10,621 results on '"Weller, P"'
Search Results
2. Learning Optimal and Interpretable Summary Statistics of Galaxy Catalogs with SBI
- Author
-
Lehman, Kai, Krippendorf, Sven, Weller, Jochen, and Dolag, Klaus
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
How much cosmological information can we reliably extract from existing and upcoming large-scale structure observations? Many summary statistics fall short in describing the non-Gaussian nature of the late-time Universe in comparison to existing and upcoming measurements. In this article we demonstrate that we can identify optimal summary statistics and that we can link them with existing summary statistics. Using simulation based inference (SBI) with automatic data-compression, we learn summary statistics for galaxy catalogs in the context of cosmological parameter estimation. By construction these summary statistics do not require the ability to write down an explicit likelihood. We demonstrate that they can be used for efficient parameter inference. These summary statistics offer a new avenue for analyzing different simulation models for baryonic physics with respect to their relevance for the resulting cosmological features. The learned summary statistics are low-dimensional, feature the underlying simulation parameters, and are similar across different network architectures. To link our models, we identify the relevant scales associated to our summary statistics (e.g. in the range of modes between $k= 5 - 30 h/\mathrm{Mpc}$) and we are able to match the summary statistics to underlying simulation parameters across various simulation models., Comment: 44 pages, 14 figures
- Published
- 2024
3. PICZL: Image-based Photometric Redshifts for AGN
- Author
-
Roster, William, Salvato, Mara, Krippendorf, Sven, Saxena, Aman, Shirley, Raphael, Buchner, Johannes, Wolf, Julien, Dwelly, Tom, Bauer, Franz E., Aird, James, Ricci, Claudio, Assef, Roberto J., Anderson, Scott F., Liu, Xin, Merloni, Andrea, Weller, Jochen, and Nandra, Kirpal
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics ,Statistics - Machine Learning - Abstract
Computing photo-z for AGN is challenging, primarily due to the interplay of relative emissions associated with the SMBH and its host galaxy. SED fitting methods, effective in pencil-beam surveys, face limitations in all-sky surveys with fewer bands available, lacking the ability to capture the AGN contribution to the SED accurately. This limitation affects the many 10s of millions of AGN clearly singled out and identified by SRG/eROSITA. Our goal is to significantly enhance photometric redshift performance for AGN in all-sky surveys while avoiding the need to merge multiple data sets. Instead, we employ readily available data products from the 10th Data Release of the Imaging Legacy Survey for DESI, covering > 20,000 deg$^{2}$ with deep images and catalog-based photometry in the grizW1-W4 bands. We introduce PICZL, a machine-learning algorithm leveraging an ensemble of CNNs. Utilizing a cross-channel approach, the algorithm integrates distinct SED features from images with those obtained from catalog-level data. Full probability distributions are achieved via the integration of Gaussian mixture models. On a validation sample of 8098 AGN, PICZL achieves a variance $\sigma_{\textrm{NMAD}}$ of 4.5% with an outlier fraction $\eta$ of 5.6%, outperforming previous attempts to compute accurate photo-z for AGN using ML. We highlight that the model's performance depends on many variables, predominantly the depth of the data. A thorough evaluation of these dependencies is presented in the paper. Our streamlined methodology maintains consistent performance across the entire survey area when accounting for differing data quality. The same approach can be adopted for future deep photometric surveys such as LSST and Euclid, showcasing its potential for wide-scale realisation. With this paper, we release updated photo-z (including errors) for the XMM-SERVS W-CDF-S, ELAIS-S1 and LSS fields., Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 21 figures
- Published
- 2024
4. Euclid: High-precision imaging astrometry and photometry from Early Release Observations. I. Internal kinematics of NGC 6397 by combining Euclid and Gaia data
- Author
-
Libralato, M., Bedin, L. R., Griggio, M., Massari, D., Anderson, J., Cuillandre, J. -C., Ferguson, A. M. N., Lançon, A., Larsen, S. S., Schirmer, M., Annibali, F., Balbinot, E., Dalessandro, E., Erkal, D., Kuzma, P. B., Saifollahi, T., Kleijn, G. Verdoes, Kümmel, M., Nakajima, R., Correnti, M., Battaglia, G., Altieri, B., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Refregier, A., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Sauvage, M., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tsyganov, A., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Scottez, V., Scott, D., and Smart, R. L.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The instruments at the focus of the Euclid space observatory offer superb, diffraction-limited imaging over an unprecedented (from space) wide field of view of 0.57 deg$^2$. This exquisite image quality has the potential to produce high-precision astrometry for point sources once the undersampling of Euclid's cameras is taken into account by means of accurate, effective point spread function (ePSF) modelling. We present a complex, detailed workflow to simultaneously solve for the geometric distortion (GD) and model the undersampled ePSFs of the Euclid detectors. Our procedure was successfully developed and tested with data from the Early Release Observations (ERO) programme focused on the nearby globular cluster NGC 6397. Our final one-dimensional astrometric precision for a well-measured star just below saturation is 0.7 mas (0.007 pixel) for the Visible Instrument (VIS) and 3 mas (0.01 pixel) for the Near-Infrared Spectrometer and Photometer (NISP). Finally, we present a specific scientific application of this high-precision astrometry: the combination of Euclid and Gaia data to compute proper motions and study the internal kinematics of NGC 6397. Future work, when more data become available, will allow for a better characterisation of the ePSFs and GD corrections that are derived here, along with assessment of their temporal stability, and their dependencies on the spectral energy distribution of the sources as seen through the wide-band filters of Euclid., Comment: 23 pages, 21 figures. Accepted for publication in A&A on October 24, 2024. Astro-photometric catalogs and stacked images will be available at the CDS after the paper will be published
- Published
- 2024
5. Euclid: The $r_{\rm b}$-$M_\ast$ relation as a function of redshift. I. The $5 \times 10^9 M_\odot$ black hole in NGC 1272
- Author
-
Saglia, R., Mehrgan, K., de Nicola, S., Thomas, J., Kluge, M., Bender, R., Delley, D., Erwin, P., Fabricius, M., Neureiter, B., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Degaudenzi, H., De Lucia, G., Dinis, J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fourmanoit, N., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., George, K., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoar, J., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Scottez, V., Ferrarese, L., Lusso, E., and Scott, D.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Core ellipticals, massive early-type galaxies have an almost constant inner surface brightness profile. The size of the core region correlates with the mass of the finally merged black hole. Here we report the first Euclid-based dynamical mass determination of a supermassive black hole. We study the centre of NGC 1272, the second most luminous elliptical galaxy in the Perseus cluster, combining the Euclid VIS photometry coming from the Early Release Observations of the Perseus cluster with VIRUS spectroscopic observations at the Hobby-Eberly Telescope. The core of NGC 1272 is detected on the Euclid VIS image. Its size is $1.29\pm 0.07''$ or 0.45 kpc, determined by fitting PSF-convolved core-S\'ersic and Nuker-law functions. The two-dimensional stellar kinematics of the galaxy is measured from the VIRUS spectra by deriving optimally regularized non-parametric line-of-sight velocity distributions. Dynamical models of the galaxy are constructed using our axisymmetric and triaxial Schwarzschild codes. We measure a black hole mass of $(5\pm3) \times 10^9 M_\odot$, in line with the expectation from the $M_{\rm BH}$-$r_{\rm b}$ correlation, but eight times larger than predicted by the $M_{\rm BH}$-$\sigma$ correlation (at $1.8\sigma$ significance). The core size, rather than the velocity dispersion, allows one to select galaxies harboring the most massive black holes. The spatial resolution, wide area coverage, and depth of the \Euclid (Wide and Deep) surveys allow us to find cores of passive galaxies larger than 2 kpc up to redshift 1., Comment: Accepted for publication in A&A
- Published
- 2024
6. VisualPredicator: Learning Abstract World Models with Neuro-Symbolic Predicates for Robot Planning
- Author
-
Liang, Yichao, Kumar, Nishanth, Tang, Hao, Weller, Adrian, Tenenbaum, Joshua B., Silver, Tom, Henriques, João F., and Ellis, Kevin
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
Broadly intelligent agents should form task-specific abstractions that selectively expose the essential elements of a task, while abstracting away the complexity of the raw sensorimotor space. In this work, we present Neuro-Symbolic Predicates, a first-order abstraction language that combines the strengths of symbolic and neural knowledge representations. We outline an online algorithm for inventing such predicates and learning abstract world models. We compare our approach to hierarchical reinforcement learning, vision-language model planning, and symbolic predicate invention approaches, on both in- and out-of-distribution tasks across five simulated robotic domains. Results show that our approach offers better sample complexity, stronger out-of-distribution generalization, and improved interpretability., Comment: In submission
- Published
- 2024
7. Dark Energy Survey Year 3: Blue Shear
- Author
-
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., and Collaboration, DES
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this blue cosmic shear sample are stable to IA model choice, unlike passive galaxies in the full DES Y3 sample, the goodness-of-fit is improved and the $\Omega_{m}$ and $S_8$ better agree with the cosmic microwave background. Mitigating IA with sample selection, instead of flexible model choices, can reduce uncertainty in $S_8$ by a factor of 1.5., Comment: Data access available at https://jamiemccullough.github.io/data/blueshear/
- Published
- 2024
8. Countering Autonomous Cyber Threats
- Author
-
Heckel, Kade M. and Weller, Adrian
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence ,Computer Science - Computers and Society - Abstract
With the capability to write convincing and fluent natural language and generate code, Foundation Models present dual-use concerns broadly and within the cyber domain specifically. Generative AI has already begun to impact cyberspace through a broad illicit marketplace for assisting malware development and social engineering attacks through hundreds of malicious-AI-as-a-services tools. More alarming is that recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations. However, these previous investigations primarily focused on the threats posed by proprietary models due to the until recent lack of strong open-weight model and additionally leave the impacts of network defenses or potential countermeasures unexplored. Critically, understanding the aptitude of downloadable models to function as offensive cyber agents is vital given that they are far more difficult to govern and prevent their misuse. As such, this work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks. Using target machines from a commercial provider, the most recently released downloadable models are found to be on par with a leading proprietary model at conducting simple cyber attacks with common hacking tools against known vulnerabilities. To mitigate such LLM-powered threats, defensive prompt injection (DPI) payloads for disrupting the malicious cyber agent's workflow are demonstrated to be effective. From these results, the implications for AI safety and governance with respect to cybersecurity is analyzed., Comment: 76 pages, MPhil Thesis
- Published
- 2024
9. The Milky Way Radial Metallicity Gradient as an Equilibrium Phenomenon: Why Old Stars are Metal-Rich
- Author
-
Johnson, James W., Weinberg, David H., Blanc, Guillermo A., Bonaca, Ana, Rudie, Gwen C., Yuxi, Lu, Chu, Bronwyn Reichardt, Griffith, Emily J., Sit, Tawny, Johnson, Jennifer A., Dubay, Liam O., Weller, Miqaela K., Boyea, Daniel A., and Bird, Jonathan C.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Metallicities of both gas and stars decline toward large radii in spiral galaxies, a trend known as the radial metallicity gradient. We quantify the evolution of the metallicity gradient in the Milky Way as traced by APOGEE red giants with age estimates from machine learning algorithms. Stars up to ages of $\sim$9 Gyr follow a similar relation between metallicity and Galactocentric radius. This constancy challenges current models of Galactic chemical evolution, which typically predict lower metallicities for older stellar populations. Our results favor an equilibrium scenario, in which the gas-phase gradient reaches a nearly constant normalization early in the disk lifetime. Using a fiducial choice of parameters, we demonstrate that one possible origin of this behavior is an outflow that more readily ejects gas from the interstellar medium with increasing Galactocentric radius. A direct effect of the outflow is that baryons do not remain in the interstellar medium for long, which causes the ratio of star formation to accretion, $\dot{\Sigma}_\star / \dot{\Sigma}_\text{in}$, to quickly become constant. This ratio is closely related to the local equilibrium metallicity, since its numerator and denominator set the rates of metal production by stars and hydrogen gained through accretion, respectively. Building in a merger event results in a perturbation that evolves back toward the equilibrium state on $\sim$Gyr timescales. Under the equilibrium scenario, the radial metallicity gradient is not a consequence of the inside-out growth of the disk but instead reflects a trend of declining $\dot{\Sigma}_\star / \dot{\Sigma}_\text{in}$ with increasing Galactocentric radius., Comment: submitted to ApJ, comments welcome
- Published
- 2024
10. ALVIN: Active Learning Via INterpolation
- Author
-
Korakakis, Michalis, Vlachos, Andreas, and Weller, Adrian
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Active Learning aims to minimize annotation effort by selecting the most useful instances from a pool of unlabeled data. However, typical active learning methods overlook the presence of distinct example groups within a class, whose prevalence may vary, e.g., in occupation classification datasets certain demographics are disproportionately represented in specific classes. This oversight causes models to rely on shortcuts for predictions, i.e., spurious correlations between input attributes and labels occurring in well-represented groups. To address this issue, we propose Active Learning Via INterpolation (ALVIN), which conducts intra-class interpolations between examples from under-represented and well-represented groups to create anchors, i.e., artificial points situated between the example groups in the representation space. By selecting instances close to the anchors for annotation, ALVIN identifies informative examples exposing the model to regions of the representation space that counteract the influence of shortcuts. Crucially, since the model considers these examples to be of high certainty, they are likely to be ignored by typical active learning methods. Experimental results on six datasets encompassing sentiment analysis, natural language inference, and paraphrase detection demonstrate that ALVIN outperforms state-of-the-art active learning methods in both in-distribution and out-of-distribution generalization., Comment: Accepted to EMNLP 2024 (Main)
- Published
- 2024
11. Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
- Author
-
Ashman, Matthew, Diaconu, Cristiana, Langezaal, Eric, Weller, Adrian, and Turner, Richard E.
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
Many important problems require modelling large-scale spatio-temporal datasets, with one prevalent example being weather forecasting. Recently, transformer-based approaches have shown great promise in a range of weather forecasting problems. However, these have mostly focused on gridded data sources, neglecting the wealth of unstructured, off-the-grid data from observational measurements such as those at weather stations. A promising family of models suitable for such tasks are neural processes (NPs), notably the family of transformer neural processes (TNPs). Although TNPs have shown promise on small spatio-temporal datasets, they are unable to scale to the quantities of data used by state-of-the-art weather and climate models. This limitation stems from their lack of efficient attention mechanisms. We address this shortcoming through the introduction of gridded pseudo-token TNPs which employ specialised encoders and decoders to handle unstructured observations and utilise a processor containing gridded pseudo-tokens that leverage efficient attention mechanisms. Our method consistently outperforms a range of strong baselines on various synthetic and real-world regression tasks involving large-scale data, while maintaining competitive computational efficiency. The real-life experiments are performed on weather data, demonstrating the potential of our approach to bring performance and computational benefits when applied at scale in a weather modelling pipeline.
- Published
- 2024
12. Euclid: Relativistic effects in the dipole of the 2-point correlation function
- Author
-
Lepori, F., Schulz, S., Tutusaus, I., Breton, M. -A., Saga, S., Viglione, C., Adamek, J., Bonvin, C., Dam, L., Fosalba, P., Amendola, L., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Degaudenzi, H., De Lucia, G., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Keihänen, E., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rosset, C., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zucca, E., Burigana, C., Fabbian, G., Finelli, F., Pezzotta, A., Scottez, V., and Viel, M.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Gravitational redshift and Doppler effects give rise to an antisymmetric component of the galaxy correlation function when cross-correlating two galaxy populations or two different tracers. In this paper, we assess the detectability of these effects in the Euclid spectroscopic galaxy survey. We model the impact of gravitational redshift on the observed redshift of galaxies in the Flagship mock catalogue using a Navarro-Frenk-White profile for the host haloes. We isolate these relativistic effects, largely subdominant in the standard analysis, by splitting the galaxy catalogue into two populations of faint and bright objects and estimating the dipole of their cross-correlation in four redshift bins. In the simulated catalogue, we detect the dipole signal on scales below $30\,h^{-1}{\rm Mpc}$, with detection significances of $4\,\sigma$ and $3\,\sigma$ in the two lowest redshift bins, respectively. At higher redshifts, the detection significance drops below $2\,\sigma$. Overall, we estimate the total detection significance in the Euclid spectroscopic sample to be approximately $6\,\sigma$. We find that on small scales, the major contribution to the signal comes from the nonlinear gravitational potential. Our study on the Flagship mock catalogue shows that this observable can be detected in Euclid Data Release 2 and beyond., Comment: 21 pages, 11 figures, 1 appendix; submitted on behalf of the Euclid Collaboration
- Published
- 2024
13. On Evaluating LLMs' Capabilities as Functional Approximators: A Bayesian Perspective
- Author
-
Siddiqui, Shoaib Ahmed, Chen, Yanzhi, Heo, Juyeon, Xia, Menglin, and Weller, Adrian
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Recent works have successfully applied Large Language Models (LLMs) to function modeling tasks. However, the reasons behind this success remain unclear. In this work, we propose a new evaluation framework to comprehensively assess LLMs' function modeling abilities. By adopting a Bayesian perspective of function modeling, we discover that LLMs are relatively weak in understanding patterns in raw data, but excel at utilizing prior knowledge about the domain to develop a strong understanding of the underlying function. Our findings offer new insights about the strengths and limitations of LLMs in the context of function modeling.
- Published
- 2024
14. Linear Transformer Topological Masking with Graph Random Features
- Author
-
Reid, Isaac, Dubey, Kumar Avinava, Jain, Deepali, Whitney, Will, Ahmed, Amr, Ainslie, Joshua, Bewley, Alex, Jacob, Mithun, Mehta, Aranyak, Rendleman, David, Schenck, Connor, Turner, Richard E., Wagner, René, Weller, Adrian, and Choromanski, Krzysztof
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
When training transformers on graph-structured data, incorporating information about the underlying topology is crucial for good performance. Topological masking, a type of relative position encoding, achieves this by upweighting or downweighting attention depending on the relationship between the query and keys in a graph. In this paper, we propose to parameterise topological masks as a learnable function of a weighted adjacency matrix -- a novel, flexible approach which incorporates a strong structural inductive bias. By approximating this mask with graph random features (for which we prove the first known concentration bounds), we show how this can be made fully compatible with linear attention, preserving $\mathcal{O}(N)$ time and space complexity with respect to the number of input tokens. The fastest previous alternative was $\mathcal{O}(N \log N)$ and only suitable for specific graphs. Our efficient masking algorithms provide strong performance gains for tasks on image and point cloud data, including with $>30$k nodes.
- Published
- 2024
15. (In)stability of the Higgs vacuum from the $\textrm{O}(N)$ model at large $N$
- Author
-
Weller, Ryan and Su, Chun-Wei
- Subjects
High Energy Physics - Theory ,High Energy Physics - Phenomenology - Abstract
The theory of an independent Higgs field is given by an $\textrm{O}(N)$ model with an $N$-component scalar $\vec{\phi}$ and a quartic $\lambda(\vec{\phi}\cdot\vec{\phi})^2$ potential when $N=4$. The phase structure of the theory can be studied analytically for all values of the coupling $\lambda$ using the large-$N$ limit, both at zero and finite temperature. However, authors in the 70s and 80s argued the theory at large $N$ was "sick" and "futile", and dismissed the theory. This was based on two points: (1) a failure to identify the stable phases and vacuum of the theory and (2) the issue of a negative bare coupling $\lambda<0$ in the UV. We provide evidence that the theory is not, in fact, "sick". Issue (2) is dealt with through the modern understanding of $\mathcal{P}\mathcal{T}$-symmetric non-Hermitian theories with "wrong-sign" couplings. Issue (1) is resolved by realizing that the true vacuum has no spontaneous symmetry breaking (SSB) and that the SSB phase only becomes preferred at high temperatures., Comment: 6 pages, 2 figures, conference proceedings for ICHEP 2024
- Published
- 2024
16. Euclid preparation. The impact of relativistic redshift-space distortions on two-point clustering statistics from the Euclid wide spectroscopic survey
- Author
-
Euclid Collaboration, Elkhashab, M. Y., Bertacca, D., Porciani, C., Salvalaggio, J., Aghanim, N., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, R., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Schirmer, M., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Finelli, F., Gracia-Carpio, J., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Cooray, A. R., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Lacasa, F., Graet, J. Le, Legrand, L., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Sikkema, G., Silvestri, A., Simon, P., Mancini, A. Spurio, Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Vernizzi, F., Verza, G., Vielzeuf, P., and Hernández-Monteagudo, C.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Measurements of galaxy clustering are affected by RSD. Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determine which of these effects leave a detectable imprint on several 2-point clustering statistics extracted from the EWSS on large scales. We generate 140 mock galaxy catalogues with the survey geometry and selection function of the EWSS and make use of the LIGER method to account for a variable number of relativistic RSD to linear order in the cosmological perturbations. We estimate different 2-point clustering statistics from the mocks and use the likelihood-ratio test to calculate the statistical significance with which the EWSS could reject the null hypothesis that certain relativistic projection effects can be neglected in the theoretical models. We find that the combined effects of lensing magnification and convergence imprint characteristic signatures on several clustering observables. Their S/N ranges between 2.5 and 6 (depending on the adopted summary statistic) for the highest-redshift galaxies in the EWSS. The corresponding feature due to the peculiar velocity of the Sun is measured with a S/N of order one or two. The $P_{\ell}(k)$ from the catalogues that include all relativistic effects reject the null hypothesis that RSD are only generated by the variation of the peculiar velocity along the line of sight with a significance of 2.9 standard deviations. As a byproduct of our study, we demonstrate that the mixing-matrix formalism to model finite-volume effects in the $P_{\ell}(k)$ can be robustly applied to surveys made of several disconnected patches. Our results indicate that relativistic RSD, the contribution from weak gravitational lensing in particular, cannot be disregarded when modelling 2-point clustering statistics extracted from the EWSS., Comment: 23 pages, 14 figures
- Published
- 2024
17. Euclid preparation: 6x2 pt analysis of Euclid's spectroscopic and photometric data sets
- Author
-
Euclid Collaboration, Paganin, L., Bonici, M., Carbone, C., Camera, S., Tutusaus, I., Davini, S., Bel, J., Tosi, S., Sciotti, D., Di Domizio, S., Risso, I., Testera, G., Sapone, D., Sakr, Z., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Bernardeau, F., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Courbin, F., Courtois, H. M., Crocce, M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Fabbian, G., Farinelli, R., Graciá-Carpio, J., Mauri, N., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Blanchard, A., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Cañas-Herrera, G., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Desprez, G., Dole, H., Díaz-Sánchez, A., Vigo, J. A. Escartin, Escoffier, S., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hildebrandt, H., Hjorth, J., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Morgante, G., Nadathur, S., Patrizii, L., Pezzotta, A., Popa, V., Porciani, C., Potter, D., Pöntinen, M., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Tao, C., Tessore, N., Teyssier, R., Toft, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological parameter forecasts for the Euclid 6x2pt statistics, which include the galaxy clustering and weak lensing main probes together with previously neglected cross-covariance and cross-correlation signals between imaging/photometric and spectroscopic data. The aim is understanding the impact of such terms on the Euclid performance. We produce 6x2pt cosmological forecasts, considering two different techniques: the so-called harmonic and hybrid approaches, respectively. In the first, we treat all the different Euclid probes in the same way, i.e. we consider only angular 2pt-statistics for spectroscopic and photometric clustering, as well as for weak lensing, analysing all their possible cross-covariances and cross-correlations in the spherical harmonic domain. In the second, we do not account for negligible cross-covariances between the 3D and 2D data, but consider the combination of their cross-correlation with the auto-correlation signals. We find that both cross-covariances and cross-correlation signals, have a negligible impact on the cosmological parameter constraints and, therefore, on the Euclid performance. In the case of the hybrid approach, we attribute this result to the effect of the cross-correlation between weak lensing and photometric data, which is dominant with respect to other cross-correlation signals. In the case of the 2D harmonic approach, we attribute this result to two main theoretical limitations of the 2D projected statistics implemented in this work according to the analysis of official Euclid forecasts: the high shot noise and the limited redshift range of the spectroscopic sample, together with the loss of radial information from subleading terms such as redshift-space distortions and lensing magnification. Our analysis suggests that 2D and 3D Euclid data can be safely treated as independent, with a great saving in computational resources., Comment: 32 pages, 20 figures. Comments are welcome
- Published
- 2024
18. Constraints on $f(R)$ gravity from tSZE-selected SPT galaxy clusters and weak lensing mass calibration from DES and HST
- Author
-
Vogt, S. M. L., Bocquet, S., Davies, C. T., Mohr, J. J., Schmidt, F., Ruan, C. -Z., Li, B., Hernández-Aguayo, C., Grandis, S., Bleem, L. E., Klein, M., Schrabback, T., Aguena, M., Brooks, D., Burke, D. L., Campos, A., Rosell, A. Carnero, Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Doel, P., Everett, S., Ferrero, I., Frieman, J., García-Bellido, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Hinton, S. R., Hollowood, D. L., Lee, S., Lima, M., Marshall, J. L., Mena-Fernández, J., Miquel, R., Myles, J., Paterno, M., Pieres, A., Malagón, A. A. Plazas, Reichardt, C. L., Romer, A. K., Samuroff, S., Sarkar, A., Sanchez, E., Sevilla-Noarbe, I., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Vikram, V., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present constraints on the $f(R)$ gravity model using a sample of 1,005 galaxy clusters in the redshift range $0.25 - 1.78$ that have been selected through the thermal Sunyaev-Zel'dovich effect (tSZE) from South Pole Telescope (SPT) data and subjected to optical and near-infrared confirmation with the Multi-component Matched Filter (MCMF) algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey (DES) Year 3 data for 688 clusters at $z < 0.95$ and from the Hubble Space Telescope (HST) for 39 clusters with $0.6 < z < 1.7$. Our cluster sample is a powerful probe of $f(R)$ gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semi-analytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background (CMB) temperature and polarization anisotropy measurements from the Planck2018 release, we derive robust constraints on the $f(R)$ parameter $f_{R0}$. Our results, $\log_{10} |f_{R0}| < -5.32$ at the 95 % credible level, are the tightest current constraints on $f(R)$ gravity from cosmological scales. This upper limit rules out $f(R)$-like deviations from general relativity that result in more than a $\sim$20 % enhancement of the cluster population on mass scales $M_\mathrm{200c}>3\times10^{14}M_\odot$., Comment: 21 pages, 6 figures, submitted to Phys. Rev. D
- Published
- 2024
19. Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models
- Author
-
Weller, Orion, Van Durme, Benjamin, Lawrie, Dawn, Paranjape, Ashwin, Zhang, Yuhao, and Hessel, Jack
- Subjects
Computer Science - Information Retrieval ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval.
- Published
- 2024
20. Euclid preparation. Deep learning true galaxy morphologies for weak lensing shear bias calibration
- Author
-
Euclid Collaboration, Csizi, B., Schrabback, T., Grandis, S., Hoekstra, H., Jansen, H., Linke, L., Congedo, G., Taylor, A. N., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Bardelli, S., Battaglia, P., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Simon, P., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
To date, galaxy image simulations for weak lensing surveys usually approximate the light profiles of all galaxies as a single or double S\'ersic profile, neglecting the influence of galaxy substructures and morphologies deviating from such a simplified parametric characterization. While this approximation may be sufficient for previous data sets, the stringent cosmic shear calibration requirements and the high quality of the data in the upcoming Euclid survey demand a consideration of the effects that realistic galaxy substructures have on shear measurement biases. Here we present a novel deep learning-based method to create such simulated galaxies directly from HST data. We first build and validate a convolutional neural network based on the wavelet scattering transform to learn noise-free representations independent of the point-spread function of HST galaxy images that can be injected into simulations of images from Euclid's optical instrument VIS without introducing noise correlations during PSF convolution or shearing. Then, we demonstrate the generation of new galaxy images by sampling from the model randomly and conditionally. Next, we quantify the cosmic shear bias from complex galaxy shapes in Euclid-like simulations by comparing the shear measurement biases between a sample of model objects and their best-fit double-S\'ersic counterparts. Using the KSB shape measurement algorithm, we find a multiplicative bias difference between these branches with realistic morphologies and parametric profiles on the order of $6.9\times 10^{-3}$ for a realistic magnitude-S\'ersic index distribution. Moreover, we find clear detection bias differences between full image scenes simulated with parametric and realistic galaxies, leading to a bias difference of $4.0\times 10^{-3}$ independent of the shape measurement method. This makes it relevant for stage IV weak lensing surveys such as Euclid., Comment: Submitted to A&A. 29 pages, 20 figures, 2 tables
- Published
- 2024
21. On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective
- Author
-
Hu, Aoting, Chen, Yanzhi, Xie, Renjie, and Weller, Adrian
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Artificial Intelligence - Abstract
Safeguarding the intellectual property of machine learning models has emerged as a pressing concern in AI security. Model watermarking is a powerful technique for protecting ownership of machine learning models, yet its reliability has been recently challenged by recent watermark removal attacks. In this work, we investigate why existing watermark embedding techniques particularly those based on backdooring are vulnerable. Through an information-theoretic analysis, we show that the resilience of watermarking against erasure attacks hinges on the choice of trigger-set samples, where current uses of out-distribution trigger-set are inherently vulnerable to white-box adversaries. Based on this discovery, we propose a novel model watermarking scheme, In-distribution Watermark Embedding (IWE), to overcome the limitations of existing method. To further minimise the gap to clean models, we analyze the role of logits as watermark information carriers and propose a new approach to better conceal watermark information within the logits. Experiments on real-world datasets including CIFAR-100 and Caltech-101 demonstrate that our method robustly defends against various adversaries with negligible accuracy loss (< 0.1%).
- Published
- 2024
22. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 4. Constraints on $f(R)$ models from the photometric primary probes
- Author
-
Euclid Collaboration, Koyama, K., Pamuk, S., Casas, S., Bose, B., Carrilho, P., Sáez-Casares, I., Atayde, L., Cataneo, M., Fiorini, B., Giocoli, C., Brun, A. M. C. Le, Pace, F., Pourtsidou, A., Rasera, Y., Sakr, Z., Winther, H. -A., Altamura, E., Adamek, J., Baldi, M., Breton, M. -A., Rácz, G., Vernizzi, F., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Bardelli, S., Bernardeau, F., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Hailey, M., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Farinelli, R., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Bertacca, D., Blanchard, A., Blot, L., Böhringer, H., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ezziati, M., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Liu, S. J., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Murray, C., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We study the constraint on $f(R)$ gravity that can be obtained by photometric primary probes of the Euclid mission. Our focus is the dependence of the constraint on the theoretical modelling of the nonlinear matter power spectrum. In the Hu-Sawicki $f(R)$ gravity model, we consider four different predictions for the ratio between the power spectrum in $f(R)$ and that in $\Lambda$CDM: a fitting formula, the halo model reaction approach, ReACT and two emulators based on dark matter only $N$-body simulations, FORGE and e-Mantis. These predictions are added to the MontePython implementation to predict the angular power spectra for weak lensing (WL), photometric galaxy clustering and their cross-correlation. By running Markov Chain Monte Carlo, we compare constraints on parameters and investigate the bias of the recovered $f(R)$ parameter if the data are created by a different model. For the pessimistic setting of WL, one dimensional bias for the $f(R)$ parameter, $\log_{10}|f_{R0}|$, is found to be $0.5 \sigma$ when FORGE is used to create the synthetic data with $\log_{10}|f_{R0}| =-5.301$ and fitted by e-Mantis. The impact of baryonic physics on WL is studied by using a baryonification emulator BCemu. For the optimistic setting, the $f(R)$ parameter and two main baryon parameters are well constrained despite the degeneracies among these parameters. However, the difference in the nonlinear dark matter prediction can be compensated by the adjustment of baryon parameters, and the one-dimensional marginalised constraint on $\log_{10}|f_{R0}|$ is biased. This bias can be avoided in the pessimistic setting at the expense of weaker constraints. For the pessimistic setting, using the $\Lambda$CDM synthetic data for WL, we obtain the prior-independent upper limit of $\log_{10}|f_{R0}|< -5.6$. Finally, we implement a method to include theoretical errors to avoid the bias., Comment: 24 pages, 16 figures, submitted on behalf of the Euclid Collaboration
- Published
- 2024
23. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 2. Results from non-standard simulations
- Author
-
Euclid Collaboration, Rácz, G., Breton, M. -A., Fiorini, B., Brun, A. M. C. Le, Winther, H. -A., Sakr, Z., Pizzuti, L., Ragagnin, A., Gayoux, T., Altamura, E., Carella, E., Pardede, K., Verza, G., Koyama, K., Baldi, M., Pourtsidou, A., Vernizzi, F., Adame, A. G., Adamek, J., Avila, S., Carbone, C., Despali, G., Giocoli, C., Hernández-Aguayo, C., Hassani, F., Kunz, M., Li, B., Rasera, Y., Yepes, G., Gonzalez-Perez, V., Corasaniti, P. -S., García-Bellido, J., Hamaus, N., Kiessling, A., Marinucci, M., Moretti, C., Mota, D. F., Piga, L., Pisani, A., Szapudi, I., Tallada-Crespí, P., Aghanim, N., Andreon, S., Baccigalupi, C., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kilbinger, M., Kitching, T., Kubik, B., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Bertacca, D., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Lacasa, F., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission will measure cosmological parameters with unprecedented precision. To distinguish between cosmological models, it is essential to generate realistic mock observables from cosmological simulations that were run in both the standard $\Lambda$-cold-dark-matter ($\Lambda$CDM) paradigm and in many non-standard models beyond $\Lambda$CDM. We present the scientific results from a suite of cosmological N-body simulations using non-standard models including dynamical dark energy, k-essence, interacting dark energy, modified gravity, massive neutrinos, and primordial non-Gaussianities. We investigate how these models affect the large-scale-structure formation and evolution in addition to providing synthetic observables that can be used to test and constrain these models with Euclid data. We developed a custom pipeline based on the Rockstar halo finder and the nbodykit large-scale structure toolkit to analyse the particle output of non-standard simulations and generate mock observables such as halo and void catalogues, mass density fields, and power spectra in a consistent way. We compare these observables with those from the standard $\Lambda$CDM model and quantify the deviations. We find that non-standard cosmological models can leave significant imprints on the synthetic observables that we have generated. Our results demonstrate that non-standard cosmological N-body simulations provide valuable insights into the physics of dark energy and dark matter, which is essential to maximising the scientific return of Euclid., Comment: 22 pages, 7 figures
- Published
- 2024
24. Euclid preparation. Simulations and nonlinearities beyond $\Lambda$CDM. 1. Numerical methods and validation
- Author
-
Euclid Collaboration, Adamek, J., Fiorini, B., Baldi, M., Brando, G., Breton, M. -A., Hassani, F., Koyama, K., Brun, A. M. C. Le, Rácz, G., Winther, H. -A., Casalino, A., Hernández-Aguayo, C., Li, B., Potter, D., Altamura, E., Carbone, C., Giocoli, C., Mota, D. F., Pourtsidou, A., Sakr, Z., Vernizzi, F., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Bardelli, S., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Neissner, C., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Kruk, S., Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Migliaccio, M., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Patrizii, L., Popa, V., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Silvestri, A., Mancini, A. Spurio, Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Vielzeuf, P., and Walton, N. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
To constrain models beyond $\Lambda$CDM, the development of the Euclid analysis pipeline requires simulations that capture the nonlinear phenomenology of such models. We present an overview of numerical methods and $N$-body simulation codes developed to study the nonlinear regime of structure formation in alternative dark energy and modified gravity theories. We review a variety of numerical techniques and approximations employed in cosmological $N$-body simulations to model the complex phenomenology of scenarios beyond $\Lambda$CDM. This includes discussions on solving nonlinear field equations, accounting for fifth forces, and implementing screening mechanisms. Furthermore, we conduct a code comparison exercise to assess the reliability and convergence of different simulation codes across a range of models. Our analysis demonstrates a high degree of agreement among the outputs of different simulation codes, providing confidence in current numerical methods for modelling cosmic structure formation beyond $\Lambda$CDM. We highlight recent advances made in simulating the nonlinear scales of structure formation, which are essential for leveraging the full scientific potential of the forthcoming observational data from the Euclid mission., Comment: 20 pages, 7 figures, 1 appendix; submitted on behalf of the Euclid Collaboration
- Published
- 2024
25. Euclid preparation: Determining the weak lensing mass accuracy and precision for galaxy clusters
- Author
-
Euclid Collaboration, Ingoglia, L., Sereno, M., Farrens, S., Giocoli, C., Baumont, L., Lesci, G. F., Moscardini, L., Murray, C., Vannier, M., Biviano, A., Carbone, C., Covone, G., Despali, G., Maturi, M., Maurogordato, S., Meneghetti, M., Radovich, M., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bellagamba, F., Bender, R., Bernardeau, F., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farina, M., Faustini, F., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Munari, E., Niemi, S. -M., Padilla, C., Paech, K., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Finelli, F., Gracia-Carpio, J., Matthew, S., Pezzotta, A., Pöntinen, M., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Costanzi, M., Cucciati, O., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ezziati, M., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Schultheis, M., Simon, P., Mancini, A. Spurio, Stadel, J., Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the level of accuracy and precision of cluster weak-lensing (WL) masses measured with the \Euclid data processing pipeline. We use the DEMNUni-Cov $N$-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider different halo mass density models, priors, and mass point estimates. WL mass differs from true mass due to, e.g., the intrinsic ellipticity of sources, correlated or uncorrelated matter and large-scale structure, halo triaxiality and orientation, and merging or irregular morphology. In an ideal scenario without observational or measurement errors, the maximum likelihood estimator is the most accurate, with WL masses biased low by $\langle b_M \rangle = -14.6 \pm 1.7 \, \%$ on average over the full range $M_\text{200c} > 5 \times 10^{13} \, M_\odot$ and $z < 1$. Due to the stabilising effect of the prior, the biweight, mean, and median estimates are more precise. The scatter decreases with increasing mass and informative priors significantly reduce the scatter. Halo mass density profiles with a truncation provide better fits to the lensing signal, while the accuracy and precision are not significantly affected. We further investigate the impact of additional sources of systematic uncertainty on the WL mass, namely the impact of photometric redshift uncertainties and source selection, the expected performance of \Euclid cluster detection algorithms, and the presence of masks. Taken in isolation, we find that the largest effect is induced by non-conservative source selection. This effect can be mostly removed with a robust selection. As a final \Euclid-like test, we combine systematic effects in a realistic observational setting and find results similar to the ideal case, $\langle b_M \rangle = - 15.5 \pm 2.4 \, \%$, under a robust selection.
- Published
- 2024
26. Euclid preparation. L. Calibration of the linear halo bias in $\Lambda(\nu)$CDM cosmologies
- Author
-
Euclid Collaboration, Castro, T., Fumagalli, A., Angulo, R. E., Bocquet, S., Borgani, S., Costanzi, M., Dakin, J., Dolag, K., Monaco, P., Saro, A., Sefusatti, E., Aghanim, N., Amendola, L., Andreon, S., Baccigalupi, C., Baldi, M., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Costille, A., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Douspis, M., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moscardini, L., Munari, E., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Salvignol, J. -C., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Secroun, A., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Wang, Y., Weller, J., Zacchei, A., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Bertacca, D., Bethermin, M., Blanchard, A., Blot, L., Böhringer, H., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Caro, F., Carvalho, C. S., Chambers, K. C., Cooray, A. R., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Diaz, J. J., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Montoro, A., Mora, A., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Pagano, L., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Mancini, A. Spurio, Stadel, J., Tanidis, K., Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Vielzeuf, P.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission, designed to map the geometry of the dark Universe, presents an unprecedented opportunity for advancing our understanding of the cosmos through its photometric galaxy cluster survey. This paper focuses on enhancing the precision of halo bias (HB) predictions, which is crucial for deriving cosmological constraints from the clustering of galaxy clusters. Our study is based on the peak-background split (PBS) model linked to the halo mass function (HMF); it extends with a parametric correction to precisely align with results from an extended set of $N$-body simulations carried out with the OpenGADGET3 code. Employing simulations with fixed and paired initial conditions, we meticulously analyze the matter-halo cross-spectrum and model its covariance using a large number of mock catalogs generated with Lagrangian Perturbation Theory simulations with the PINOCCHIO code. This ensures a comprehensive understanding of the uncertainties in our HB calibration. Our findings indicate that the calibrated HB model is remarkably resilient against changes in cosmological parameters including those involving massive neutrinos. The robustness and adaptability of our calibrated HB model provide an important contribution to the cosmological exploitation of the cluster surveys to be provided by the Euclid mission. This study highlights the necessity of continuously refining the calibration of cosmological tools like the HB to match the advancing quality of observational data. As we project the impact of our model on cosmological constraints, we find that, given the sensitivity of the Euclid survey, a miscalibration of the HB could introduce biases in cluster cosmology analyses. Our work fills this critical gap, ensuring the HB calibration matches the expected precision of the Euclid survey. The implementation of our model is publicly available in https://github.com/TiagoBsCastro/CCToolkit., Comment: 20 pages; 12 figures; accepted for publication in A&A; abstract abridged for arXiv submission
- Published
- 2024
- Full Text
- View/download PDF
27. Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run
- Author
-
Raman, Gayathri, Ronchini, Samuele, Delaunay, James, Tohuvavohu, Aaron, Kennea, Jamie A., Parsotan, Tyler, Ambrosi, Elena, Bernardini, Maria Grazia, Campana, Sergio, Cusumano, Giancarlo, D'Ai, Antonino, D'Avanzo, Paolo, D'Elia, Valerio, De Pasquale, Massimiliano, Dichiara, Simone, Evans, Phil, Hartmann, Dieter, Kuin, Paul, Melandri, Andrea, O'Brien, Paul, Osborne, Julian P., Page, Kim, Palmer, David M., Sbarufatti, Boris, Tagliaferri, Gianpiero, Troja, Eleonora, Abac, A. G., Abbott, R., Abe, H., Abouelfettouh, I., Acernese, F., Ackley, K., Adamcewicz, C., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Bai, Y., Baier, J. G., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Barthelmy, S. D., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Bazzan, M., Bécsy, B., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Beniwal, D., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Berry, C. P. L., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Bogaert, G., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boumerdassi, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callaghan, J. D., Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannavacciuolo, M., Cannon, K. C., Cao, H., Cao, Z., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castaldi, G., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, C., Chan, J. C. L., Chan, K. H. M., Chan, M., Chan, W. L., Chandra, K., Chang, R. -J., Chanial, P., Chao, S., Chapman-Bird, C., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, K. H., Chen, X., Chen, Yi-Ru, Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Chia, H. Y., Chiadini, F., Chiang, C., Chiarini, G., Chiba, A., Chiba, R., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chung, K. W., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciobanu, A. A., Ciolfi, R., Clara, F., Clark, J. A., Clarke, T. A., Clearwater, P., Clesse, S., Cleva, F., Coccia, E., Codazzo, E., Cohadon, P. -F., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Conti, L., Cooper, S. J., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Cousins, B., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, D. C., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Croquette, M., Crouch, R., Crowder, S. G., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Daw, E. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Favero, V., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., De Simone, R., Dhani, A., Dhurandhar, S., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Donahue, L., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Drori, Y., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Emma, M., Engelby, E., Engl, A. J., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Fan, P. C., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Fenyvesi, E., Ferguson, D. L., Ferrante, I., Ferreira, T. A., Fidecaro, F., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fukunaga, I., Fulda, P., Fyffe, M., Gabella, W. E., Gadre, B., Gair, J. R., Galaudage, S., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Gaonkar, S. G., Garaventa, B., Garcia-Bellido, J., García-Núñez, C., García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., George, J., George, R., Gerberding, O., Gergely, L., Ghadiri, N., Ghosh, Archisman, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Gleckl, A. E., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., González, G., Goodarzi, P., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Argianas, L. Granda, Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Gruson, A. S., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurav, R., Gurs, J., Gutierrez, N., Guzman, F., Haba, D., Haberland, M., Haegel, L., Hain, G., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Harder, T., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Healy, J., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Hendry, M., Heng, I. S., Hennes, E., Hennig, J. -S., Hennig, M., Henshaw, C., Hernandez, A., Hertog, T., Heurs, M., Hewitt, A. L., Higginbotham, S., Hild, S., Hill, P., Hill, S., Himemoto, Y., Hines, A. S., Hirata, N., Hirose, C., Ho, J., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Hollows, I. J., Holmes, Z. J., Holz, D. E., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hoyland, D., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, S. -C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huang, Y., Huang, Y. T., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Hur, R., Husa, S., Huxford, R., Huynh-Dinh, T., Iakovlev, A., Iandolo, G. A., Iess, A., Inayoshi, K., Inoue, Y., Iorio, G., Irwin, J., Isi, M., Ismail, M. A., Itoh, Y., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Jan, A. Z., Jani, K., Janiurek, L., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jasal, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Jin, H. -B., Johansmeyer, K., Johns, G. R., Johnson, N. A., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Karki, S., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, J., Kato, T., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaur, T., Kaushik, R., Kawabe, K., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khazanov, E. A., Khursheed, M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, W. S., Kim, Y. -M., Kimball, C., Kimura, N., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Kiyota, T., Klimenko, S., Klinger, T., Knee, A. M., Knust, N., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Koyama, N., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuroyanagi, S., Kuwahara, S., Kwak, K., Kwan, K., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., LeBohec, S., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Lemaître, A., Lenti, M., Leonardi, M., Leonova, E., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levesque, C., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Lin, Chien-Yu, Lin, Chun-Yu, Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Llamas, F., Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Malaquias-Reis, J. A., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markakis, C., Markosyan, A. S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Mateu-Lucena, M., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McGhee, G. I., McGowan, K. B. M., Mchedlidze, M., McIsaac, C., McIver, J., McKinney, K., McLeod, A., McRae, T., McWilliams, S. T., Meacher, D., Mehta, A. K., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mitselmakher, G., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Modafferi, L. M., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Morales, M., Moraru, D., Morawski, F., More, A., More, S., Moreno, C., Moreno, G., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Mozzon, S., Muciaccia, F., Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mungioli, C. L., Munn, M., Oberg, W. R. Munn, Murakoshi, M., Murray, P. G., Muusse, S., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neil, B. F., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Nguyen, C., Nguyen, P., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nurbek, G., Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., Oh, S. H., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Ohta, H., Oliveira, A. S., Oliveri, R., Oloworaran, V., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pai, S. A., Pal, A., Pal, S., Palaia, M. A., Palashov, O., Pálfi, M., Palma, P. P., Palomba, C., Pan, K. C., Panda, P. K., Panebianco, L., Pang, P. T. H., Pannarale, F., Pant, B. C., Panther, F. H., Panzer, C. D., Paoletti, F., Paoli, A., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Parisi, A., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patane, O., Patel, M., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, A., Perez, J. J., Périgois, C., Perkins, C. C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pineda-Bosque, C., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Portell, J., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Prudenzi, L., Puecher, A., Pullin, J., Punturo, M., Puosi, F., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raaijmakers, G., Radulesco, N., Raffai, P., Rail, S. X., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, D. S., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Randel, E., Ranjan, S., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reid, S. W., Reitze, D. H., Relton, P., Renzini, A., Rettegno, P., Revenu, B., Reza, A., Rezac, M., Rezaei, A. S., Ricci, F., Ricci, M., Richards, D., Richardson, C. J., Richardson, J. W., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romanelli, M., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sako, T., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Saravanan, T. R., Sarin, N., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, S., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Schaetzl, D., Scheel, M., Scheuer, J., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schuler, H., Schulte, B. W., Schutz, B. F., Schwartz, E., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Sergeev, A., Serra, M., Servignat, G., Setyawati, Y., Shaffer, T., Shah, U. S., Shahriar, M. S., Shaikh, M. A., Shams, B., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shawhan, P., Shcheblanov, N. S., Shen, B., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somala, S. N., Somiya, K., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Soulard, R., Souradeep, T., Southgate, A., Sowell, E., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Strang, L. C., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Sullivan, A. G., Sullivan, K. D., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P. J., Suzuki, Takamasa, Suzuki, Takanori, Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takatani, K., Takeda, H., Takeda, M., Talbot, C. J., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tanasijczuk, A. J., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trani, A. A., Trapananti, A., Travasso, F., Traylor, G., Trenado, J., Trevor, M., Tringali, M. C., Tripathee, A., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Ubhi, A. S., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Ueno, K., Unnikrishnan, C. S., Ushiba, T., Utina, A., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Veske, D., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Walet, R. C., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Ward, R. L., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Weller, C. M., Weller, R. A., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., White, D. D., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, D., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wysocki, D. M., Xiao, L., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, M., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, L. -C., Yang, Y., Yarbrough, Z., Yeh, S. -W., Yelikar, A. B., Yeung, S. M. C., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuzurihara, H., Zadrożny, A., Zannelli, A. J., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, J., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhong, S., Zhou, R., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,General Relativity and Quantum Cosmology - Abstract
We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers., Comment: 50 pages, 10 figures, 4 tables
- Published
- 2024
28. Pesticide Use and Civil Rights in Central California: Slow Violence and the State
- Author
-
Macey, Gregg, Farrell, Caroline, Anderson, Kayla, Garcia, Angel, Martinez, Yanely, Sellen, Jane, Temkin, Alexis, and Weller, Mark
- Subjects
Environmental and Resources Law ,Law and Legal Studies ,Health Disparities ,Behavioral and Social Science ,Peace ,Justice and Strong Institutions ,California Government Code 11135 ,civil rights law ,farmworker health ,environmental justice ,environmental policy ,pesticide use ,slow violence ,Title VI of the Civil Rights Act of 1964 ,Environmental Sciences - Published
- 2024
29. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients.
- Author
-
Wang, Justin, Landry, Alexander, Raleigh, David, Sahm, Felix, Walsh, Kyle, Goldbrunner, Roland, Yefet, Leeor, Tonn, Jörg, Gui, Chloe, Ostrom, Quinn, Barnholtz-Sloan, Jill, Perry, Arie, Ellenbogen, Yosef, Hanemann, C, Jungwirth, Gerhard, Jenkinson, Michael, Tabatabai, Ghazaleh, Mathiesen, Tiit, McDermott, Mike, Tatagiba, Marcos, la Fougère, Christian, Maas, Sybren, Galldiks, Norbert, Albert, Nathalie, Brastianos, Priscilla, Ehret, Felix, Minniti, Giuseppe, Lamszus, Katrin, Ricklefs, Franz, Schittenhelm, Jens, Drummond, Katharine, Dunn, Ian, Pathmanaban, Omar, Cohen-Gadol, Aaron, Sulman, Erik, Tabouret, Emeline, Le Rhun, Emelie, Mawrin, Christian, Moliterno, Jennifer, Weller, Michael, Bi, Wenya, Gao, Andrew, Yip, Stephen, Niyazi, Maximilian, Aldape, Kenneth, Wen, Patrick, Short, Susan, Preusser, Matthias, Nassiri, Farshad, and Zadeh, Gelareh
- Subjects
extra-axial ,meningioma ,methylation ,molecular ,neurofibromatosis 2 ,nonmalignant ,radiotherapy ,Humans ,Meningioma ,Meningeal Neoplasms ,Consensus ,Biomarkers ,Tumor - Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
- Published
- 2024
30. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors?
- Author
-
van den Bent, Martin, French, Pim, Brat, Daniel, Tonn, Joerg, Touat, Mehdi, Ellingson, Benjamin, Young, Robert, Pallud, Johan, von Deimling, Andreas, Sahm, Felix, Figarella Branger, Dominique, Huang, Ruirui, Weller, Michael, Mellinghoff, Ingo, Cloughsey, Tim, Huse, Jason, Aldape, Kenneth, Reifenberger, Guido, Youssef, Gilbert, Karschnia, Philipp, Noushmehr, Houtan, Peters, Katherine, Ducray, Francois, Preusser, Matthias, and Wen, Patrick
- Subjects
WHO brain tumor classification ,astrocytoma IDH-mutant ,oligodendroglioma IDH-mutant and 1p/19q codeleted ,prognosis ,vorasidenib ,Humans ,Isocitrate Dehydrogenase ,Glioma ,Brain Neoplasms ,Mutation ,Neoplasm Grading ,Age Factors ,Clinical Decision-Making ,Enzyme Inhibitors - Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
- Published
- 2024
31. Marizomib for patients with newly diagnosed glioblastoma: A randomized phase 3 trial
- Author
-
Roth, Patrick, Gorlia, Thierry, Reijneveld, Jaap C, de Vos, Filip, Idbaih, Ahmed, Frenel, Jean-Sébastien, Le Rhun, Emilie, Sepulveda, Juan Manuel, Perry, James, Masucci, G Laura, Freres, Pierre, Hirte, Hal, Seidel, Clemens, Walenkamp, Annemiek, Lukacova, Slavka, Meijnders, Paul, Blais, Andre, Ducray, Francois, Verschaeve, Vincent, Nicholas, Garth, Balana, Carmen, Bota, Daniela A, Preusser, Matthias, Nuyens, Sarah, Dhermain, Fréderic, van den Bent, Martin, O’Callaghan, Chris J, Vanlancker, Maureen, Mason, Warren, and Weller, Michael
- Subjects
Biomedical and Clinical Sciences ,Clinical Sciences ,Oncology and Carcinogenesis ,Orphan Drug ,Clinical Trials and Supportive Activities ,Rare Diseases ,Neurosciences ,Comparative Effectiveness Research ,Brain Cancer ,Patient Safety ,Clinical Research ,Radiation Oncology ,Cancer ,Brain Disorders ,6.1 Pharmaceuticals ,Humans ,Glioblastoma ,Male ,Middle Aged ,Female ,Brain Neoplasms ,Aged ,Lactones ,Adult ,Temozolomide ,Pyrroles ,Survival Rate ,DNA Repair Enzymes ,Follow-Up Studies ,DNA Modification Methylases ,Chemoradiotherapy ,Prognosis ,Antineoplastic Combined Chemotherapy Protocols ,Young Adult ,EORTC 1709 ,glioma ,MGMT ,proteasome inhibitor ,randomized study ,Oncology & Carcinogenesis ,Oncology and carcinogenesis - Abstract
BackgroundStandard treatment for patients with newly diagnosed glioblastoma includes surgery, radiotherapy (RT), and temozolomide (TMZ) chemotherapy (TMZ/RT→TMZ). The proteasome has long been considered a promising therapeutic target because of its role as a central biological hub in tumor cells. Marizomib is a novel pan-proteasome inhibitor that crosses the blood-brain barrier.MethodsEuropean Organisation for Research and Treatment of Cancer 1709/Canadian Cancer Trials Group CE.8 was a multicenter, randomized, controlled, open-label phase 3 superiority trial. Key eligibility criteria included newly diagnosed glioblastoma, age > 18 years and Karnofsky performance status > 70. Patients were randomized in a 1:1 ratio. The primary objective was to compare overall survival (OS) in patients receiving marizomib in addition to TMZ/RT→TMZ with patients receiving the only standard treatment in the whole population and in the subgroup of patients with MGMT promoter-unmethylated tumors.ResultsThe trial was opened at 82 institutions in Europe, Canada, and the U.S. A total of 749 patients (99.9% of the planned 750) were randomized. OS was not different between the standard and the marizomib arm (median 17 vs. 16.5 months; HR = 1.04; P = .64). PFS was not statistically different either (median 6.0 vs. 6.3 months; HR = 0.97; P = .67). In patients with MGMT promoter-unmethylated tumors, OS was also not different between standard therapy and marizomib (median 14.5 vs. 15.1 months, HR = 1.13; P = .27). More CTCAE grade 3/4 treatment-emergent adverse events were observed in the marizomib arm than in the standard arm.ConclusionsAdding marizomib to standard temozolomide-based radiochemotherapy resulted in more toxicity, but did not improve OS or PFS in patients with newly diagnosed glioblastoma.
- Published
- 2024
32. Euclid preparation. Angular power spectra from discrete observations
- Author
-
Euclid Collaboration, Tessore, N., Joachimi, B., Loureiro, A., Hall, A., Cañas-Herrera, G., Tutusaus, I., Jeffrey, N., Naidoo, K., McEwen, J. D., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bernardeau, F., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Mohr, J. J., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nakajima, R., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Seiffert, M., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pezzotta, A., Pöntinen, M., Scottez, V., Mancini, A. Spurio, Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Benielli, D., Blanchard, A., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Quevedo, B. Camacho, Cappi, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Cooray, A. R., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Gutierrez, C. M., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Kruk, S., Lacasa, F., Lattanzi, M., Brun, A. M. C. Le, Graet, J. Le, Legrand, L., Lesgourgues, J., Liaudat, T. I., Macias-Perez, J., Magliocchetti, M., Mannucci, F., Maoli, R., Martín-Fleitas, J., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Moretti, C., Morgante, G., Murray, C., Nadathur, S., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Rollins, R. P., Sahlén, M., Sarpa, E., Schneider, A., Sereno, M., Simon, P., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Vielzeuf, P., Brown, M. L., and Sellentin, E.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ("shot noise") in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release., Comment: 27 pages, 12 figures. Submitted to A&A. Code available at https://github.com/heracles-ec/heracles
- Published
- 2024
33. Mutual Information Multinomial Estimation
- Author
-
Chen, Yanzhi, Ou, Zijing, Weller, Adrian, and Li, Yingzhen
- Subjects
Computer Science - Machine Learning ,Computer Science - Information Theory ,Statistics - Machine Learning - Abstract
Estimating mutual information (MI) is a fundamental yet challenging task in data science and machine learning. This work proposes a new estimator for mutual information. Our main discovery is that a preliminary estimate of the data distribution can dramatically help estimate. This preliminary estimate serves as a bridge between the joint and the marginal distribution, and by comparing with this bridge distribution we can easily obtain the true difference between the joint distributions and the marginal distributions. Experiments on diverse tasks including non-Gaussian synthetic problems with known ground-truth and real-world applications demonstrate the advantages of our method.
- Published
- 2024
34. Can Large Language Models Understand Symbolic Graphics Programs?
- Author
-
Qiu, Zeju, Liu, Weiyang, Feng, Haiwen, Liu, Zhen, Xiao, Tim Z., Collins, Katherine M., Tenenbaum, Joshua B., Weller, Adrian, Black, Michael J., and Schölkopf, Bernhard
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Against the backdrop of enthusiasm for large language models (LLMs), there is an urgent need to scientifically assess their capabilities and shortcomings. This is nontrivial in part because it is difficult to find tasks which the models have not encountered during training. Utilizing symbolic graphics programs, we propose a domain well-suited to test multiple spatial-semantic reasoning skills of LLMs. Popular in computer graphics, these programs procedurally generate visual data. While LLMs exhibit impressive skills in general program synthesis and analysis, symbolic graphics programs offer a new layer of evaluation: they allow us to test an LLM's ability to answer different-grained semantic-level questions of the images or 3D geometries without a vision encoder. To semantically understand the symbolic programs, LLMs would need to possess the ability to "imagine" and reason how the corresponding graphics content would look with only the symbolic description. We use this task to evaluate LLMs by creating a large benchmark for the semantic visual understanding of symbolic graphics programs, built procedurally with minimal human effort. Particular emphasis is placed on transformations of images that leave the image level semantics invariant while introducing significant changes to the underlying program. We evaluate commercial and open-source LLMs on our benchmark to assess their ability to reason about visual output of programs, finding that LLMs considered stronger at reasoning generally perform better. Lastly, we introduce a novel method to improve this ability -- Symbolic Instruction Tuning (SIT), in which the LLM is finetuned with pre-collected instruction data on symbolic graphics programs. Interestingly, we find that SIT not only improves LLM's understanding on symbolic programs, but it also improves general reasoning ability on various other benchmarks., Comment: Technical Report v2 (46 pages, 24 figures, project page: https://sgp-bench.github.io/, substantial update from v1)
- Published
- 2024
35. Euclid: The Early Release Observations Lens Search Experiment
- Author
-
Barroso, J. A. Acevedo, O'Riordan, C. M., Clément, B., Tortora, C., Collett, T. E., Courbin, F., Gavazzi, R., Metcalf, R. B., Busillo, V., Andika, I. T., Cabanac, R., Courtois, H. M., Crook-Mansour, J., Delchambre, L., Despali, G., Ecker, L. R., Franco, A., Holloway, P., Jackson, N., Jahnke, K., Mahler, G., Marchetti, L., Matavulj, P., Melo, A., Meneghetti, M., Moustakas, L. A., Müller, O., Nucita, A. A., Paulino-Afonso, A., Pearson, J., Rojas, K., Scarlata, C., Schuldt, S., Serjeant, S., Sluse, D., Suyu, S. H., Vaccari, M., Verma, A., Vernardos, G., Walmsley, M., Bouy, H., Walth, G. L., Powell, D. M., Bolzonella, M., Cuillandre, J. -C., Kluge, M., Saifollahi, T., Schirmer, M., Stone, C., Acebron, A., Bazzanini, L., Díaz-Sánchez, A., Hogg, N. B., Koopmans, L. V. E., Kruk, S., Leuzzi, L., Manjón-García, A., Mannucci, F., Nagam, B. C., Pearce-Casey, R., Scharré, L., Wilde, J., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bender, R., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Candini, G. P., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zucca, E., Burigana, C., Scottez, V., and Viel, M.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We investigate the ability of the Euclid telescope to detect galaxy-scale gravitational lenses. To do so, we perform a systematic visual inspection of the $0.7\,\rm{deg}^2$ Euclid ERO data towards the Perseus cluster using both the high-resolution VIS $I_{\scriptscriptstyle\rm E}$ band, and the lower resolution NISP bands. We inspect every extended source brighter than magnitude $23$ in $I_{\scriptscriptstyle\rm E}$ with $41$ expert human classifiers. This amounts to $12\,086$ stamps of $10^{\prime\prime}\,\times\,10^{\prime\prime}$. We find $3$ grade A and $13$ grade B candidates. We assess the validity of these $16$ candidates by modelling them and checking that they are consistent with a single source lensed by a plausible mass distribution. Five of the candidates pass this check, five others are rejected by the modelling and six are inconclusive. Extrapolating from the five successfully modelled candidates, we infer that the full $14\,000\,{\rm deg}^2$ of the Euclid Wide Survey should contain $100\,000^{+70\,000}_{-30\,000}$ galaxy-galaxy lenses that are both discoverable through visual inspection and have valid lens models. This is consistent with theoretical forecasts of $170\,000$ discoverable galaxy-galaxy lenses in Euclid. Our five modelled lenses have Einstein radii in the range $0.\!\!^{\prime\prime}68\,<\,\theta_\mathrm{E}\,<1.\!\!^{\prime\prime}24$, but their Einstein radius distribution is on the higher side when compared to theoretical forecasts. This suggests that our methodology is likely missing small Einstein radius systems. Whilst it is implausible to visually inspect the full Euclid data set, our results corroborate the promise that Euclid will ultimately deliver a sample of around $10^5$ galaxy-scale lenses., Comment: 21 pages, 20 figures, submitted to A&A
- Published
- 2024
36. Euclid Preparation. Cosmic Dawn Survey: Data release 1 multiwavelength catalogues for Euclid Deep Field North and Euclid Deep Field Fornax
- Author
-
Euclid Collaboration, Zalesky, L., McPartland, C. J. R., Weaver, J. R., Toft, S., Sanders, D. B., Mobasher, B., Suzuki, N., Szapudi, I., Valdes, I., Murphree, G., Chartab, N., Allen, N., Taamoli, S., Barrow, S. W. J., Ortiz, O. Chávez, Finkelstein, S. L., Gwyn, S., Sawicki, M., McCracken, H. J., Stern, D., Dannerbauer, H., Altieri, B., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sapone, D., Scaramella, R., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Di Ferdinando, D., Vigo, J. A. Escartin, Farinelli, R., Gracia-Carpio, J., Mauri, N., Nucita, A. A., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Chary, R., Contarini, S., Contini, T., Cooray, A. R., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Walton, Nicholas A., Odier, J., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Scarlata, C., Schneider, A., Sereno, M., Silvestri, A., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tao, C., Testera, G., Teyssier, R., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Zinchenko, I. A.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Cosmic Dawn Survey (DAWN survey) provides multiwavelength (UV/optical to mid-IR) data across the combined 59 deg$^{2}$ of the Euclid Deep and Auxiliary fields (EDFs and EAFs). Here, the first public data release (DR1) from the DAWN survey is presented. DR1 catalogues are made available for a subset of the full DAWN survey that consists of two Euclid Deep fields: Euclid Deep Field North (EDF-N) and Euclid Deep Field Fornax (EDF-F). The DAWN survey DR1 catalogues do not include $Euclid$ data as they are not yet public for these fields. Nonetheless, each field has been covered by the ongoing Hawaii Twenty Square Degree Survey (H20), which includes imaging from CFHT MegaCam in the new $u$ filter and from Subaru Hyper Suprime-Cam (HSC) in the $griz$ filters. Each field is further covered by $Spitzer$/IRAC 3.6-4.5$\mu$m imaging spanning 10 deg$^{2}$ and reaching $\sim$25 mag AB (5$\sigma$). All present H20 imaging and all publicly available imaging from the aforementioned facilities are combined with the deep $Spitzer$/IRAC data to create source catalogues spanning a total area of 16.87 deg$^{2}$ in EDF-N and 2.85 deg$^{2}$ in EDF-F for this first release. Photometry is measured using The Farmer, a well-validated model-based photometry code. Photometric redshifts and stellar masses are computed using two independent codes for modeling spectral energy distributions: EAZY and LePhare. Photometric redshifts show good agreement with spectroscopic redshifts ($\sigma_{\rm NMAD} \sim 0.5, \eta < 8\%$ at $i < 25$). Number counts, photometric redshifts, and stellar masses are further validated in comparison to the COSMOS2020 catalogue. The DAWN survey DR1 catalogues are designed to be of immediate use in these two EDFs and will be continuously updated. Future data releases will provide catalogues of all EDFs and EAFs and include $Euclid$ data.
- Published
- 2024
37. Euclid preparation. The Cosmic Dawn Survey (DAWN) of the Euclid Deep and Auxiliary Fields
- Author
-
Euclid Collaboration, McPartland, C. J. R., Zalesky, L., Weaver, J. R., Toft, S., Sanders, D. B., Mobasher, B., Suzuki, N., Szapudi, I., Valdes, I., Murphree, G., Chartab, N., Allen, N., Taamoli, S., Eisenhardt, P. R. M., Arnouts, S., Atek, H., Brinchmann, J., Castellano, M., Chary, R., Ortiz, O. Chávez, Cuby, J. -G., Finkelstein, S. L., Goto, T., Gwyn, S., Harikane, Y., Inoue, A. K., McCracken, H. J., Mohr, J. J., Oesch, P. A., Ouchi, M., Oguri, M., Rhodes, J., Rottgering, H. J. A., Sawicki, M., Scaramella, R., Scarlata, C., Silverman, J. D., Stern, D., Teplitz, H. I., Shuntov, M., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Aussel, H., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bonino, D., Branchini, E., Brescia, M., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Ferriol, S., Fotopoulou, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Garilli, B., George, K., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kunz, M., Kurki-Suonio, H., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespi, P., Tavagnacco, D., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zoubian, J., Zucca, E., Biviano, A., Bolzonella, M., Boucaud, A., Bozzo, E., Burigana, C., Di Ferdinando, D., Farinelli, R., Gracia-Carpio, J., Mauri, N., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bethermin, M., Borgani, S., Borlaff, A. S., Bruton, S., Cabanac, R., Calabro, A., Cañas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Coupon, J., Davini, S., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Vigo, J. A. Escartin, Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Gregorio, A., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Huertas-Company, M., Ilbert, O., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maturi, M., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Musi, P., Walton, Nicholas A., Odier, J., Patrizii, L., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tao, C., Testera, G., Teyssier, R., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., and Shankar, F.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Euclid will provide deep NIR imaging to $\sim$26.5 AB magnitude over $\sim$59 deg$^2$ in its deep and auxiliary fields. The Cosmic DAWN survey complements the deep Euclid data with matched depth multiwavelength imaging and spectroscopy in the UV--IR to provide consistently processed Euclid selected photometric catalogs, accurate photometric redshifts, and measurements of galaxy properties to a redshift of $z\sim 10$. In this paper, we present an overview of the survey, including the footprints of the survey fields, the existing and planned observations, and the primary science goals for the combined data set., Comment: 16 pages, 10 figures, submitted to A&A; Updated references; Updated author list
- Published
- 2024
38. On marginals and profiled posteriors for cosmological parameter estimation
- Author
-
Kerscher, Martin and Weller, Jochen
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Physics - Data Analysis, Statistics and Probability - Abstract
With several examples and in an analysis of the Pantheon+ supernova sample we discuss the properties of the marginal posterior distribution versus the profiled posterior distribution -- the profile likelihood in a Bayesian disguise. We investigate whether maximisation, as used for the profiling, or integration, as used for the marginalisation, is more appropriate. To report results we recommend the marginal posterior distribution., Comment: 24 pages, 10 figures, now includes an extended motivation and discussion as well as a valuation of the Laplace approximation
- Published
- 2024
39. Euclid preparation. Exploring the properties of proto-clusters in the Simulated Euclid Wide Survey
- Author
-
Euclid Collaboration, Böhringer, H., Chon, G., Cucciati, O., Dannerbauer, H., Bolzonella, M., De Lucia, G., Cappi, A., Moscardini, L., Giocoli, C., Castignani, G., Hatch, N. A., Andreon, S., Bañados, E., Ettori, S., Fontanot, F., Gully, H., Hirschmann, M., Maturi, M., Mei, S., Pozzetti, L., Schlenker, T., Spinelli, M., Aghanim, N., Altieri, B., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mellier, Y., Meneghetti, M., Meylan, G., Moresco, M., Niemi, S. -M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schirmer, M., Schneider, P., Scodeggio, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Finelli, F., Gracia-Carpio, J., Matthew, S., Mauri, N., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Alvi, S., Anselmi, S., Archidiacono, M., Atrio-Barandela, F., Balaguera-Antolinez, A., Ballardini, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Caro, F., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Costanzi, M., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Fontana, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gasparetto, T., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gonzalez, A. H., Gozaliasl, G., Gutierrez, C. M., Hall, A., Hartley, W. G., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Lesgourgues, J., Liaudat, T. I., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Maurin, L., Metcalf, R. B., Miluzio, M., Monaco, P., Montoro, A., Mora, A., Moretti, C., Morgante, G., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Shankar, F., Simon, P., Mancini, A. Spurio, Stadel, J., Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Verza, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Galaxy proto-clusters are receiving an increased interest since most of the processes shaping the structure of clusters of galaxies and their galaxy population are happening at early stages of their formation. The Euclid Survey will provide a unique opportunity to discover a large number of proto-clusters over a large fraction of the sky (14 500 square degrees). In this paper, we explore the expected observational properties of proto-clusters in the Euclid Wide Survey by means of theoretical models and simulations. We provide an overview of the predicted proto-cluster extent, galaxy density profiles, mass-richness relations, abundance, and sky-filling as a function of redshift. Useful analytical approximations for the functions of these properties are provided. The focus is on the redshift range z= 1.5 to 4. We discuss in particular the density contrast with which proto-clusters can be observed against the background in the galaxy distribution if photometric galaxy redshifts are used as supplied by the ESA Euclid mission together with the ground-based photometric surveys. We show that the obtainable detection significance is sufficient to find large numbers of interesting proto-cluster candidates. For quantitative studies, additional spectroscopic follow-up is required to confirm the proto-clusters and establish their richness., Comment: Submitted to Astronomy and Astrophysics, 24 pages, 28 figures
- Published
- 2024
40. The Future is Meta: Metadata, Formats and Perspectives towards Interactive and Personalized AV Content
- Author
-
Weller, Alexander, Bleisteiner, Werner, Hufnagel, Christian, and Iber, Michael
- Subjects
Computer Science - Multimedia - Abstract
The production of media content has undergone tremendous changes in recent years. Multiple daily content updates are just as common for some platforms as is processing the provided content specifically for their target audiences. Such features are made possible through metadata, which make information accessible by categorizing it. In conjunction with AI-supported tools, metadata are shaping the future of audio-visual content production, distribution and consumption. It allows editors to effectively search through archives like in the Tailored Media Project, broadcasters to provide content that is adapted to users' surroundings like in the ARD Audiothek unterwegs project, or give users the ability to experience audio-visual content from different perspectives like in the ORPHEUS project. Although these projects provide comprehensive insight into the potential of metadata, their integration in existing infrastructures meets several limitations. For example, content-related metadata may initially be generated at some point during the production process but will then be lost at later stages due to current standards and incomplete software implementations. In our contribution, we will discuss requirements and potential approaches and give an outlook on possible fields of application and use-cases., Comment: 12 pages, 4 figures, submitted to the Tonmeistertagung 32
- Published
- 2024
41. Evaluating Cosmological Biases using Photometric Redshifts for Type Ia Supernova Cosmology with the Dark Energy Survey Supernova Program
- Author
-
Chen, R., Scolnic, D., Vincenzi, M., Rykoff, E. S., Myles, J., Kessler, R., Popovic, B., Sako, M., Smith, M., Armstrong, P., Brout, D., Davis, T. M., Galbany, L., Lee, J., Lidman, C., Möller, A., Sánchez, B. O., Sullivan, M., Qu, H., Wiseman, P., Abbott, T. M. C., Aguena, M., Allam, S., Alves, O., Andrade-Oliveira, F., Annis, J., Bacon, D., Brooks, D., Rosell, A. Carnero, Carretero, J., Choi, A., Conselice, C., da Costa, L. N., Pereira, M. E. S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Huterer, D., James, D. J., Kuehn, K., Lima, M., Marshall, J. L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R. L. C., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Roodman, A., Samuroff, S., Sanchez, E., Cid, D. Sanchez, Sevilla-Noarbe, I., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C., Tucker, D. L., Vikram, V., Weaverdyck, N., and Weller, J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance-redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light-curve in combination with Gaussian and full p(z) priors from host-galaxy photo-z estimates. Using the DES 5-year photometrically-classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3x2 point analyses. With detailed catalog-level simulations of the DES 5-year sample, we find that the simulated w can be recovered within $\pm$0.02 when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within ~1$\sigma$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses., Comment: 19 pages, 9 figures. Submitting to MNRAS, comments welcome
- Published
- 2024
42. Building Machines that Learn and Think with People
- Author
-
Collins, Katherine M., Sucholutsky, Ilia, Bhatt, Umang, Chandra, Kartik, Wong, Lionel, Lee, Mina, Zhang, Cedegao E., Zhi-Xuan, Tan, Ho, Mark, Mansinghka, Vikash, Weller, Adrian, Tenenbaum, Joshua B., and Griffiths, Thomas L.
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
What do we want from machine intelligence? We envision machines that are not just tools for thought, but partners in thought: reasonable, insightful, knowledgeable, reliable, and trustworthy systems that think with us. Current artificial intelligence (AI) systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called ``thought partners,'' systems built to meet our expectations and complement our limitations. We lay out several modes of collaborative thought in which humans and AI thought partners can engage and propose desiderata for human-compatible thought partnerships. Drawing on motifs from computational cognitive science, we motivate an alternative scaling path for the design of thought partners and ecosystems around their use through a Bayesian lens, whereby the partners we construct actively build and reason over models of the human and world.
- Published
- 2024
43. People use fast, goal-directed simulation to reason about novel games
- Author
-
Zhang, Cedegao E., Collins, Katherine M., Wong, Lionel, Weller, Adrian, and Tenenbaum, Joshua B.
- Subjects
Computer Science - Computer Science and Game Theory ,Computer Science - Artificial Intelligence ,Quantitative Biology - Neurons and Cognition - Abstract
We can evaluate features of problems and their potential solutions well before we can effectively solve them. When considering a game we have never played, for instance, we might infer whether it is likely to be challenging, fair, or fun simply from hearing the game rules, prior to deciding whether to invest time in learning the game or trying to play it well. Many studies of game play have focused on optimality and expertise, characterizing how people and computational models play based on moderate to extensive search and after playing a game dozens (if not thousands or millions) of times. Here, we study how people reason about a range of simple but novel connect-n style board games. We ask people to judge how fair and how fun the games are from very little experience: just thinking about the game for a minute or so, before they have ever actually played with anyone else, and we propose a resource-limited model that captures their judgments using only a small number of partial game simulations and almost no lookahead search., Comment: Accepted at CogSci 2024 as a talk
- Published
- 2024
44. Euclid and KiDS-1000: Quantifying the impact of source-lens clustering on cosmic shear analyses
- Author
-
Linke, L., Unruh, S., Wittje, A., Schrabback, T., Grandis, S., Asgari, M., Dvornik, A., Hildebrandt, H., Hoekstra, H., Joachimi, B., Reischke, R., Busch, J. L. van den, Wright, A. H., Schneider, P., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bardelli, S., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Dinis, J., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jahnke, K., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kubik, B., Kuijken, K., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sakr, Z., Sapone, D., Sartoris, B., Schirmer, M., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespí, P., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Pezzotta, A., Porciani, C., Scottez, V., Viel, M., and Brun, A. M. C. Le
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Cosmic shear is a powerful probe of cosmological models and the transition from current Stage-III surveys like the Kilo-Degree Survey (KiDS) to the increased area and redshift range of Stage IV-surveys such as \Euclid will significantly increase the precision of weak lensing analyses. However, with increasing precision, the accuracy of model assumptions needs to be evaluated. In this study, we quantify the impact of the correlated clustering of weak lensing source galaxies with the surrounding large-scale structure, the so-called source-lens clustering (SLC), which is commonly neglected. We include the impact of realistic scatter in photometric redshift estimates, which impacts the assignment of galaxies to tomographic bins and increases the SLC. For this, we use simulated cosmological datasets with realistically distributed galaxies and measure shear correlation functions for both clustered and uniformly distributed source galaxies. Cosmological analyses are performed for both scenarios to quantify the impact of SLC on parameter inference for a KiDS-like and a \Euclid-like setting. We find for Stage III surveys like KiDS, SLC has a minor impact when accounting for nuisance parameters for intrinsic alignments and shifts of tomographic bins, as these nuisance parameters absorb the effect of SLC, thus changing their original meaning. For KiDS (\Euclid), the inferred intrinsic alignment amplitude $A_\mathrm{IA}$ changes from $0.11_{-0.46}^{+0.44}$ ($-0.009_{-0.080}^{+0.079}$) for data without SLC to $0.28_{-0.44}^{+0.42}$ ($0.022_{-0.082}^{+0.081}$) with SLC. However, fixed nuisance parameters lead to shifts in $S_8$ and $\Omega_\mathrm{m}$. For \Euclid we find that $S_8$ and $\Omega_\mathrm{m}$ are shifted by 0.14 and 0.12 $\sigma$, respectively, when including free nuisance parameters. Consequently, SLC on its own has only a small impact on the inferred parameters., Comment: 17 pages plus appendix, 10 figures, abstract abridged for arXiv
- Published
- 2024
45. Euclid preparation. LI. Forecasting the recovery of galaxy physical properties and their relations with template-fitting and machine-learning methods
- Author
-
Euclid Collaboration, Enia, A., Bolzonella, M., Pozzetti, L., Humphrey, A., Cunha, P. A. C., Hartley, W. G., Dubath, F., Paltani, S., Lopez, X. Lopez, Quai, S., Bardelli, S., Bisigello, L., Cavuoti, S., De Lucia, G., Ginolfi, M., Grazian, A., Siudek, M., Tortora, C., Zamorani, G., Aghanim, N., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castander, F. J., Castellano, M., Castignani, G., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., Di Giorgio, A. M., Dinis, J., Dupac, X., Dusini, S., Fabricius, M., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Fotopoulou, S., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., McCracken, H. J., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Pasian, F., Pedersen, K., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sapone, D., Schneider, P., Schrabback, T., Scodeggio, M., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Surace, C., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Teplitz, H. I., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zucca, E., Biviano, A., Boucaud, A., Burigana, C., Calabrese, M., Vigo, J. A. Escartin, Gracia-Carpio, J., Mauri, N., Pezzotta, A., Pöntinen, M., Porciani, C., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Allevato, V., Anselmi, S., Ballardini, M., Bergamini, P., Bethermin, M., Blanchard, A., Blot, L., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Canas-Herrera, G., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Contini, T., Cooray, A. R., Cucciati, O., Davini, S., De Caro, B., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finoguenov, A., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gautard, V., Gaztanaga, E., Giacomini, F., Gianotti, F., Gozaliasl, G., Hall, A., Hemmati, S., Hildebrandt, H., Hjorth, J., Muñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Graet, J. Le, Legrand, L., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mancini, C., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Monaco, P., Moretti, C., Morgante, G., Walton, Nicholas A., Patrizii, L., Popa, V., Potter, D., Risso, I., Rocci, P. -F., Sahlén, M., Schneider, A., Schultheis, M., Sereno, M., Simon, P., Mancini, A. Spurio, Stanford, S. A., Tanidis, K., Tao, C., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., Verza, G., Zinchenko, I. A., Rodighiero, G., and Talia, M.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Euclid will collect an enormous amount of data during the mission's lifetime, observing billions of galaxies in the extragalactic sky. Along with traditional template-fitting methods, numerous machine learning algorithms have been presented for computing their photometric redshifts and physical parameters (PPs), requiring significantly less computing effort while producing equivalent performance measures. However, their performance is limited by the quality and amount of input information, to the point where the recovery of some well-established physical relationships between parameters might not be guaranteed. To forecast the reliability of Euclid photo-$z$s and PPs calculations, we produced two mock catalogs simulating Euclid photometry. We simulated the Euclid Wide Survey (EWS) and Euclid Deep Fields (EDF). We tested the performance of a template-fitting algorithm (Phosphoros) and four ML methods in recovering photo-$z$s, PPs (stellar masses and star formation rates), and the SFMS. To mimic the Euclid processing as closely as possible, the models were trained with Phosphoros-recovered labels. For the EWS, we found that the best results are achieved with a mixed labels approach, training the models with wide survey features and labels from the Phosphoros results on deeper photometry, that is, with the best possible set of labels for a given photometry. This imposes a prior, helping the models to better discern cases in degenerate regions of feature space, that is, when galaxies have similar magnitudes and colors but different redshifts and PPs, with performance metrics even better than those found with Phosphoros. We found no more than 3% performance degradation using a COSMOS-like reference sample or removing u band data, which will not be available until after data release DR1. The best results are obtained for the EDF, with appropriate recovery of photo-$z$, PPs, and the SFMS., Comment: 26 pages, 13 figures. Accepted for publication on A&A
- Published
- 2024
- Full Text
- View/download PDF
46. Euclid preparation. Sensitivity to non-standard particle dark matter model
- Author
-
Euclid Collaboration, Lesgourgues, J., Schwagereit, J., Bucko, J., Parimbelli, G., Giri, S. K., Hervas-Peters, F., Schneider, A., Archidiacono, M., Pace, F., Sakr, Z., Amara, A., Amendola, L., Andreon, S., Auricchio, N., Aussel, H., Baccigalupi, C., Baldi, M., Bardelli, S., Bender, R., Bodendorf, C., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Camera, S., Capobianco, V., Carbone, C., Cardone, V. F., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Courbin, F., Courtois, H. M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Douspis, M., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Galeotta, S., Gillis, B., Giocoli, C., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Ilić, S., Jahnke, K., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kunz, M., Kurki-Suonio, H., Laureijs, R., Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Meneghetti, M., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Polenta, G., Poncet, M., Popa, L. A., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Saglia, R., Sánchez, A. G., Sapone, D., Sartoris, B., Scaramella, R., Schewtschenko, J. A., Schneider, P., Schrabback, T., Secroun, A., Sefusatti, E., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valenziano, L., Vassallo, T., Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Biviano, A., Boucaud, A., Bozzo, E., Burigana, C., Calabrese, M., Di Ferdinando, D., Vigo, J. A. Escartin, Fabbian, G., Farinelli, R., Gracia-Carpio, J., Mauri, N., Nucita, A. A., Scottez, V., Tenti, M., Viel, M., Wiesmann, M., Akrami, Y., Anselmi, S., Ballardini, M., Bertacca, D., Blot, L., Böhringer, H., Borgani, S., Bruton, S., Cabanac, R., Calabro, A., Cappi, A., Carvalho, C. S., Castro, T., Chambers, K. C., Contarini, S., Cooray, A. R., Davini, S., De Caro, B., de la Torre, S., Desprez, G., Díaz-Sánchez, A., Di Domizio, S., Dole, H., Escoffier, S., Ferrari, A. G., Ferreira, P. G., Ferrero, I., Finelli, F., Fornari, F., Gabarra, L., Ganga, K., García-Bellido, J., Gaztanaga, E., Giacomini, F., Gozaliasl, G., Hildebrandt, H., Hjorth, J., Munñoz, A. Jimenez, Joudaki, S., Kajava, J. J. E., Kansal, V., Karagiannis, D., Kirkpatrick, C. C., Legrand, L., Libet, G., Loureiro, A., Macias-Perez, J., Maggio, G., Magliocchetti, M., Mannucci, F., Maoli, R., Martins, C. J. A. P., Matthew, S., Maurin, L., Metcalf, R. B., Migliaccio, M., Monaco, P., Moretti, C., Morgante, G., Nadathur, S., Walton, Nicholas A., Patrizii, L., Pezzotta, A., Pöntinen, M., Popa, V., Porciani, C., Potter, D., Reimberg, P., Risso, I., Rocci, P. -F., Sahlén, M., Sereno, M., Simon, P., Mancini, A. Spurio, Tao, C., Tessore, N., Testera, G., Teyssier, R., Toft, S., Tosi, S., Troja, A., Tucci, M., Valieri, C., Valiviita, J., Vergani, D., and Verza, G.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of these surveys on the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics; unstable dark matter decaying either into massless or massive relics; and dark matter experiencing feeble interactions with relativistic relics. We model these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We use a mock Euclid likelihood to fit mock data and infer error bars on dark matter parameters marginalised over other parameters. We find that the Euclid photometric probe (alone or in combination with CMB data from the Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: inclusion of photometric galaxy clustering data, minimum angular scale taken into account, modelling of baryonic feedback effects. We conclude that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm would have profound implications for cosmology and particle physics., Comment: 31 pages, 21 figures
- Published
- 2024
47. Modulating Language Model Experiences through Frictions
- Author
-
Collins, Katherine M., Chen, Valerie, Sucholutsky, Ilia, Kirk, Hannah Rose, Sadek, Malak, Sargeant, Holli, Talwalkar, Ameet, Weller, Adrian, and Bhatt, Umang
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Language models are transforming the ways that their users engage with the world. Despite impressive capabilities, over-consumption of language model outputs risks propagating unchecked errors in the short-term and damaging human capabilities for critical thinking in the long-term. How can we develop scaffolding around language models to curate more appropriate use? We propose selective frictions for language model experiences, inspired by behavioral science interventions, to dampen misuse. Frictions involve small modifications to a user's experience, e.g., the addition of a button impeding model access and reminding a user of their expertise relative to the model. Through a user study with real humans, we observe shifts in user behavior from the imposition of a friction over LLMs in the context of a multi-topic question-answering task as a representative task that people may use LLMs for, e.g., in education and information retrieval. We find that frictions modulate over-reliance by driving down users' click rates while minimally affecting accuracy for those topics. Yet, frictions may have unintended effects. We find marked differences in users' click behaviors even on topics where frictions were not provisioned. Our contributions motivate further study of human-AI behavioral interaction to inform more effective and appropriate LLM use., Comment: NeurIPS Workshop on Behavioral ML; non-archival
- Published
- 2024
48. CLERC: A Dataset for Legal Case Retrieval and Retrieval-Augmented Analysis Generation
- Author
-
Hou, Abe Bohan, Weller, Orion, Qin, Guanghui, Yang, Eugene, Lawrie, Dawn, Holzenberger, Nils, Blair-Stanek, Andrew, and Van Durme, Benjamin
- Subjects
Computer Science - Computation and Language ,Computer Science - Computers and Society - Abstract
Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
- Published
- 2024
49. The Laplace Transform and Quantum Curves
- Author
-
Weller, Quinten
- Subjects
Mathematical Physics ,High Energy Physics - Theory ,Mathematics - Algebraic Geometry - Abstract
A Laplace transform that maps the topological recursion (TR) wavefunction to its $x$-$y$ swap dual is defined. This transform is then applied to the construction of quantum curves. General results are obtained, including a formula for the quantisation of many spectral curves of the form $e^xP_2(e^y) - P_1(e^y) = 0$ where $P_1$ and $P_2$ are coprime polynomials; an important class that contains interesting spectral curves related to mirror symmetry and knot theory that have, heretofore, evaded the general TR-based methods previously used to derive quantum curves. Quantum curves known in the literature are reproduced, and new quantum curves are derived. In particular, the quantum curve for the $T$-equivariant Gromov-Witten theory of $\mathbb{P}(a,b)$ is obtained., Comment: 20 pages (17 plus references). Second version cleaned up minor typos, added details to the proof of the main theorem, and corrected a statement that the relation between the Gromov-Witten invariants for the complex weighted projective line and topological recursion was unknown. The quantum curve associated with these Gromov-Witten invariants was then derived
- Published
- 2024
50. Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation
- Author
-
Collins, Katherine M., Kim, Najoung, Bitton, Yonatan, Rieser, Verena, Omidshafiei, Shayegan, Hu, Yushi, Chen, Sherol, Dutta, Senjuti, Chang, Minsuk, Lee, Kimin, Liang, Youwei, Evans, Georgina, Singla, Sahil, Li, Gang, Weller, Adrian, He, Junfeng, Ramachandran, Deepak, and Dvijotham, Krishnamurthy Dj
- Subjects
Computer Science - Machine Learning ,Computer Science - Computation and Language ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Human feedback plays a critical role in learning and refining reward models for text-to-image generation, but the optimal form the feedback should take for learning an accurate reward function has not been conclusively established. This paper investigates the effectiveness of fine-grained feedback which captures nuanced distinctions in image quality and prompt-alignment, compared to traditional coarse-grained feedback (for example, thumbs up/down or ranking between a set of options). While fine-grained feedback holds promise, particularly for systems catering to diverse societal preferences, we show that demonstrating its superiority to coarse-grained feedback is not automatic. Through experiments on real and synthetic preference data, we surface the complexities of building effective models due to the interplay of model choice, feedback type, and the alignment between human judgment and computational interpretation. We identify key challenges in eliciting and utilizing fine-grained feedback, prompting a reassessment of its assumed benefits and practicality. Our findings -- e.g., that fine-grained feedback can lead to worse models for a fixed budget, in some settings; however, in controlled settings with known attributes, fine grained rewards can indeed be more helpful -- call for careful consideration of feedback attributes and potentially beckon novel modeling approaches to appropriately unlock the potential value of fine-grained feedback in-the-wild.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.