1. Acceptor Copolymerized Axially Chiral Conjugated Polymers with TADF Properties for Efficient Circularly Polarized Electroluminescence
- Author
-
Wen‐Long Zhao, Ke‐Ke Tan, Wei‐Chen Guo, Chen‐Hao Guo, Meng Li, and Chuan‐Feng Chen
- Subjects
axial chirality ,circularly polarized electroluminescence ,conjugated polymers ,organic light‐emitting diode ,thermally activated delayed fluorescence ,Science - Abstract
Abstract Chiral conjugated polymer has promoted the development of the efficient circularly polarized electroluminescence (CPEL) device, nevertheless, it remains a challenge to develop chiral polymers with high electroluminescence performance. Herein, by the acceptor copolymerization of axially chiral biphenyl emitting skeleton and benzophenone, a pair of axially chiral conjugated polymers namely R‐PAC and S‐PAC are synthesized. The target polymers exhibit obvious thermally activated delayed fluorescence (TADF) activities with high photoluminescence quantum yields of 81%. Moreover, the chiral polymers display significant circularly polarized luminescence features, with luminescence dissymmetry factor (|glum|) of nearly 3 × 10−3. By using the chiral polymers as emitters, the corresponding circularly polarized organic light‐emitting diodes (CP‐OLEDs) exhibit efficient CPEL signals with electroluminescence dissymmetry factor |gEL| of 3.4 × 10−3 and high maximum external quantum efficiency (EQEmax) of 17.8%. Notably, considering both EQEmax and |gEL| comprehensively, the device performance of R‐PAC and S‐PAC is the best among all the reported CP‐OLEDs with chiral conjugated polymers as emitters. This work provides a facile approach to constructing chiral conjugated TADF polymers and discloses the potential of axially chiral conjugated luminescent skeletons in architecting high‐performance CP‐OLEDs.
- Published
- 2024
- Full Text
- View/download PDF