental sciences - Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved., S. A. is >Charge de Recherches> of the F.R.S.-FNRS. ExoMars is a space mission of the European Space Agency and Roscosmos. The NOMAD experiment is led by the Royal Belgian Institute for Space Aeronomy (IASBBIRA), assisted by Co-PI teams from Spain (IAA-CSIC), Italy (INAF-IAPS), and the United Kingdom (Open University). This project acknowledges funding by the Belgian Science Policy Office, with the financial and contractual coordination by the European Space Agency Prodex Office (PEA 4000103401 and 4000121493), by the Spanish MICINN through its Plan Nacional and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by UK Space Agency through grants ST/R005761/1, ST/P001262/1, ST/R001405/1, and ST/S00145X/1 and Italian Space Agency through grant 2018-2-HH.0. The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709). This work was supported by the Belgian Fonds de la Recherche Scientifique-FNRS under grant numbers 30442502 (ET_HOME) and T.0171.16 (CRAMIC) and Belgian Science Policy Office BrainBe SCOOP Project. U.S. investigators were supported by the National Aeronautics and Space Administration. Canadian investigators were supported by the Canadian Space Agency. The results retrieved from the NOMAD measurements used in this article are available on the BIRA-IASB data repository: http://repository.aeronomie.be/?doi= 10.18758/71021054 (Aoki et al., 2019).
- Published
- 2019
20. A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils
- Author
-
Lawson, R. P., primary, Woods, S., additional, Jensen, E., additional, Erfani, E., additional, Gurganus, C., additional, Gallagher, M., additional, Connolly, P., additional, Whiteway, J., additional, Baran, A. J., additional, May, P., additional, Heymsfield, A., additional, Schmitt, C. G., additional, McFarquhar, G., additional, Um, J., additional, Protat, A., additional, Bailey, M., additional, Lance, S., additional, Muehlbauer, A., additional, Stith, J., additional, Korolev, A., additional, Toon, O. B., additional, and Krämer, M., additional
- Published
- 2019
- Full Text
- View/download PDF
21. Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, Gomez, A., Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Ministerio de Ciencia, Innovación y Universidades (España), Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), National Aeronautics and Space Administration (US), Canadian Space Agency, Aoki, Shohei, Vandaele, Ann Carine, Daerden, Frank, Villanueva, Geronimo L., Liuzzi, Giuliano, Thomas, Ian R., Erwin, Justin T., Trompet, L., Robert, S., Neary, L., Viscardy, S., Hathi, B., Zafra, J.J., Leese, M., Maes, J., Pastor-Morales, M., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Pérez Grande, Isabel, Ristic, Bojan, Queirolo, C., Ristic, R., Gomez, J.R., Saggin, B., Smith, M.D., Samain, V., Sanz Andres, A., Altieri, F., Sanz, R., Simar, J.-F., Patel, Manish R., Thibert, T., the NOMAD team, López-Valverde, M. A., Hill, Brittany, Bellucci, Giancarlo, Bauduin, S., López-Moreno, José Juan, Alonso-Rodrigo, G., Fussen, D., Bolsée, D., Carrozzo, G., Clancy, R. Todd, Cloutis, E., Crismani, M., Da Pieve, F., D'Aversa, E., Kaminski, J., Depiesse, C., Garcia-Comas, M., Etiope, G., Fedorova, A.A., Funke, Bernd, Geminale, A., Gérard, Jean-Claude, Giuranna, M., Karatekin, O., Gkouvelis, L., González-Galindo, F., Holmes, J., Hubert, B., Mumma, M.J., Ignatiev, N.I., Kasaba, Y., Kass, D., Kleinböhl, A., Lanciano, O., Lefèvre, F., Lewis, S., López-Puertas, M., Schneider, Nicholas, Nakagawa, H., Hidalgo López, Ana, Mahieux, A., Mason, J., Mege, D., Neefs, E., Novak, R.E., Oliva, F., Sindoni, G., Piccialli, A., Renotte, E., Ritter, B., Willame, Y., Schmidt, F., Teanby, N.A., Thiemann, E., Trokhimovskiy, A., Auwera, J.V., Wolff, M.J., Clairquin, R., Whiteway, J., Wilquet, V., Wolkenberg, P., Yelle, R., del Moral Beatriz, A., Barzin, P., Beeckman, B., Cubas, J., BenMoussa, A., Berkenbosch, S., Orban, A., Biondi, D., Bonnewijn, S., Candini, G.P., Giordanengo, B., Gissot, Samuel, and Gomez, A.
- Abstract
It has been suggested that dust storms efficiently transport water vapor from the near-surface to the middle atmosphere on Mars. Knowledge of the water vapor vertical profile during dust storms is important to understand water escape. During Martian Year 34, two dust storms occurred on Mars: a global dust storm (June to mid-September 2018) and a regional storm (January 2019). Here we present water vapor vertical profiles in the periods of the two dust storms (Ls = 162–260° and Ls = 298–345°) from the solar occultation measurements by Nadir and Occultation for Mars Discovery (NOMAD) onboard ExoMars Trace Gas Orbiter (TGO). We show a significant increase of water vapor abundance in the middle atmosphere (40–100 km) during the global dust storm. The water enhancement rapidly occurs following the onset of the storm (Ls~190°) and has a peak at the most active period (Ls~200°). Water vapor reaches very high altitudes (up to 100 km) with a volume mixing ratio of ~50 ppm. The water vapor abundance in the middle atmosphere shows high values consistently at 60°S-60°N at the growth phase of the dust storm (Ls = 195°–220°), and peaks at latitudes greater than 60°S at the decay phase (Ls = 220°–260°). This is explained by the seasonal change of meridional circulation: from equinoctial Hadley circulation (two cells) to the solstitial one (a single pole-to-pole cell). We also find a conspicuous increase of water vapor density in the middle atmosphere at the period of the regional dust storm (Ls = 322–327°), in particular at latitudes greater than 60°S. ©2019. American Geophysical Union. All Rights Reserved.
- Published
- 2019
22. Cellular determinants of the mutational specificity of 1-nitroso-6-nitropyrene and 1-nitroso-8-nitropyrene in the lacI gene of Escherichia coli
- Author
-
Lambert, I.B., Carroll, C., Laycock, N., Koziarz, J., Lawford, I., Duval, L., Turner, G., Booth, R., Douville, S., Whiteway, J., and Nokhbeh, M.R.
- Published
- 2001
- Full Text
- View/download PDF
23. Correction for nonlinear photon counting effects in lidar systems
- Author
-
Donovan, D. P, Whiteway, J. A, and Carswell, A. I
- Subjects
Instrumentation And Photography - Abstract
Photomultiplier tubes (PMT's) employed in the photon counting (PC) mode of operation are widely used as detectors in lidar systems. In our laboratory, we have developed a versatile Nd:YAG lidar which is used for measurement of both the middle atmosphere and the troposphere. With this system, we encounter a very wide range of signal levels ranging from the extremely weak signals from the top of the mesosphere to the very strong returns from low level clouds. Although the system is capable of operating the PMT's in either the analog detection or photon counting mode, we find that often when we use photon counting we have portions of our lidar return which contain very useful information but are not within the linear operating regime of the PC system. We report the results of our efforts to explore the extent to which such high intensity PC signals can be quantitatively analyzed. In particular, a useful model relating the mean 'true' count rate and the observed count rate is presented and it's application to our system demonstrated. This model takes into account the variation in height of the PMT output pulses and the effect of the pulse height discrimination threshold.
- Published
- 1992
24. NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance
- Author
-
Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, The NOMAD Team, Belgian Science Policy Office, European Space Agency, Ministerio de Ciencia e Innovación (España), European Commission, UK Space Agency, Agenzia Spaziale Italiana, Fonds de la Recherche Scientifique (Fédération Wallonie-Bruxelles), Vandaele, Ann Carine, López-Moreno, José Juan, Patel, Manish R., Bellucci, Giancarlo, Daerden, Frank, Ristic, Bojan, Robert, S., Thomas, Ian R., Wilquet, V., Allen, M., Alonso-Rodrigo, G., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Depiesse, C., Drummond, R., Fedorova, A., Formisano, V., Funke, Bernd, González-Galindo, F., Geminale, A., Gérard, Jean-Claude, Giuranna, M., Hetey, L., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Leese, M., Lefèvre, F., Lewis, S. R., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Renotte, E., Rodriguez-Gomez, J., Sindoni, G., Smith, M., Stiepen, A., Trokhimovsky, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wolff, Michael T., Patel, M., D’aversa, E., Fussen, D., García Comas, Maia, Hewson, W., McConnel, J., Novak, R., Oliva, F., Piccialli, A., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G. P., Clairquin, R., Cubas, J., De-Lanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Queirolo, C., Saggin, B., Samain, V., Sanz Andres, A., Sanz Mesa, Rosario, Simar, J.-F., Thibert, T., Jerónimo, José María, and The NOMAD Team
- Abstract
The NOMAD (“Nadir and Occultation for MArs Discovery”) spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the composition of Mars’ atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.© 2018, The Author(s).
- Published
- 2018
25. Cycling of amino-nitrogen between shoots and roots in wheat seedlings
- Author
-
COOPER, H. D., CLARKSON, D. T., JOHNSTON, M. G., WHITEWAY, J N., and LOUGHMAN, B. C.
- Published
- 1986
26. Interannual and Diurnal Variability in Water Ice Clouds Observed from MSL Over Two Martian Years
- Author
-
Kloos, J. L., primary, Moores, J. E., additional, Whiteway, J. A., additional, and Aggarwal, M., additional
- Published
- 2018
- Full Text
- View/download PDF
27. Expected performances of the NOMAD/ExoMars instrument
- Author
-
Robert, S, Vandaele, A. C., Thomas, I., Willame, Y., Daerden, F., Delanoye, S., Depiesse, C., Drummond, R., Neefs, E., Neary, L., Ristic, B., Mason, J., Lopez Moreno, J. J., Rodriguez Gomez, J., Patel, M. R., Bellucci, G., Patel, M., Allen, M., Altieri, F., Aoki, S., Bolsée, D., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mcconnell, J., Mumma, M., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, I. R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Ben Moussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., UK Space Agency, Belgian Science Policy Office, European Commission, and European Space Agency
- Subjects
ExoMars ESA mission ,010504 meteorology & atmospheric sciences ,Mars ,NOMAD instrument ,01 natural sciences ,Occultation ,law.invention ,Orbiter ,law ,0103 physical sciences ,Nadir ,Radiative transfer ,Abundances ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Remote sensing ,atmosphere [Mars] ,Spectrometer ,Mars, atmosphere ,Astronomy and Astrophysics ,Space and Planetary Science ,Astronomy ,Mars Exploration Program ,Atmosphere of Mars ,Trace gas ,13. Climate action ,atmosphere ,Mars: atmosphere ,Environmental science - Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (PlanetADAM no 4000107727). The research was performed as part of the >Inter-university Attraction Poles> programme financed by the Belgian Government (Planet TOPERS no P7-15) and a BRAIN Research Grant BR/143/A2/SCOOP. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 607177 CrossDrive. UK funding is acknowledged under the UK Space Agency Grant ST/I003061/1.
- Published
- 2016
28. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel
- Author
-
Vandaele, Ann C., Willame, Yannick, Depiesse, Cédric, Thomas, Ian R., Robert, Séverine, Bolsée, David, Patel, Manish R., Mason, Jon P., Leese, Mark, Lesschaeve, Stefan, Antoine, Philippe, Daerden, Frank, Delanoye, Sofie, Drummond, Rachel, Neefs, Eddy, Ristic, Bojan, Lopez Moreno, José Juan, Bellucci, Giancarlo, Allen, M., Altieri, F., Aoki, S., Clancy, T., Cloutis, E., Fedorova, A., Formisano, V., Funke, B., Fussen, D., Garcia Comas, M., Geminale, A., Gérard, J. C., Gillotay, D., Giuranna, M., Gonzalez Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López Puertas, M., López Valverde, M., Mahieux, A., Mumma, M., Neary, L., Novak, R., Renotte, E., Sindoni, G., Smith, M., Trokhimovskiy, A., Vander Auwera, J., Villanueva, G., Viscardy, S., Whiteway, J., Wilquet, V., Wolff, M., Alonso Rodrigo, G., Aparicio Del Moral, B., Barzin, P., Benmoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Giordanengo, B., Gissot, S., Gomez, A., Zafra, J. J., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, R., Orban, A., Pastor Morales, M., Perez Grande, I., Rodriguez Gomez, J., Saggin, Bortolino, Samain, V., Sanz Andres, A., Sanz, R., Simar, J. F., Thibert, T., European Space Agency, UK Space Agency, and Belgian Science Policy Office
- Subjects
Solar occultation ,Radiometric model ,Occultation ,Signal ,law.invention ,Orbiter ,Optics ,law ,Atomic and Molecular Physics ,Nadir ,Optical constants ,Science objectives ,Remote sensing ,Physics ,Martian ,business.industry ,Signal to noise ,Atmosphere of Mars ,IR spectral range ,Atomic and Molecular Physics, and Optics ,Trace gas ,Wavelength ,Optical models ,Atmospheric absorption ,and Optics ,business ,Martian atmospheres - Abstract
The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (, NOMAD has been made possible thanks to funding by the Belgian Science Policy Office (BELSPO) and financial and contractual coordination by the ESA Prodex Office (contracts no 4000107727 and 4000103401). The research was performed as part of the >Interuniversity Attraction Poles> programme financed by the Belgian government (Planet TOPERS, contract PAI no P7/15). UK funding is acknowledged under the UK Space Agency grant ST/I003061/1.
- Published
- 2015
29. Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivatives in Escherichia coli
- Author
-
Whiteway, J., Koziarz, P., Veall, J., Sandhu, N., Kumar, P., Hoecher, B., and Lambert, I.B.
- Subjects
Drug resistance in microorganisms -- Research ,Escherichia coli -- Genetic aspects ,Gene mutations -- Research ,Biological sciences - Abstract
Research was conducted to examine the roles of nfsA and nfsB genes in the development of resistance to 5-nitrofuran derivatives in Escherichia coli. The nfsA and nfsB genes of a large number of nitrofuran-resistant mutants of E coli were characterized and mutation was correlated with cell extract nitroreductase activity. Results provided evidence that an nfsA mutation was responsible for the first-step resistance to furazolidone or nitrofurazone while an nfsB mutation was responsible for increased resistance related to second-step mutants.
- Published
- 1998
30. Expected performances of the NOMAD/ExoMars instrument
- Author
-
UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., Alonso-Rodrigo, G., UK Space Agency, Belgian Science Policy Office, European Commission, European Space Agency, Vandaele, Ann Carine, López-Moreno, José Juan, Bellucci, Giancarlo, Patel, M., Allen, M., Altieri, F., Aoki, Shohei, Bolsée, D., Clancy, T., Cloutis, E., Daerden, Frank, Depiesse, C., Fedorova, A., Formisano, V., Funke, Bernd, Fussen, D., García Comas, Maia, Geminale, A., Gérard, Jean-Claude, Gillotay, D., Giuranna, M., González-Galindo, F., Ignatiev, N., Kaminski, J., Karatekin, O., Kasaba, Y., Lefèvre, F., Lewis, S., López-Puertas, Manuel, López-Valverde, M. A., Mahieux, A., Mason, J., McConnell, J., Mumma, M., Neary, L., Neefs, E., Novak, R., Renotte, E., Robert, S., Sindoni, G., Smith, M., Thomas, Ian R., Trokhimovskiy, A., Vander Auwera, J., Villanueva, Geronimo L., Viscardy, S., Whiteway, J., Willame, Y., Wilquet, V., Wolff, Michael T., Aparicio del Moral, Beatriz, Barzin, P., BenMoussa, A., Berkenbosch, S., Biondi, D., Bonnewijn, S., Candini, G., Clairquin, R., Cubas, J., Delanoye, S., Giordanengo, B., Gissot, Samuel, Gomez, A., Zafra, J.-J., Leese, M., Maes, J., Mazy, E., Mazzoli, A., Meseguer, J., Morales, Rafael, Orban, A., Pastor, Carmen, Pérez Grande, Isabel, Ristic, Bojan, Rodríguez Gómez, Julio, Saggin, B., Samain, V., Sanz Andres, A., Sanz, R., Simar, J.-F., Thibert, T., and Alonso-Rodrigo, G.
- Abstract
NOMAD (Nadir and Occultation for MArs Discovery) is one of the four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in March 2016. It consists of a suite of three high-resolution spectrometers - SO (Solar Occultation), LNO (Limb, Nadir and Occultation) and UVIS (Ultraviolet and Visible Spectrometer). Based upon the characteristics of the channels and the values of Signal-to-Noise Ratio obtained from radiometric models discussed in (Vandaele et al., 2015a, 2015b; Thomas et al., 2016), the expected performances of the instrument in terms of sensitivity to detection have been investigated. The analysis led to the determination of detection limits for 18 molecules, namely CO, HO, HDO, CH, CH, CH, HCO, CH, SO, HS, HCl, HCN, HO, NH, NO, NO, OCS, O. NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low as 10 ppt could be made if spectra are averaged (Drummond et al., 2011). Results have been obtained for all three channels in nadir and in solar occultation.© 2016 The Authors. Published by Elsevier Ltd.
- Published
- 2016
31. GCM Simulations of Northern Summer Dust Storms Observed by the Phoenix LIDAR
- Author
-
DAERDEN, F., WHITEWAY, J., NEARY, L., LEMMON, M., CANTOR, B., WOLFF, M., HÉBRARD, Eric, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Centre for Research in Earth and Space Science [Toronto] (CRESS), York University [Toronto], Department of Physics, Texas A&M University [College Station], Malin Space Science Systems (MSSS), Ouvrages hydrauliques et hydrologie (UR OHAX), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1, SSE 2014, Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), and Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Not Available
- Published
- 2014
32. A solar escalator on Mars: Self‐lifting of dust layers by radiative heating
- Author
-
Daerden, F., primary, Whiteway, J. A., additional, Neary, L., additional, Komguem, L., additional, Lemmon, M. T., additional, Heavens, N. G., additional, Cantor, B. A., additional, Hébrard, E., additional, and Smith, M. D., additional
- Published
- 2015
- Full Text
- View/download PDF
33. Dust devils and vortices at the phonix landing site on Mars
- Author
-
Ellehøj, M.D., Gunnlaugsson, Haraldur Pall, Taylor, P.A., Gheynani, B.T., Whiteway, J., Lemmon, M.T., Bean, K.M., Tamppari, L.K., Drube, L., Holstein-Rathlou, Christina, Madsen, M.B., Fisher, D., and Smith, P.
- Published
- 2009
34. Phoenix and MRO coordinated atmospheric science
- Author
-
Tamppari, L.K., Bass, D.S., Cantor, B., Daubar, I., Fisher, D., Fujii, K., Gunnlaugsson, Haraldur Pall, Hudson, T.L., Kass, D., Kleinboehl, A., Lemmon, M., Pankine, A., Searls, M., Seelos, F., Smrekar, S., Taylor, P., Holstein-Rathlou, Christina, Whiteway, J., and Wolff, M.
- Published
- 2009
35. Phoenix and Mars Reconnaissance Orbiter Coordinated Atmospheric Science
- Author
-
Tamppari, L.K., Bass, D., Cantor, B., Daubar, I., Fisher, D., Fujii, K., Gunnlaugsson, Haraldur Pall, Hudson, T., Kass, D., Kleinboehl, A., Lemmon, M., Mellon, M., Pankine, A., Renno, N., Searls, M., Taylor, P.A., Holstein-Rathlou, Christina, Whiteway, J., and Wolff, M.
- Published
- 2008
36. Observations of Dust, Ice Water Clouds, and Precipitation in the Atmosphere of Mars
- Author
-
Whiteway, J., Konguem, L., Dickinson, C., Cook, C., Illnicki, M., Popovici, V., Seabrook, J., Daly, M., Carswell, A., Taylor, P., Davy, R., Pathak, J., Lange, C., Fischer, D., Hipkin, V., Tamppari, L., Lemmon, M., Renno, N., Gunnlaugsson, Haraldur Pall, Drube, L., Holstein-Rathlou, Christina, and Schmidt, P.
- Published
- 2008
37. Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science
- Author
-
Smith, P.H., Tamppari, L., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W., Carswell, A., Catling, D., Clark, B., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, Haraldur Pall, Hecht, M., Hipkin, V., Hoffman, J., Hviid, S., Keller, H., Kounaves, S., Lange, C.F., Lemmon, M., Madsen, M., Malin, M., Markiewicz, W., Marshall, J., McKay, C., Mellon, M., Michelangeli, D., Ming, D., Morris, R., Renno, N., Pike, W.T., Staufer, U., Stoker, C., Taylor, P., Whiteway, J., Young, S., and Zent, A.
- Published
- 2008
38. Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site
- Author
-
Ellehoj, M.D., Taylor, P.A., Gunnlaugsson, Haraldur Pall, Gheynani, B.T., Drube, C., Holstein-Rathlou, Christina, Whiteway, J., Lemmon, M., Madsen, M.B., Fischer, R., and Volpe, P. Schmidt
- Published
- 2008
39. Temperature and Pressure at the Phoenix Landing Site
- Author
-
Taylor, P.A., Cook, C., Daly, M.G., Davy, R., Dickinson, C., Drube, L., Ellehoj, M.D., Gheynani, B.T., Gunnlaugsson, Haraldur Pall, Harri, A., Kipkin, V., Holstein-Rathlou, Christina, Kahanpaa, H., Lange, C.F., Polkko, J., Popovici, V., Renno, N., Weng, W., and Whiteway, J.
- Published
- 2008
40. Cycling of amino-nitrogen between shoots and roots in wheat seedlings
- Author
-
Cooper, H. D., primary, Clarkson, D. T., additional, Johnston, M. G., additional, Whiteway, J. N., additional, and Loughman, B. C., additional
- Published
- 1986
- Full Text
- View/download PDF
41. Anatomy of Cirrus Clouds: Results from the Emerald Airborne
- Author
-
Whiteway, J., Cook, C., Gallagher, M., Choularton, T., Harries, J., Connolly, P., Busen, R., Bower, K., Flynn, M., May, P., Aspey, R., and Hacker, J.
- Subjects
cirrus cloud ,ice crystals ,lidar ,airborne measurement - Published
- 2004
- Full Text
- View/download PDF
42. Airborne lidar measurements of surface ozone depletion over Arctic sea ice
- Author
-
Seabrook, J. A., primary, Whiteway, J. A., additional, Gray, L. H., additional, Staebler, R., additional, and Herber, A., additional
- Published
- 2013
- Full Text
- View/download PDF
43. Unusual cause of renal colic in a young female: Lymphangioleiomyomatosis presenting as a haemorrhagic angiomyolipoma
- Author
-
Harris, M.A., Parakh, S., Guhan, A., Naisby, G., Chadwick, D., and Whiteway, J.
- Published
- 2008
- Full Text
- View/download PDF
44. Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm
- Author
-
Waddicor, D. A., primary, Vaughan, G., additional, Choularton, T. W., additional, Bower, K. N., additional, Coe, H., additional, Gallagher, M., additional, Williams, P. I., additional, Flynn, M., additional, Volz-Thomas, A., additional, Pätz, H. -W., additional, Isaac, P., additional, Hacker, J., additional, Arnold, F., additional, Schlager, H., additional, and Whiteway, J. A., additional
- Published
- 2012
- Full Text
- View/download PDF
45. 776 Is concomitant carcinoma in situ a relative contraindication to neoadjuvant chemotherapy for muscle invasive TCC bladder?
- Author
-
Ahmad, M.S., primary, Vasdev, N., additional, Thorpe, A.C., additional, and Whiteway, J., additional
- Published
- 2012
- Full Text
- View/download PDF
46. Aerosol observations and growth rates in the tropical tropopause layer
- Author
-
Waddicor, D. A., primary, Vaughan, G., additional, Choularton, T. W., additional, Bower, K. N., additional, Coe, H., additional, Gallagher, M., additional, Williams, P. I., additional, Flynn, M., additional, Volz-Thomas, A., additional, Pätz, W., additional, Isaac, P., additional, Hacker, J., additional, Arnold, F., additional, Schlager, H., additional, and Whiteway, J. A., additional
- Published
- 2012
- Full Text
- View/download PDF
47. LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean
- Author
-
Seabrook, J. A., primary, Whiteway, J., additional, Staebler, R. M., additional, Bottenheim, J. W., additional, Komguem, L., additional, Gray, L. H., additional, Barber, D., additional, and Asplin, M., additional
- Published
- 2011
- Full Text
- View/download PDF
48. Lidar measurements of clouds in the planetary boundary layer on Mars
- Author
-
Dickinson, C., primary, Whiteway, J. A., additional, Komguem, L., additional, Moores, J. E., additional, and Lemmon, M. T., additional
- Published
- 2010
- Full Text
- View/download PDF
49. Convective vortices and dust devils at the Phoenix Mars mission landing site
- Author
-
Ellehoj, M. D., primary, Gunnlaugsson, H. P., additional, Taylor, P. A., additional, Kahanpää, H., additional, Bean, K. M., additional, Cantor, B. A., additional, Gheynani, B. T., additional, Drube, L., additional, Fisher, D., additional, Harri, A.-M., additional, Holstein-Rathlou, C., additional, Lemmon, M. T., additional, Madsen, M. B., additional, Malin, M. C., additional, Polkko, J., additional, Smith, P. H., additional, Tamppari, L. K., additional, Weng, W., additional, and Whiteway, J., additional
- Published
- 2010
- Full Text
- View/download PDF
50. Simulating observed boundary layer clouds on Mars
- Author
-
Daerden, F., primary, Whiteway, J. A., additional, Davy, R., additional, Verhoeven, C., additional, Komguem, L., additional, Dickinson, C., additional, Taylor, P. A., additional, and Larsen, N., additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.