25 results on '"Wheelock AM"'
Search Results
2. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
- Author
-
Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, Zuba-Surma, EK, Thery, C, Witwer, KW, Aikawa, E, Jose Alcaraz, M, Anderson, JD, Andriantsitohaina, R, Antoniou, A, Arab, T, Archer, F, Atkin-Smith, GK, Ayre, DC, Bach, J-M, Bachurski, D, Baharvand, H, Balaj, L, Baldacchino, S, Bauer, NN, Baxter, AA, Bebawy, M, Beckham, C, Zavec, AB, Benmoussa, A, Berardi, AC, Bergese, P, Bielska, E, Blenkiron, C, Bobis-Wozowicz, S, Boilard, E, Boireau, W, Bongiovanni, A, Borras, FE, Bosch, S, Boulanger, CM, Breakefield, X, Breglio, AM, Brennan, MA, Brigstock, DR, Brisson, A, Broekman, MLD, Bromberg, JF, Bryl-Gorecka, P, Buch, S, Buck, AH, Burger, D, Busatto, S, Buschmann, D, Bussolati, B, Buzas, E, Byrd, JB, Camussi, G, Carter, DRF, Caruso, S, Chamley, LW, Chang, Y-T, Chen, C, Chen, S, Cheng, L, Chin, AR, Clayton, A, Clerici, SP, Cocks, A, Cocucci, E, Coffey, RJ, Cordeiro-da-Silva, A, Couch, Y, Coumans, FAW, Coyle, B, Crescitelli, R, Criado, MF, D'Souza-Schorey, C, Das, S, Chaudhuri, AD, de Candia, P, De Santana Junior, EF, De Wever, O, del Portillo, HA, Demaret, T, Deville, S, Devitt, A, Dhondt, B, Di Vizio, D, Dieterich, LC, Dolo, V, Dominguez Rubio, AP, Dominici, M, Dourado, MR, Driedonks, TAP, Duarte, F, Duncan, HM, Eichenberger, RM, Ekstrom, K, Andaloussi, SEL, Elie-Caille, C, Erdbrugger, U, Falcon-Perez, JM, Fatima, F, Fish, JE, Flores-Bellver, M, Forsonits, A, Frelet-Barrand, A, Fricke, F, Fuhrmann, G, Gabrielsson, S, Gamez-Valero, A, Gardiner, C, Gaertner, K, Gaudin, R, Gho, YS, Giebel, B, Gilbert, C, Gimona, M, Giusti, I, Goberdhan, DC, Goergens, A, Gorski, SM, Greening, DW, Gross, JC, Gualerzi, A, Gupta, GN, Gustafson, D, Handberg, A, Haraszti, RA, Harrison, P, Hegyesi, H, Hendrix, A, Hill, AF, Hochberg, FH, Hoffmann, KF, Holder, B, Holthofer, H, Hosseinkhani, B, Hu, G, Huang, Y, Huber, V, Hunt, S, Ibrahim, AG-E, Ikezu, T, Inal, JM, Isin, M, Ivanova, A, Jackson, HK, Jacobsen, S, Jay, SM, Jayachandran, M, Jenster, G, Jiang, L, Johnson, SM, Jones, JC, Jong, A, Jovanovic-Talisman, T, Jung, S, Kalluri, R, Kano, S-I, Kaur, S, Kawamura, Y, Keller, ET, Khamari, D, Khomyakova, E, Khvorova, A, Kierulf, P, Kim, KP, Kislinger, T, Klingeborn, M, Klinke, DJ, Kornek, M, Kosanovic, MM, Kovacs, AF, Kraemer-Albers, E-M, Krasemann, S, Krause, M, Kurochkin, I, Kusuma, GD, Kuypers, S, Laitinen, S, Langevin, SM, Languino, LR, Lannigan, J, Lasser, C, Laurent, LC, Lavieu, G, Lazaro-Ibanez, E, Le Lay, S, Lee, M-S, Lee, YXF, Lemos, DS, Lenassi, M, Leszczynska, A, Li, ITS, Liao, K, Libregts, SF, Ligeti, E, Lim, R, Lim, SK, Line, A, Linnemannstoens, K, Llorente, A, Lombard, CA, Lorenowicz, MJ, Lorincz, AM, Lotvall, J, Lovett, J, Lowry, MC, Loyer, X, Lu, Q, Lukomska, B, Lunavat, TR, Maas, SLN, Malhi, H, Marcilla, A, Mariani, J, Mariscal, J, Martens-Uzunova, ES, Martin-Jaular, L, Martinez, MC, Martins, VR, Mathieu, M, Mathivanan, S, Maugeri, M, McGinnis, LK, McVey, MJ, Meckes, DG, Meehan, KL, Mertens, I, Minciacchi, VR, Moller, A, Jorgensen, MM, Morales-Kastresana, A, Morhayim, J, Mullier, F, Muraca, M, Musante, L, Mussack, V, Muth, DC, Myburgh, KH, Najrana, T, Nawaz, M, Nazarenko, I, Nejsum, P, Neri, C, Neri, T, Nieuwland, R, Nimrichter, L, Nolan, JP, Nolte-'t Hoen, ENM, Noren Hooten, N, O'Driscoll, L, O'Grady, T, O'Loghlen, A, Ochiya, T, Olivier, M, Ortiz, A, Ortiz, LA, Osteikoetxea, X, Ostegaard, O, Ostrowski, M, Park, J, Pegtel, DM, Peinado, H, Perut, F, Pfaffl, MW, Phinney, DG, Pieters, BCH, Pink, RC, Pisetsky, DS, von Strandmann, EP, Polakovicova, I, Poon, IKH, Powell, BH, Prada, I, Pulliam, L, Quesenberry, P, Radeghieri, A, Raffai, RL, Raimondo, S, Rak, J, Ramirez, M, Raposo, G, Rayyan, MS, Regev-Rudzki, N, Ricklefs, FL, Robbins, PD, Roberts, DD, Rodrigues, SC, Rohde, E, Rome, S, Rouschop, KMA, Rughetti, A, Russell, AE, Saa, P, Sahoo, S, Salas-Huenuleo, E, Sanchez, C, Saugstad, JA, Saul, MJ, Schiffelers, RM, Schneider, R, Schoyen, TH, Scott, A, Shahaj, E, Sharma, S, Shatnyeva, O, Shekari, F, Shelke, GV, Shetty, AK, Shiba, K, Siljander, PR-M, Silva, AM, Skowronek, A, Snyder, OL, Soares, RP, Sodar, BW, Soekmadji, C, Sotillo, J, Stahl, PD, Stoorvogel, W, Stott, SL, Strasser, EF, Swift, S, Tahara, H, Tewari, M, Timms, K, Tiwari, S, Tixeira, R, Tkach, M, Toh, WS, Tomasini, R, Torrecilhas, AC, Pablo Tosar, J, Toxavidis, V, Urbanelli, L, Vader, P, van Balkom, BWM, van der Grein, SG, Van Deun, J, van Herwijnen, MJC, Van Keuren-Jensen, K, van Niel, G, van Royen, ME, van Wijnen, AJ, Helena Vasconcelos, M, Vechetti, IJ, Veit, TD, Vella, LJ, Velot, E, Verweij, FJ, Vestad, B, Vinas, JL, Visnovitz, T, Vukman, KV, Wahlgren, J, Watson, DC, Wauben, MHM, Weaver, A, Webber, JP, Weber, V, Wehman, AM, Weiss, DJ, Welsh, JA, Wendt, S, Wheelock, AM, Wiener, Z, Witte, L, Wolfram, J, Xagorari, A, Xander, P, Xu, J, Yan, X, Yanez-Mo, M, Yin, H, Yuana, Y, Zappulli, V, Zarubova, J, Zekas, V, Zhang, J-Y, Zhao, Z, Zheng, L, Zheutlin, AR, Zickler, AM, Zimmermann, P, Zivkovic, AM, Zocco, D, and Zuba-Surma, EK
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
- Published
- 2018
3. Gender differences in the T-cell profiles of the airways in COPD patients associated with clinical phenotypes
- Author
-
Forsslund H, Yang M, Mikko M, Karimi R, Nyrén S, Engvall B, Grunewald J, Merikallio H, Kaarteenaho R, Wahlström J, Wheelock ÅM, and Sköld CM
- Subjects
COPD ,T-cells ,Gender differences ,Chemokines ,Diseases of the respiratory system ,RC705-779 - Abstract
Helena Forsslund,1 Mingxing Yang,1 Mikael Mikko,1 Reza Karimi,1 Sven Nyrén,2 Benita Engvall,1 Johan Grunewald,1 Heta Merikallio,1,3 Riitta Kaarteenaho,3–5 Jan Wahlström,1 Åsa M Wheelock,1 C Magnus Sköld1 1Department of Medicine Solna and Centre for Molecular Medicine, Respiratory Medicine Unit, 2Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden; 3Respiratory Research Unit and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; 4Unit of Medicine and Clinical Research, Pulmonary Division, University of Eastern Finland, 5Center for Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, Kuopio, Finland Abstract: T lymphocytes are believed to play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How T cells are recruited to the lungs and contribute to the inflammatory process is largely unknown. COPD is a heterogeneous disease, and discriminating disease phenotypes based on distinct molecular and cellular pathways may provide new approaches for individualized diagnosis and therapies. Bronchoalveolar lavage (BAL) and blood samples were obtained from 40 never-smokers, 40 smokers with normal lung function, and 38 COPD patients. T-cell chemokine receptor expression was analyzed with flow cytometry, and soluble BAL cytokines and chemokines were measured using a cytokine multiplex assay. Correlations with gender and clinical characteristics including lung imaging were investigated using multivariate modeling. Th1/Tc1- and Th2/Tc2-associated soluble analytes and T-cell chemokine receptors were analyzed as cumulative Th1/Tc1 and Th2/Tc2 immune responses. A higher expression of chemokine receptor CCR5 on CD8+ T cells in BAL and higher percentage of CXCR3+CD8+ T cells in blood was found in female smokers with COPD compared to those without COPD. CCR5 expression on CD4+ and CD8+ T cells was lower in BAL from male smokers with COPD compared to those without COPD. Among female smokers with COPD, Th1/Tc1 immune response was linked to BAL macrophage numbers and goblet cell density, and Th2/Tc2 response was associated with the measures of emphysema on high-resolution computed tomography. The highly gender-dependent T-cell profile in COPD indicates different links between cellular events and clinical manifestations in females compared to males. Our findings may reveal mechanisms of importance for the difference in clinical course in female COPD patients compared to males. Keywords: bronchoalveolar lavage, chemokines, cytokines, Th1/Th2
- Published
- 2016
4. Radiomultiomics: quantitative CT clusters of severe asthma associated with multiomics.
- Author
-
Zounemat Kermani N, Chung KF, Macis G, Santini G, Clemeno FAA, Versi A, Sun K, Abdel-Aziz MI, Andersson LI, Auffray C, Badi Y, Bakke P, Brightling C, Brinkman P, Caruso M, Chanez P, De Meulder B, Djukanovic R, Fabbri L, Fowler SJ, Horvath I, Howarth P, James AJ, Kolmert J, Kraft M, Li CX, Maitland-van der Zee AH, Malerba M, Papi A, Rabe K, Sanak M, Shaw DE, Singh D, Sparreman Mikus M, van Den Berge M, Wheelock AM, Wheelock CE, Yasinska V, Guo YK, Wagers S, Barnes PJ, Bush A, Sterk PJ, Dahlen SE, Adcock IM, Siddiqui S, and Montuschi P
- Subjects
- Humans, Female, Male, Middle Aged, Adult, Proteomics, rac1 GTP-Binding Protein metabolism, Sputum metabolism, Cohort Studies, Cluster Analysis, Severity of Illness Index, Machine Learning, Aged, Multiomics, Asthma diagnostic imaging, Asthma metabolism, Tomography, X-Ray Computed, Lung diagnostic imaging
- Abstract
Background: Lung quantitative computed tomography (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways, using radiomultiomics, integrating qCT, multiomics and machine learning/artificial intelligence., Methods: We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort. The same qCT measurements were used to replicate qCT clusters in a subsample of the ATLANTIS asthma cohort (n=97). We performed integrated enrichment analysis using blood, sputum, bronchial biopsies, bronchial brushings and nasal brushings transcriptomics and blood and sputum proteomics to characterise radiomultiomic-associated clusters (RACs)., Results: qCT clusters and clinical features in U-BIOPRED were replicated in the matched ATLANTIS cohort. In the U-BIOPRED cohort, RAC1 (n=30) was predominantly female with elevated body mass index, mild airflow limitation, decreased CT lung volume and increased lung density and upregulation of the complement pathway. RAC2 (n=34) subjects had airway wall thickness and a mild degree of airflow limitation, with upregulation of proliferative pathways including neurotrophic receptor tyrosine kinase 2/tyrosine kinase receptor B, and downregulation of semaphorin pathways. RAC3 (n=41) showed increased lung attenuation area and air trapping, severe airflow limitation, hyperinflation, and upregulation of cytokine signalling and signalling by interleukin pathways, and matrix metallopeptidase 1, 2 and 9., Conclusions: U-BIOPRED severe asthma qCT clusters were replicated in a matched independent asthmatic cohort and associated with specific molecular pathways. Radiomultiomics might represent a novel strategy to identify new molecular pathways in asthma pathobiology., Competing Interests: Conflict of interest: K.F. Chung reports grants from the MRC, EPSRC, GSK, Merck and NIEHS, payment or honoraria for lectures, presentations, manuscript writing or educational events from GSK, Novartis and AstraZeneca, and participation on a data safety monitoring board or advisory board with GSK, AstraZeneca, Novartis, Roche, Merck, Trevi, Rickett-Beckinson, Nocion, Shionogi and Clean Breathing Institute supported by Haleon. C. Auffray reports support for the present study from the Innovative Medicines Initiative. Y. Badi reports support for the present study from the Innovative Medicines Initiative. P. Bakke reports payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, GSK and Sanofi. C. Brightling reports support for the present study from the ATLANTIS study (Chiesi grant) and Leicester NIHR BRC, grants from 4D Pharma, Areteia, AstraZeneca, Chiesi, Genentech, GSK, Mologic, Novartis, Regeneron Pharmaceuticals, Roche and Sanofi, and consultancy fees from 4D Pharma, Areteia, AstraZeneca, Chiesi, Genentech, GSK, Mologic, Novartis, Regeneron Pharmaceuticals, Roche and Sanofi. P. Chanez reports grants from ALK, AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Menarini, Novartis and Sanofi Aventis, consultancy fees from ALK, AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Menarini, Novartis and Sanofi Aventis, payment or honoraria for lectures, presentations, manuscript writing or educational events from ALK, AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Menarini, Novartis and Sanofi Aventis, and support for attending meetings from ALK, AstraZeneca, Boehringer Ingelheim, Chiesi, GSK, Menarini, Novartis and Sanofi Aventis. B. De Meulder reports support for the present study from the Innovative Medicines Initiative. R. Djukanovic reports consultancy fees from Synairgen plc, GSK, ZenasBio and Celltrion, leadership role as Chair of the European Respiratory Society's clinical research collaboration on severe asthma (SHARP), and stock (or stock options) with Synairgen plc. L. Fabbri reports consultancy fees from Chiesi Farmaceutici and AstraZeneca, payment or honoraria for lectures, presentations, manuscript writing or educational events from Chiesi Farmaceutici, AstraZeneca, GSK, Alfasigma and Novartis, support for attending meetings from Chiesi Farmaceutici, GSK and Novartis, and participation on a data safety monitoring board or advisory board with Novartis and Chiesi. S.J. Fowler reports grants from the NIHR, and payment or honoraria for lectures, presentations, manuscript writing or educational events from Boehringer Ingelheim. P. Howarth reports employment with GSK. J. Kolmert reports consultancy fees from Gesynta Pharma AB and Lipum AB. M. Kraft reports grants from the NIH, American Lung Association, Synairgen, Janssen, AstraZeneca and Sanofi, consultancy fees from AstraZeneca, Sanofi, Chiesi, GSK, Kinaset and Genentech, payment or honoraria for lectures, presentations, manuscript writing or educational events from Chiesi, support for attending meetings from the European Respiratory Society, one patent issued and tiled filed to development of therapeutics for inflammatory lung disease as CoFounder and Chief Medical Officer, RaeSedo, Inc., participation on a data safety monitoring board or advisory board with ALung, leadership role with the National Heart, Lung and Blood Advisory Council, stock (or stock options) with RaeSedo, Inc. (equity ownership), and the following financial (or non-financial) interests: Section Editor of UpToDate. A.H. Maitland-van der Zee reports grants from Health Holland, GSK, Boehringer Ingelheim and Vertex, consultancy fees from Boehringer Ingelheim and AstraZeneca, payment or honoraria for lectures, presentations, manuscript writing or educational events from GSK, and participation on a data safety monitoring board or advisory board for a study on BPD in neonates. A. Papi reports grants from Chiesi, AstraZeneca, GSK and Sanofi, consultancy fees from Chiesi, AstraZeneca, GSK, Novartis, Sanofi, Iqvia, Avillion, Elpen Pharmaceuticals, Moderna and Roche, payment or honoraria for lectures, presentations, manuscript writing or educational events from Chiesi, AstraZeneca, GSK, Menarini, Zambon, Mundipharma, Sanofi, Edmond Pharma, Iqvia, Avillion, Sanofi and Regeneron, participation on a data safety monitoring board or advisory board with Chiesi, AstraZeneca, GSK, Novartis, Sanofi, Iqvia, Avillion, Elpen Pharmaceuticals and Moderna, receipt of equipment, materials, drugs, medical writing, gifts or other services from Consorzio Futuro in Ricerca. K. Rabe reports payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, Boehringer Ingelheim, Chiesi Pharmaceuticals, Novartis, Sanofi/Regeneron, GSK, Berlin Chemie and Roche Pharma, participation on a data safety monitoring board or advisory board with AstraZeneca, Boehringer Ingelheim, Sanofi/Regeneron and CSL Behring, and leadership roles with the German Center for Lung Research (DZL), German Chest Society (DGP) and American Thoracic Society. D.E. Shaw reports consultancy fees from GSK, AstraZeneca and Novartis, payment or honoraria for lectures, presentations, manuscript writing or educational events from GSK and AstraZeneca, and support for attending meetings from GSK. D. Singh reports consultancy fees from Aerogen, AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, CSL Behring, EpiEndo, Genentech, GSK, Glenmark, Gossamer Bio, Kinaset Therapeutics, Menarini, Novartis, Orion, Pulmatrix, Sanofi, Synairgen, Teva, Theravance, Biopharma and Verona Pharma. M. van Den Berge reports grants from GSK, Roche, Genentech and Novartis. Y. Guo reports support for the present study from the Innovative Medicines Initiative. S. Wagers reports consultancy fees from King's College Hospital NHS Foundation Trust, Academic Medical Research, AMC Medical Research BV, Asthma UK, Athens Medical School, Boehringer Ingelheim International GmbH, CHU de Toulouse, CIRO, DS Biologicals Ltd, École Polytechnique Fédérale De Lausanne, European Respiratory Society, FISEVI, Fluidic Analytics Ltd, Fraunhofer IGB, Fraunhofer ITEM, GSK Research & Development Ltd, Holland & Knight, Karolinska Institutet Fakturor, KU Leuven, Longfonds, National Heart and Lung Institute, Novartis Pharma AG, Owlstone Medical Limited, PExA AB, UCB Biopharma SPRL, Umeå University, University Hospital Southampton NHS Foundation Trust, Università Campus Bio-Medico di Roma, Universita Cattolica Del Sacro Cuore, Universität Ulm, University of Bern, University of Edinburgh, University of Hull, University of Leicester, University of Loughborough, University of Luxembourg, University of Manchester, University of Nottingham, Vlaams Brabant, Dienst Europa, Imperial College London, Boehringer Ingelheim, Breathomix, Gossamer Bio, AstraZeneca, CIBER, OncoRadiomics, University of Leiden, University of Wurzburg, Chiesi Pharmaceutical, University of Liege, Teva Pharmaceuticals, Sanofi, Pulmonary Fibrosis Foundation and Three Lakes Foundation. P.J. Sterk reports consultancy fees from SME Breathomix, and stock (or stock options) with SME Breathomix. S-E. Dahlen reports grants from AstraZeneca, GSK and Sanofi, consultancy fees from AstraZeneca, Cayman Chemicals, GSK and Regeneron, and payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, GSK and Sanofi. I.M. Adcock reports support for the present study from the Innovative Medicines Initiative, grants from GSK, MRC, EPSRC and Sanofi, consultancy fees from GSK, Sanofi, Chiesi and Kinaset, payment or honoraria for lectures, presentations, manuscript writing or educational events from AstraZeneca, Sanofi, Eurodrug and Sunovion, and support for attending meetings from AstraZeneca. S. Siddiqui consultancy fees from AstraZeneca, GSK, CSL Behring, Areteia Therapeutics, ERT Medical, Chiesi and Roche, and payment or honoraria for lectures, presentations, manuscript writing or educational events from GSK, Chiesi and AstraZeneca. P. Montuschi reports support for the present study from the Innovative Medicines Initiative. The remaining authors have no potential conflicts of interest to disclose., (Copyright ©The authors 2024.)
- Published
- 2024
- Full Text
- View/download PDF
5. Type 2-low asthma phenotypes by integration of sputum transcriptomics and serum proteomics.
- Author
-
Zounemat Kermani N, Saqi M, Agapow P, Pavlidis S, Kuo C, Tan KS, Mumby S, Sun K, Loza M, Baribaud F, Sousa AR, Riley J, Wheelock AM, Wheelock CE, De Meulder B, Schofield J, Sánchez-Ovando S, Simpson JL, Baines KJ, Wark PA, Auffray C, Dahlen SE, Sterk PJ, Djukanovic R, Adcock IM, Guo YK, and Chung KF
- Subjects
- Biomarkers, Humans, Phenotype, Proteomics, Sputum, Transcriptome, Asthma diagnosis, Asthma genetics
- Published
- 2021
- Full Text
- View/download PDF
6. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
- Author
-
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MÁ, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D'Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekström K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Försönits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Gärtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Görgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács ÁF, Krämer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lässer C, Laurent LC, Lavieu G, Lázaro-Ibáñez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz ÁM, Lötvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Möller A, Møller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schøyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, and Zuba-Surma EK
- Abstract
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
- Published
- 2018
- Full Text
- View/download PDF
7. The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma.
- Author
-
Konradsen JR, James A, Nordlund B, Reinius LE, Söderhäll C, Melén E, Wheelock AM, Lödrup Carlsen KC, Lidegran M, Verhoek M, Boot RG, Dahlén B, Dahlén SE, and Hedlin G
- Subjects
- Adipokines genetics, Adolescent, Asthma physiopathology, Case-Control Studies, Child, Chitinase-3-Like Protein 1, Cross-Sectional Studies, Exhalation, Female, Humans, Lectins genetics, Lung chemistry, Lung metabolism, Male, Nitric Oxide analysis, Severity of Illness Index, Surveys and Questionnaires, Adipokines blood, Airway Remodeling physiology, Asthma blood, Biomarkers blood, Growth Substances blood, Inflammation metabolism, Lectins blood
- Abstract
Background: Problematic severe childhood asthma includes a subgroup of patients who are resistant to therapy. The specific mechanisms involved are unknown, and novel biomarkers are required to facilitate treatment and diagnosis of therapy-resistant asthma. The chitinase-like protein YKL-40 has been related to asthma and airway remodeling., Objectives: To compare serum YKL-40 levels in children with severe, therapy-resistant asthma (n = 34), children with controlled persistent asthma (n = 39), and healthy controls (n = 27), and to investigate correlations with biomarkers of inflammation and airway remodeling., Methods: The study protocol included questionnaires, measurement of exhaled nitric oxide in exhaled air, blood sampling for inflammatory biomarkers, and high-resolution computed tomography of the lungs to identify bronchial wall thickening (therapy-resistant only). Serum YKL-40 levels were measured by ELISA, and all asthmatic children were genotyped for a CHI3L1 promoter single nucleotide polymorphism (rs4950928)., Results: Serum YKL-40 levels were significantly higher in children with therapy-resistant asthma than in healthy children (19.2 ng/mL vs 13.8 ng/mL, P = .03). Among children with severe, therapy-resistant asthma, YKL-40 levels correlated with fraction of exhaled nitric oxide in exhaled air (r = 0.48, P = .004), blood neutrophils (r = 0.63, P < .001), and bronchial wall thickening on high-resolution computed tomography (r = 0.45, P = .01). Following adjustment for CHI3L1 genotype, significantly greater levels of YKL-40 were found in children with therapy-resistant asthma than in children with controlled asthma., Conclusions: YKL-40 levels are increased in children with severe, therapy-resistant asthma compared to healthy children, and also compared to children with controlled asthma following correction for genotype., (Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
8. Increased intraepithelial (CD103+) CD8+ T cells in the airways of smokers with and without chronic obstructive pulmonary disease.
- Author
-
Mikko M, Forsslund H, Cui L, Grunewald J, Wheelock AM, Wahlström J, and Sköld CM
- Subjects
- Adult, Antigens, CD metabolism, Cell Proliferation, Cell Separation, Disease Progression, Female, Flow Cytometry, Forkhead Transcription Factors metabolism, Humans, Integrin alpha Chains metabolism, Male, Middle Aged, Pulmonary Disease, Chronic Obstructive etiology, Smoking adverse effects, Smoking Cessation, CD8-Positive T-Lymphocytes immunology, Pulmonary Disease, Chronic Obstructive immunology, Respiratory Mucosa immunology, T-Lymphocyte Subsets immunology, T-Lymphocytes, Regulatory immunology
- Abstract
T cells are accumulated in the lungs of chronic obstructive pulmonary disease (COPD) patients. Intraepithelial T cells, expressing the integrin αE (CD103) β7, and regulatory T cells have been implicated in pathogenesis of the disease. We asked whether COPD patients and smokers have altered frequencies of these T cells and if their phenotypes differ. A total of 40 never-smokers, 40 smokers with normal lung function and 38 COPD patients (GOLD I and II), of which 11 were ex-smokers, were included. T cells in bronchoalveolar lavage (BAL) fluid and peripheral blood were analysed for the expression of CD103, FOXP3 and markers of activation and differentiation using multi-colour flow cytometry. Smokers, regardless of airway obstruction, had significantly more CD8+CD103+ cells in their BAL fluid compared to never-smokers but less of those cells were CD27+CD69-. Smokers, in particular those with chronic bronchitis, had a higher percentage of CD4+FOXP3+ T-regulatory BAL cells compared to never-smokers and COPD ex-smokers. Chronic cigarette smoking leads to an accumulation of CD8+ T cells with an altered phenotype in the airway epithelium. The increased frequency of regulatory T cells may influence the ability to regulate smoke-induced inflammation which could be decisive for disease development. Our results further indicate a reversibility of smoke-induced changes., (Copyright © 2012 Elsevier GmbH. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
9. Increased pulmonary Wnt (wingless/integrated)-signaling in patients with sarcoidosis.
- Author
-
Levänen B, Wheelock AM, Eklund A, Grunewald J, and Nord M
- Subjects
- Adult, Aged, Bronchoalveolar Lavage Fluid cytology, Disease Progression, Female, Gene Expression genetics, Gene Expression Profiling methods, Humans, Immunohistochemistry, Male, Middle Aged, Reverse Transcriptase Polymerase Chain Reaction methods, Sarcoidosis, Pulmonary genetics, Fibroblasts metabolism, Sarcoidosis, Pulmonary metabolism, Wnt1 Protein metabolism
- Abstract
Background: Sarcoidosis is an inflammatory multisystemic granulomatous disease of unknown aetiology commonly affecting the lungs, and pulmonary fibrosis often develops in chronic sarcoidosis. It has been suggested that Wnt (Wingless/integrated)-signaling has a role in inflammatory and fibrotic processes in the lungs, but its role in sarcoidosis has not been investigated. We hypothesised that Wnts secreted from T cells or other inflammatory cells have a role in the pathogenesis of sarcoidosis., Methods: Brush biopsies and bronchoalveolar lavage (BAL) were obtained through bronchoscopy from healthy controls (n = 18) and patients with sarcoidosis (n = 48). Semi-quantitative RT-PCR, electrophoretic mobility shift assay (EMSA) and immunocytochemistry were performed to analyse Wnt expression and activation of the Wnt-signal transducer β-catenin., Results: Altered expression of Wnt5A, Wnt7A and Wnt7B mRNA in BAL cells was observed, as well as an increased activation of β-catenin, measured by EMSA and confirmed with immunocytochemistry, in resident lung cells from patients with sarcoidosis. More pronounced changes in Wnt expression were seen with advancing disease stage. Thus, by three independent methods, we have found evidence of increased pulmonary Wnt-activation in sarcoidosis., Conclusions: In the lungs of patients with sarcoidosis there is a previously unappreciated increased Wnt-signal activation that could contribute to the inflammatory processes., (Copyright © 2010 Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
10. In the eye of the beholder: does the master see the SameSpots as the novice?
- Author
-
Silva E, O'Gorman M, Becker S, Auer G, Eklund A, Grunewald J, and Wheelock AM
- Subjects
- Analysis of Variance, Reproducibility of Results, Software, Subtraction Technique, Algorithms, Electrophoresis, Gel, Two-Dimensional methods, Image Processing, Computer-Assisted methods
- Abstract
Historically, the use of two-dimensional electrophoresis (2-DE) in quantitative proteomics has been hampered by significant technical variance. Over the past decade, a range of technological leaps have reduced the overall variance of 2-DE, thus turning the technology into a robust platform for quantitative intact proteomics. However, as the confounding gel-to-gel variation improves, the variance arising from the subsequent image analysis becomes more prominent. Limitations in image alignment and spot detection of previous generations of 2-DE analysis software have demanded considerable user-intervention and manual editing, resulting in introduction of a large degree of subjectivity and software-induced variance. We evaluated the performance of SameSpots, representing a new generation of 2-DE image analysis software, using both DIGE and traditional single-stain 2-DE approaches. Evaluations of the software-induced variance in relation to other sources of variance, as well as the subjectivity through comparison of analyses performed by an expert user and a novice lab-user, were performed. In terms of statistical power, the less-experienced user achieved the better results, but no discernible difference was detected in multivariate comparisons between the users. In conclusion, we found that SameSpots represents improvements both in reproducibility and objectivity in relation to previous generations of 2-DE analysis software.
- Published
- 2010
- Full Text
- View/download PDF
11. The use of network analyses for elucidating mechanisms in cardiovascular disease.
- Author
-
Diez D, Wheelock AM, Goto S, Haeggström JZ, Paulsson-Berne G, Hansson GK, Hedin U, Gabrielsen A, and Wheelock CE
- Subjects
- Female, Gene Expression Profiling methods, Genomics methods, Humans, Male, Models, Biological, Atherosclerosis genetics, Atherosclerosis metabolism, Systems Biology methods
- Abstract
Systems biology offers the potential to provide new insights into our understanding of the pathogenesis of complex diseases such as atherosclerosis. It seeks to comprehend the system properties of the non-linear interactions of the multiple biomolecular components that characterize a living organism. An important component of this research approach is identifying the biological networks that connect the differing elements of a system and in the process describe the characteristics that define a shift in equilibrium from a healthy to a diseased state. The utility of this method becomes clear when applied to multifactorial diseases with complex etiologies such as inflammatory-related diseases, herein exemplified by cardiovascular disease. In this study, the application of network theory to systems biology is described in detail and an example is provided using data from a clinical biobank database of carotid endarterectomies from the Karolinska University Hospital (Biobank of Karolinska Endarterectomies, BiKE). Data from 47 microarrays were examined using a combination of Bioconductor modules and the Cytoscape resource with several associated plugins to analyze the transcriptomics data and create a combined gene association and correlation network of atherosclerosis. The methodology and workflow are described in detail, with a total of 43 genes found to be differentially expressed on a gender-specific basis, of which 15 were not directly linked to the sex chromosomes. In particular, the APOC1 gene was 2.1-fold down-regulated in plaques in women relative to men and was selected for further analysis based upon a purported role in cardiovascular disease. The resulting network was identified as a scale-free network that contained specific sub-networks related to immune function and lipid biosynthesis. These sub-networks link atherosclerotic-related genes to other genes that may not have previously known roles in disease etiology and only evidence small alterations, which are challenging to find by statistical and comparison-based methods. A number of Gene Ontology (GO), BioCarta and KEGG pathways involved in the atherosclerotic process were identified in the constructed sub-network, with 19 GO pathways related to APOC1 of which 'phospholipid efflux' evidenced the strongest association. The utility and functionality of network analysis and the different Cytoscape plugins employed are discussed. Lastly, the applications of these methods to cardiovascular disease are discussed with focus on the current limitations and future visions of this emerging field.
- Published
- 2010
- Full Text
- View/download PDF
12. Toxicity and metabolism of methylnaphthalenes: comparison with naphthalene and 1-nitronaphthalene.
- Author
-
Lin CY, Wheelock AM, Morin D, Baldwin RM, Lee MG, Taff A, Plopper C, Buckpitt A, and Rohde A
- Subjects
- Animals, Environmental Exposure adverse effects, Humans, Lung Diseases chemically induced, Lung Diseases metabolism, Naphthalenes metabolism, Naphthalenes toxicity
- Abstract
Naphthalene and close structural analogues have been shown to cause necrosis of bronchiolar epithelial cells in mice by both inhalation exposure and by systemic administration. Cancer bioassays of naphthalene in mice have demonstrated a slight increase in bronchiolar/alveolar adenomas in female mice, and in inflammation and metaplasia of the olfactory epithelium in the nasal cavity. Similar work in rats demonstrated a significant, and concentration-dependent increase in the incidence of respiratory epithelial adenomas and neuroblastomas in the nasal epithelium of both male and female rats. Although the studies on the acute toxicity of the methylnaphthalene derivatives are more limited, it appears that the species selective toxicity associated with naphthalene administration also is observed with methylnaphthalenes. Chronic administration of the methylnaphthalenes, however, failed to demonstrate the same oncogenic potential as that observed with naphthalene. The information available on the isopropylnaphthalene derivatives suggests that they are not cytotoxic. Like the methylnaphthalenes, 1-nitronaphthalene causes lesions in both Clara and ciliated cells. However, the species selective lung toxicity observed in the mouse with both naphthalene and the methylnaphthalenes is not seen with 1-nitronaphthalene. With 1-nitronaphthalene, the rat is far more susceptible to parenteral administration of the compound than mice. The wide-spread distribution of these compounds in the environment and the high potential for low level exposure to humans supports a need for further work on the mechanisms of toxicity in animal models with attention to whether these processes are applicable to humans. Although it is tempting to suppose that the toxicity and mechanisms of toxicity of the alkylnaphthalenes and nitronaphthalenes are similar to naphthalene, there is sufficient published literature to suggest that this may not be the case. Certainly the enzymes involved in the metabolic activation of each of these substrates are likely to differ. The available data showing extensive oxidation of the aromatic nucleus of naphthalene, nitronaphthalene and the methylnaphthalenes (with some oxidation of the methyl group) contrast with the isopropylnaphthalene derivatives, where the major metabolites involve side chain oxidation. Overall, these data support the view that ring epoxidation is a key step in the process involved in cytotoxicity. Whether the epoxide itself or a downstream metabolite mediates the toxic effects is still not clear even with naphthalene, the best studied of this group of compounds. Additional work is needed in several areas to further assess the potential human health consequences of exposure to these agents. These studies should involve the definition of the extent and severity of methylnaphthalene toxicity after single dose exposures with attention to both the nasal and respiratory epithelia. The cytochromes P450 responsible for the initial activation of these agents in rodents with subsequent complimentary studies in primate models should help determine whether key metabolic processes responsible for toxicity occur also in primates. Finally, the precise involvement of reactive metabolite formation and adduction of cellular proteins in toxicity will be important in not only assessing the potential for human toxicity, but also in developing an understanding of the genetic and environmental factors which could alter the toxicity of these agents.
- Published
- 2009
- Full Text
- View/download PDF
13. Systems biology approaches and pathway tools for investigating cardiovascular disease.
- Author
-
Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, van Erk M, Kleemann R, Haeggström JZ, and Goto S
- Subjects
- Animals, Cardiovascular Diseases genetics, Gene Expression Profiling, Humans, Lipid Metabolism, Models, Biological, Systems Biology trends, Cardiovascular Diseases metabolism, Metabolic Networks and Pathways, Software, Systems Biology methods
- Abstract
Systems biology aims to understand the nonlinear interactions of multiple biomolecular components that characterize a living organism. One important aspect of systems biology approaches is to identify the biological pathways or networks that connect the differing elements of a system, and examine how they evolve with temporal and environmental changes. The utility of this method becomes clear when applied to multifactorial diseases with complex etiologies, such as inflammatory-related diseases, herein exemplified by atherosclerosis. In this paper, the initial studies in this discipline are reviewed and examined within the context of the development of the field. In addition, several different software tools are briefly described and a novel application for the KEGG database suite called KegArray is presented. This tool is designed for mapping the results of high-throughput omics studies, including transcriptomics, proteomics and metabolomics data, onto interactive KEGG metabolic pathways. The utility of KegArray is demonstrated using a combined transcriptomics and lipidomics dataset from a published study designed to examine the potential of cholesterol in the diet to influence the inflammatory component in the development of atherosclerosis. These data were mapped onto the KEGG PATHWAY database, with a low cholesterol diet affecting 60 distinct biochemical pathways and a high cholesterol exposure affecting 76 biochemical pathways. A total of 77 pathways were differentially affected between low and high cholesterol diets. The KEGG pathways "Biosynthesis of unsaturated fatty acids" and "Sphingolipid metabolism" evidenced multiple changes in gene/lipid levels between low and high cholesterol treatment, and are discussed in detail. Taken together, this paper provides a brief introduction to systems biology and the applications of pathway mapping to the study of cardiovascular disease, as well as a summary of available tools. Current limitations and future visions of this emerging field are discussed, with the conclusion that combining knowledge from biological pathways and high-throughput omics data will move clinical medicine one step further to individualize medical diagnosis and treatment.
- Published
- 2009
- Full Text
- View/download PDF
14. Troubleshooting image analysis in 2DE.
- Author
-
Levänen B and Wheelock AM
- Subjects
- Algorithms, Proteins analysis, Proteomics methods, Software, Electrophoresis, Gel, Two-Dimensional methods, Image Processing, Computer-Assisted instrumentation, Image Processing, Computer-Assisted methods
- Abstract
The image analysis part of gel-based proteome research plays an important role in the overall success of the experiment. The main purpose of software-assisted 2DE gel analysis is to detect the protein spots, match them between gels within an experiment, and identify any differences in protein expression between sets of samples. Efficient analysis of protein expression relies on automated image processing techniques. There are several factors to consider in the choice of software product, as well as in the implementation of the analysis itself. Successful quantification of protein expression levels is largely dependent on the algorithms for spot matching, normalization, and background subtraction provided by the 2DE analysis software. In addition to generic protocols for image acquisition and subsequent 2DE image analysis (using Progenesis PG200), this chapter describes methods for quantitative and qualitative evaluation of the quality of the image analysis.
- Published
- 2009
- Full Text
- View/download PDF
15. HPLC/MS/MS-based approaches for detection and quantification of eicosanoids.
- Author
-
Lundström SL, D'Alexandri FL, Nithipatikom K, Haeggström JZ, Wheelock AM, and Wheelock CE
- Subjects
- Bronchoalveolar Lavage Fluid, Cyclotrons, Fourier Analysis, Chromatography, High Pressure Liquid methods, Eicosanoids analysis, Tandem Mass Spectrometry methods
- Abstract
Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.
- Published
- 2009
- Full Text
- View/download PDF
16. From Genome to Proteome: Integration and proteome completion - 8th Siena Meeting.
- Author
-
Wheelock AM and Wheelock CE
- Subjects
- Biological Evolution, Biomarkers blood, Humans, Proteome, Genome, Human, Proteomics trends
- Abstract
The Siena Meeting is designed to cover the breadth of proteomics-based research, with a particular focus on clinical applications as well as emerging technologies. As in previous years, the 2008 meeting attracted a mix of academic, clinical and industrial scientists, providing a unique opportunity for interactions among these researchers and an excellent environment for research discussions and the formation of new collaborations. The coverage of topics ranged from a bioinformatics recreation of the human proteome to the simultaneous quantification of changes in an entire proteome. Specifically, several technological advances in proteomics, with particular focus on proteome quantification methodologies, were addressed. Current bottlenecks in the field were also examined, including biomarker verification strategies and the development of bioinformatics resources.
- Published
- 2008
17. Long-term ozone exposure attenuates 1-nitronaphthalene-induced cytotoxicity in nasal mucosa.
- Author
-
Lee MG, Wheelock AM, Boland B, and Plopper CG
- Subjects
- Alcian Blue metabolism, Animals, Dose-Response Relationship, Drug, Histocytochemistry, Hydrogen-Ion Concentration, Injections, Intraperitoneal, Male, Models, Biological, Naphthalenes administration & dosage, Nasal Mucosa metabolism, Olfactory Mucosa metabolism, Olfactory Mucosa pathology, Periodic Acid-Schiff Reaction, Rats, Rats, Sprague-Dawley, Toxicity Tests, Chronic, Air Pollutants toxicity, Naphthalenes toxicity, Nasal Mucosa pathology, Ozone toxicity
- Abstract
1-Nitronaphthalene (1-NN) and ozone are cytotoxic air pollutants commonly found as components of photochemical smog. The mechanism of toxicity for 1-NN involves bioactivation by cytochrome P450s and subsequent adduction to proteins. Previous studies have shown that 1-NN toxicity in the lung is considerably higher in rats after long-term exposure to ozone compared with the corresponding filtered air-exposed control rats. The aim of the present study was to establish whether long-term exposure to ozone alters the susceptibility of nasal mucosa to the bioactivated toxicant, 1-NN. Adult male Sprague-Dawley rats were exposed to filtered air or 0.8 ppm ozone for 8 hours per day for 90 days, followed by a single treatment with 0, 12.5, or 50.0 mg/kg 1-NN by intraperitoneal injection. The results of the histopathologic analyses show that the nasal mucosa of rats is a target of systemic 1-NN, and that long-term ozone exposure markedly lessens the severity of injury, as well as the protein adduct formation by reactive 1-NN metabolites. The antagonistic effects were primarily seen in the nasal transitional epithelium, which corresponds to the main site of histologic changes attributed to ozone exposure (goblet cell metaplasia and hyperplasia). Long-term ozone exposure did not appear to alter susceptibility to 1-NN injury in other nasal regions. This study shows that long-term ozone exposure has a protective effect on the susceptibility of nasal transitional epithelium to subsequent 1-NN, a result that clearly contrasts with the synergistic toxicological effect observed in pulmonary airway epithelium in response to the same exposure regimen.
- Published
- 2008
- Full Text
- View/download PDF
18. A framework for determining outlying microarray experiments.
- Author
-
Wan R, Wheelock AM, and Mamitsuka H
- Subjects
- Computer Graphics, Computer Simulation, DNA, Complementary genetics, Gene Expression Regulation, Probability, Statistics as Topic, Models, Genetic, Oligonucleotide Array Sequence Analysis
- Abstract
Microarrays are high-throughput technologies whose data are known to be noisy. In this work, we propose a graph-based method which first identifies the extent to which a single microarray experiment is noisy and then applies an error function to clean individual expression levels. These two steps are unified within a framework based on a graph representation of a separate data set from some repository. We demonstrate the utility of our method by comparing our results against statistical methods by applying both techniques to simulated microarray data. Our results are encouraging and indicate one potential use of microarray data from past experiments.
- Published
- 2008
19. The role of inflammatory mediators in the synergistic toxicity of ozone and 1-nitronaphthalene in rat airways.
- Author
-
Schmelzer KR, Wheelock AM, Dettmer K, Morin D, and Hammock BD
- Subjects
- Administration, Inhalation, Animals, Chemokines immunology, Chemokines metabolism, Cytokines immunology, Cytokines metabolism, Dose-Response Relationship, Drug, Inflammation Mediators immunology, Lung immunology, Lung physiology, Male, Pulmonary Circulation immunology, Pulmonary Circulation physiology, Rats, Rats, Sprague-Dawley, T-Lymphocytes, Helper-Inducer immunology, T-Lymphocytes, Helper-Inducer metabolism, Air Pollutants toxicity, Inflammation Mediators metabolism, Inhalation Exposure, Lung drug effects, Naphthalenes toxicity, Ozone toxicity, Pulmonary Circulation drug effects
- Abstract
Ambient air is polluted with a mixture of pulmonary toxicants. Previous studies indicate that prior exposure to atmospheric oxidant pollutants such as ozone may significantly alter the response to other pollutants, such as 1-nitronaphthalene (1-NN) . 1-NN, a component of the particulate exhaust from diesel engines, has been found at low concentrations in ambient air. Using a metabolomic approach, we investigated inflammatory responses in arachidonic and linoleic acid biochemical cascades (35 metabolites) and the expression of 19 cytokines/chemokines at three time points (2, 6, and 24 hr) following exposure to 1-NN with and without prior long-term O3 exposure. Long-term O3 exposure is associated with biochemical changes that have been shown to render the lung resistant to further O3 exposure. This study indicates that airways of O3-tolerant rats exhibited a low level of chronic inflammation, rendering the lungs more susceptible to other environmental pollutants such as 1-NN. Specifically, a 12.5-mg/kg dose of 1-NN to O3-tolerant rats produced significantly higher levels of cysteinyl-leukotrienes in bronchiolar lavage fluid even when compared to a 50-mg/kg dose of 1-NN in rats exposed to filtered air. Collectively, these results indicate that the combination of exposures as encountered in polluted ambient air are considerably more injurious to the lung than would be anticipated from previous studies employing single exposures. The observed synergism between O3 and 1-NN may be causally related to a shift in a T-helper 1 to T-helper 2 immune response in the airways.
- Published
- 2006
- Full Text
- View/download PDF
20. Use of a fluorescent internal protein standard to achieve quantitative two-dimensional gel electrophoresis.
- Author
-
Wheelock AM, Morin D, Bartosiewicz M, and Buckpitt AR
- Subjects
- Animals, Chromogenic Compounds chemistry, Electrophoresis, Gel, Two-Dimensional instrumentation, Fluorescent Dyes chemical synthesis, Luminescent Measurements, Male, Phenanthrolines chemistry, Proteomics methods, Random Allocation, Rats, Rats, Sprague-Dawley, Reference Standards, Ruthenium Compounds chemistry, Electrophoresis, Gel, Two-Dimensional methods, Electrophoresis, Gel, Two-Dimensional standards, Fluorescent Dyes chemistry, Proteins chemistry
- Abstract
2-DE is a powerful separation method for complex protein mixtures. However, large intergel variations in spot intensity limit its use for quantitative proteomics studies. To address this issue, we developed a fluorescent internal protein standard for use in 2-DE analysis. Protein samples are spiked with an Alexa-labeled internal standard (ALIS) prior to separation with 2-DE. Due to the high extinction coefficient of the Alexa-fluor, incorporation of 0.1% of total protein is sufficient to allow visualization of the internal standard yet low enough to avoid interference in subsequent quantification and identification steps. Following 2-DE, total proteins are visualized with fluorescent postelectrophoretic stains spectrally separated from ALIS. Four protein stains, Deep Purple, Sulforhodamine G, ruthenium II-tris(bathophenanthroline disulfonate) (RuTBS), and SYPRO Ruby, including improved purification and staining protocols for RuTBS and ten-fold dilutions of SYPRO Ruby were evaluated. All staining protocols were compatible with the ALIS method and had similar LODs (1-4 ng) and dynamic ranges (10(3)). ALIS is a powerful normalization method for quantitative 2-DE which avoids potential problems associated with dual spot migration patterns observed in the DIGE method. Furthermore, ALIS provides significantly improved normality in the distribution of spot abundance-variance compared to normalization through division by the total spot volume.
- Published
- 2006
- Full Text
- View/download PDF
21. Effects of post-electrophoretic analysis on variance in gel-based proteomics.
- Author
-
Wheelock AM and Goto S
- Subjects
- Electrophoresis, Gel, Two-Dimensional economics, Proteomics methods
- Abstract
2D electrophoresis (2DE) is a prominent separation method for complex proteomes. Although recent advances have increased the utility of this method in quantitative proteomics studies, many sources of variance still exist. This review discusses the post-electrophoretic sources of variance in current 2DE analysis. The essential improvements in protein visualization and software algorithms that have made 2DE a leading quantitative proteomics method are briefly reviewed. A number of shortcomings in the post-electrophoretic analysis of 2DE data that require further attention are highlighted. Topics discussed include protein visualization and image acquisition, internal standards and normalization methods, background subtraction algorithms, normality of distribution, and the need for standardized tests for the evaluation of 2DE analysis software packages.
- Published
- 2006
- Full Text
- View/download PDF
22. Software-induced variance in two-dimensional gel electrophoresis image analysis.
- Author
-
Wheelock AM and Buckpitt AR
- Subjects
- Algorithms, Animals, Male, Rats, Rats, Sprague-Dawley, Reproducibility of Results, Respiratory Mucosa metabolism, Electrophoresis, Gel, Two-Dimensional, Image Processing, Computer-Assisted, Proteome metabolism, Software Validation
- Abstract
Experimental variability in 2-DE is well documented, but little attention has been paid to variability arising from postexperimental quantitative analyses using various 2-DE software packages. The performance of two 2-DE analysis software programs, Phoretix 2D Expression v2004 (Expression) and PDQuest 7.2 (PDQuest), was evaluated in this study. All available background subtraction and smoothing algorithms were tested using both data generated from one single 2-DE gel image, thus excluding experimental variance, and with authentic sets of replicate gels (n = 5). A slight shift of the image boundaries (the "cropping area") caused both programs to induce variance in protein spot quantification of otherwise identical gel images. The resulting variance for PDQuest (CV(mean) = 8%) was approximately twice that for Expression (CV(mean) = 4%). In authentic sets of replicate 2-DE gels (n = 5), the experimental variance confounded the software-induced variance to some extent. However, Expression still outperformed PDQuest, which exhibited software-induced variance as high as 25% of the total observed variance. Surprisingly, the complete omission of background subtraction algorithms resulted in the least amount of software-based variance. These data indicate that 2-DE gel analysis software constitutes a significant source of the variance observed in quantitative proteomics, and that the use of background subtraction algorithms can further increase the variance.
- Published
- 2005
- Full Text
- View/download PDF
23. In vivo effects of ozone exposure on protein adduct formation by 1-nitronaphthalene in rat lung.
- Author
-
Wheelock AM, Boland BC, Isbell M, Morin D, Wegesser TC, Plopper CG, and Buckpitt AR
- Subjects
- Air Pollutants metabolism, Air Pollutants toxicity, Animals, Male, Naphthalenes toxicity, Oxidative Stress, Proteomics, Rats, Rats, Sprague-Dawley, Lung drug effects, Lung metabolism, Naphthalenes metabolism, Ozone toxicity, Proteins metabolism
- Abstract
The incidence of serious photochemical smog events is steadily growing in urban environments around the world. The electrophilic metabolites of 1-nitronaphthalene (1-NN), a common air pollutant in urban areas, have been shown to bind covalently to proteins. 1-NN specifically targets the airway epithelium, and the toxicity is synergized by prior long-term ozone exposure in rat. In this study we investigated the formation of 1-NN protein adducts in the rat airway epithelium in vivo and examined how prior long-term ozone exposure affects adduct formation. Eight adducted proteins, several involved in cellular antioxidant defense, were identified. The extent of adduction of each protein was calculated, and two proteins, peroxiredoxin 6 and biliverdin reductase, were adducted at high specific activities (0.36-0.70 and 1.0 nmol adduct/nmol protein). Furthermore, the N-terminal region of calreticulin, known as vasostatin, was adducted only in ozone-exposed animals. Although vasostatin was adducted at relatively low specific activity (0.01 nmol adduct/nmol protein), the adduction only in ozone-exposed animals makes it a candidate protein for elucidating the synergistic toxicity between ozone and 1-NN. These studies identified in vivo protein targets for reactive 1-NN metabolites that are potentially associated with the mechanism of 1-NN toxicity and the synergistic effects of ozone.
- Published
- 2005
- Full Text
- View/download PDF
24. Isolation of rodent airway epithelial cell proteins facilitates in vivo proteomics studies of lung toxicity.
- Author
-
Wheelock AM, Zhang L, Tran MU, Morin D, Penn S, Buckpitt AR, and Plopper CG
- Subjects
- Actins analysis, Animals, Bronchoalveolar Lavage, Cytochrome P-450 Enzyme System analysis, Epithelial Cells ultrastructure, Immunoblotting, Male, Methacrylates, Microscopy, Electron, Scanning, Rats, Rats, Sprague-Dawley, Respiratory Mucosa cytology, Electrophoresis, Gel, Two-Dimensional, Epithelial Cells chemistry, Proteomics methods, Respiratory Mucosa chemistry
- Abstract
Recent developments in genomics, proteomics, and metabolomics hold substantial promise for understanding cellular responses to toxicants. Gene expression profiling is now considered standard procedure, but numerous publications reporting a lack of correlation between mRNA and protein expression emphasize the importance of conducting parallel proteomics studies. The cellular complexity of the lung presents great challenges for in vivo proteomics, and improved isolation methods for proteins from specific lung cell phenotypes are required. To address this issue, we have developed a novel method for isolation of rodent airway epithelial cell proteins that facilitates in vivo proteomics studies of two target-cell pheno-types of the lung, Clara cells and ciliated cells. The airway epithelial cell proteins are reproducibly solubilized, leaving the underlying basement membrane and smooth muscle intact as shown by histopathological analyses. The method yields epithelial cell-specific proteins in fivefold higher concentrations and reduces the yield of nonepithelial cell proteins 13-fold compared with homogenates from microdissected airways. In addition, 36% more protein spots were detectable by two-dimensional gel electrophoresis.
- Published
- 2004
- Full Text
- View/download PDF
25. Evaluation of alpha-cyanoesters as fluorescent substrates for examining interindividual variation in general and pyrethroid-selective esterases in human liver microsomes.
- Author
-
Wheelock CE, Wheelock AM, Zhang R, Stok JE, Morisseau C, Le Valley SE, Green CE, and Hammock BD
- Subjects
- Aldehydes metabolism, Animals, Cytochrome P-450 Enzyme System metabolism, Esters chemistry, Female, Fluorescence, Fluorescent Dyes chemistry, Fluorescent Dyes metabolism, Humans, Hydrogen-Ion Concentration, Hydrolysis, Liver enzymology, Male, Mice, Molecular Structure, Rats, Smoking, Solubility, Substrate Specificity, Swine, Xenobiotics metabolism, Esterases metabolism, Esters metabolism, Microsomes, Liver enzymology
- Abstract
Carboxylesterases hydrolyze many pharmaceuticals and agrochemicals and have broad substrate selectivity, requiring a suite of substrates to measure hydrolytic profiles. To develop new esterase substrates, a series of alpha-cyanoesters that yield fluorescent products upon hydrolysis was evaluated for use in carboxylesterase assays. The use of these substrates as surrogates for Type II pyrethroid hydrolysis was tested. The results suggest that these novel analogs are appropriate for the development of high-throughput assays for pyrethroid hydrolase activity. A set of human liver microsomes was then used to determine the ability of these substrates to report esterase activity across a small population. Results were compared against standard esterase substrates. A number of the esterase substrates showed correlations, demonstrating the broad substrate selectivity of these enzymes. However, for several of the substrates, no correlations in hydrolysis rates were observed, suggesting that multiple carboxylesterase isozymes are responsible for the array of substrate hydrolytic activity. These new substrates were then compared against alpha-naphthyl acetate and 4-methylumbelliferyl acetate for their ability to detect hydrolytic activity in both one- and two-dimensional native electrophoresis gels. Cyano-2-naphthylmethyl butanoate was found to visualize more activity than either commercial substrate. These applications demonstrate the utility of these new substrates as both general and pyrethroid-selective reporters of esterase activity., (Copyright 2003 Published by Elsevier Science (USA))
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.