12 results on '"Westenberger S"'
Search Results
2. 20 P 10 An automated Tyndall-spectrometer for the size evaluation of monodisperse aerosols
- Author
-
Westenberger, S., primary and Gebhart, J., additional
- Published
- 1993
- Full Text
- View/download PDF
3. A novel device for the generation and recording of aerosol micro-pulses in lung diagnostic
- Author
-
Westenberger, S., primary, Gebhart, J., additional, Jaser, S., additional, Knoch, M., additional, and Köstler, R., additional
- Published
- 1992
- Full Text
- View/download PDF
4. Detection of coarse size fractions within airborne dusts by means of light scattering ratios
- Author
-
Westenberger, S., primary, Gebhart, J., additional, Heibel, T., additional, Abendroth, R., additional, Thaer, A., additional, Meuser, W., additional, Schöpplein, M., additional, and Seibel, H., additional
- Published
- 1991
- Full Text
- View/download PDF
5. Continuous monitoring of droplet production of a vibrating orifice generator by laser light extinction
- Author
-
Westenberger, S., primary, Heibel, T., additional, Gebhart, J., additional, and Roth, C., additional
- Published
- 1990
- Full Text
- View/download PDF
6. Production of 111In-labelled monodisperse aerosol particles
- Author
-
Roth, C., primary, Westenberger, S., additional, and Kreyling, W.G., additional
- Published
- 1989
- Full Text
- View/download PDF
7. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes
- Author
-
Winzeler Elizabeth, Dharia Neekesh, Cui Long, Westenberger Scott J, and Cui Liwang
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Epigenetic modifications of histones and regulation of chromatin structure have been implicated in regulation of virulence gene families in P. falciparum. To better understand chromatin-mediated gene regulation, we used a high-density oligonucleotide microarray to map the position and enrichment of nucleosomes across the entire genome of P. falciparum at three time points of the intra-erythrocytic developmental cycle (IDC) in vitro. We used an unmodified histone H4 antibody for chromatin immunoprecipitation of nucleosome-bound DNA. Results We observed generally low nucleosomal occupancy of intergenic regions and higher occupancy of protein coding regions. In contract to the overall small fluctuation of nucleosomal occupancy in most coding regions throughout the IDC, subtelomeric genes encoding surface proteins such as var and rif, as well as some core chromosomal genes such as transcription factors, showed large changes in chromatin structure. Telomeres harbored a region with the highest nucleosomal occupancy of the genome and also exhibited large changes with higher nucleosomal occupancy at schizont stages. While many of these subtelomeric genes were previously shown to be modified by H3K9 trimethylation, we also identified some housekeeping genes in core chromosome regions that showed extensive changes in chromatin structure but do not contain this modification. tRNA and basal transcription factor genes showed low nucleosomal occupancy at all times, suggesting of an open chromatin structure that might be permissive for constitutively high levels of expression. Generally, nucleosomal occupancy was not correlated with the steady-state mRNA levels. Several var genes were exceptions: the var gene with the highest expression level showed the lowest nucleosomal occupancy, and selection of parasites for var2CSA expression resulted in lower nucleosomal occupancy at the var2CSA locus. We identified nucleosome-free regions in intergenic regions that may serve as transcription start sites or transcription factor binding sites. Using the nucleosomal occupancy data as the baseline, we further mapped the genome-wide enrichment of H3K9 acetylation and detected general enrichment of this mark in intergenic regions. Conclusions These data on nucleosome enrichment changes add to our understanding of the influence of chromatin structure on the regulation of gene expression. Histones are generally enriched in coding regions, and relatively poor in intergenic regions. Histone enrichment patterns allow for identification of new putative gene-coding regions. Most genes do not show correlation between chromatin structure and steady-state mRNA levels, indicating the dominant roles of other regulatory mechanisms. We present a genome-wide nucleosomal occupancy map, which can be used as a reference for future experiments of histone modification mapping.
- Published
- 2009
- Full Text
- View/download PDF
8. A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing
- Author
-
Westenberger Scott J, Martinez LL Isadora, Thomas Sean, and Sturm Nancy R
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background The structurally complex network of minicircles and maxicircles comprising the mitochondrial DNA of kinetoplastids mirrors the complexity of the RNA editing process that is required for faithful expression of encrypted maxicircle genes. Although a few of the guide RNAs that direct this editing process have been discovered on maxicircles, guide RNAs are mostly found on the minicircles. The nuclear and maxicircle genomes have been sequenced and assembled for Trypanosoma cruzi, the causative agent of Chagas disease, however the complement of 1.4-kb minicircles, carrying four guide RNA genes per molecule in this parasite, has been less thoroughly characterised. Results Fifty-four CL Brener and 53 Esmeraldo strain minicircle sequence reads were extracted from T. cruzi whole genome shotgun sequencing data. With these sequences and all published T. cruzi minicircle sequences, 108 unique guide RNAs from all known T. cruzi minicircle sequences and two guide RNAs from the CL Brener maxicircle were predicted using a local alignment algorithm and mapped onto predicted or experimentally determined sequences of edited maxicircle open reading frames. For half of the sequences no statistically significant guide RNA could be assigned. Likely positions of these unidentified gRNAs in T. cruzi minicircle sequences are estimated using a simple Hidden Markov Model. With the local alignment predictions as a standard, the HMM had an ~85% chance of correctly identifying at least 20 nucleotides of guide RNA from a given minicircle sequence. Inter-minicircle recombination was documented. Variable regions contain species-specific areas of distinct nucleotide preference. Two maxicircle guide RNA genes were found. Conclusion The identification of new minicircle sequences and the further characterization of all published minicircles are presented, including the first observation of recombination between minicircles. Extrapolation suggests a level of 4% recombinants in the population, supporting a relatively high recombination rate that may serve to minimize the persistence of gRNA pseudogenes. Characteristic nucleotide preferences observed within variable regions provide potential clues regarding the transcription and maturation of T. cruzi guide RNAs. Based on these preferences, a method of predicting T. cruzi guide RNAs using only primary minicircle sequence data was created.
- Published
- 2007
- Full Text
- View/download PDF
9. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region
- Author
-
Campbell David A, Zingales Bianca, El-Sayed Najib M, Cerqueira Gustavo C, Westenberger Scott J, and Sturm Nancy R
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
- Published
- 2006
- Full Text
- View/download PDF
10. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes.
- Author
-
Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, Hopp CS, Bright AT, Westenberger S, Winzeler E, Blackman MJ, Baker DA, Wandless TJ, and Duraisingh MT
- Subjects
- Calcium-Binding Proteins chemistry, Calcium-Binding Proteins genetics, Cyclic GMP-Dependent Protein Kinases antagonists & inhibitors, Cyclic GMP-Dependent Protein Kinases metabolism, Enzyme Inhibitors pharmacology, Host-Parasite Interactions, Humans, Ligands, Merozoites enzymology, Merozoites physiology, Models, Biological, Morpholines metabolism, Plasmodium falciparum cytology, Plasmodium falciparum enzymology, Plasmodium falciparum growth & development, Protein Kinases chemistry, Protein Kinases genetics, Protozoan Proteins chemistry, Protozoan Proteins genetics, Pyridines pharmacology, Pyrroles pharmacology, Recombinant Fusion Proteins chemistry, Recombinant Fusion Proteins metabolism, Schizonts cytology, Schizonts enzymology, Schizonts physiology, Calcium-Binding Proteins metabolism, Erythrocytes parasitology, Plasmodium falciparum physiology, Protein Kinases metabolism, Protozoan Proteins metabolism
- Abstract
Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium falciparum, was critical for egress. Parasites deficient in PfCDPK5 arrested as mature schizonts with intact membranes, despite normal maturation of egress proteases and invasion ligands. Merozoites physically released from stalled schizonts were capable of invading new erythrocytes, separating the pathways of egress and invasion. The arrest was downstream of cyclic guanosine monophosphate-dependent protein kinase (PfPKG) function and independent of protease processing. Thus, PfCDPK5 plays an essential role during the blood stage of malaria replication.
- Published
- 2010
- Full Text
- View/download PDF
11. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.
- Author
-
Zhou Y, Ramachandran V, Kumar KA, Westenberger S, Refour P, Zhou B, Li F, Young JA, Chen K, Plouffe D, Henson K, Nussenzweig V, Carlton J, Vinetz JM, Duraisingh MT, and Winzeler EA
- Subjects
- Animals, Computational Biology methods, Humans, Life Cycle Stages genetics, Protein Interaction Domains and Motifs, Protozoan Proteins genetics, Gene Expression Profiling, Genome, Protozoan, Plasmodium falciparum genetics, Protozoan Proteins physiology
- Abstract
A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.
- Published
- 2008
- Full Text
- View/download PDF
12. Comparative genomics of trypanosomatid parasitic protozoa.
- Author
-
El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, and Hall N
- Subjects
- Animals, Biological Evolution, Chromosomes genetics, Evolution, Molecular, Gene Transfer, Horizontal, Genes, Protozoan, Genomics, Leishmania major chemistry, Leishmania major metabolism, Molecular Sequence Data, Multigene Family, Mutation, Phylogeny, Plastids genetics, Protozoan Proteins chemistry, Protozoan Proteins physiology, Recombination, Genetic, Retroelements, Species Specificity, Symbiosis, Synteny, Telomere genetics, Trypanosoma brucei brucei chemistry, Trypanosoma brucei brucei metabolism, Trypanosoma cruzi chemistry, Trypanosoma cruzi metabolism, Genome, Protozoan, Leishmania major genetics, Proteome, Protozoan Proteins genetics, Trypanosoma brucei brucei genetics, Trypanosoma cruzi genetics
- Abstract
A comparison of gene content and genome architecture of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, revealed a conserved core proteome of about 6200 genes in large syntenic polycistronic gene clusters. Many species-specific genes, especially large surface antigen families, occur at nonsyntenic chromosome-internal and subtelomeric regions. Retroelements, structural RNAs, and gene family expansion are often associated with syntenic discontinuities that-along with gene divergence, acquisition and loss, and rearrangement within the syntenic regions-have shaped the genomes of each parasite. Contrary to recent reports, our analyses reveal no evidence that these species are descended from an ancestor that contained a photosynthetic endosymbiont.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.