1. Survey in ruminants from Rwanda revealed high diversity and prevalence of extended-spectrum cephalosporin-resistant Enterobacterales
- Author
-
Emmanuel Irimaso, Helga Keinprecht, Michael P. Szostak, Adriana Cabal Rosel, Beatrix Stessl, Amelie Desvars-Larrive, Christophe Ntakirutimana, Otto W. Fischer, Thomas Wittek, Elke Müller, Andrea T. Feßler, Sascha D. Braun, Stefan Schwarz, Stefan Monecke, Ralf Ehricht, Joachim Spergser, Werner Ruppitsch, and Igor Loncaric
- Subjects
ESBL ,Whole-genome sequencing ,Rwanda ,“One Health” ,Antimicrobial resistance ,Veterinary medicine ,SF600-1100 - Abstract
Abstract Background Antimicrobial resistance (AMR) in Enterobacterales constitutes a significant threat to the health of both humans and animals and a socioeconomic problem. Enterobacterales, mainly Escherichia coli, carrying β-lactamases has become one of the main indicators to estimate the burden of AMR in animals within “One Health” approach. Objectives To assess the presence of extended-spectrum cephalosporin-resistant Enterobacterales associated with ruminants (cattle, sheep, goats) habituated in all five provinces of Rwanda and to perform in depth characterization of isolates. Methods We screened 454 rectal swabs from 203 cows, 170 goats, and 81 sheep and selective isolation of extended-spectrum cephalosporin-resistant Enterobacterales was conducted. Isolates were identified as a members of the order Enterobacterales by MALDI-TOF MS and further characterized by susceptibility testing and by whole-genome sequencing. Results Out of the 454 samples, 64 extended-spectrum cephalosporin-resistant Enterobacterales were isolated from 58 animals. Isolates belonged to seven bacterial species and were identified as Escherichia coli (n = 54), Enterobacter bugandensis (n = 4), Enterobacter mori (n = 2), Klebsiella pneumoniae (n = 2), Enterobacter dykesii (n = 1), and Citrobacter freundii (n = 1). All isolates displayed an Extended-spectrum β-lactamases (ESBL) phenotype, with exception of Citrobacter freundii isolate displayed both an ESBL and AmpC phenotype. In addition, all Enterobacter isolates were identified as stably de-repressed AmpC-producers. ESBLs genes, bla CTX−M−15 was predominant. Resistance to tetracycline and tet(A) was most frequently observed among non-β-lactam resistance. Forty-eight isolates displayed multidrug-resistance phenotypes. A shiga toxin-producing E. coli and an enterotoxigenic E. coli isolate were observed. Genome comparisons revealed thirty-five E. coli sequence types (ST) (ST10, ST307 being predominate). Conclusions Considering the high proximity between ruminants and humans in Rwanda, the dissemination of antimicrobial drug resistance highlights the public health threats and requires the joint and multisectoral action of human and veterinary medicine, at human-animal-environment interfaces. Therefore, it is important to establish national and global “One Health” surveillance programs of AMR to tackle the antibiotic-resistant crisis in human and veterinary medicine.
- Published
- 2024
- Full Text
- View/download PDF