2,048 results on '"Weinstein, L"'
Search Results
2. A=3 (e,e') $x_B \geq 1$ cross-section ratios and the isospin structure of short-range correlations
- Author
-
Schmidt, A., Denniston, A. W., Seroka, E. M., Barnea, N., Higinbotham, D. W., Korover, I., Miller, G. A., Piasetzky, E., Strikman, M., Weinstein, L. B., Weiss, R., and Hen, O.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
We study the relation between measured high-$x_B$, high-$Q^2$, Helium-3 to Tritium, $(e,e')$ inclusive-scattering cross-section ratios and the relative abundance of high-momentum neutron-proton ($np$) and proton-proton ($pp$) short-range correlated (SRC) nucleon pairs in three-body ($A=3$) nuclei. Analysis of this data using a simple pair-counting cross-section model suggested a much smaller $np/pp$ ratio than previously measured in heavier nuclei, questioning our understanding of $A=3$ nuclei and, by extension, all other nuclei. Here we examine this finding using spectral-function-based cross-section calculations, with both an \textit{ab initio} $A=3$ spectral function and effective Generalized Contact Formalism (GCF) spectral functions using different nucleon-nucleon interaction models. The \textit{ab initio} calculation agrees with the data, showing good understanding of the structure of $A=3$ nuclei. An 8\% uncertainty on the simple pair-counting model, as implied by the difference between it and the \textit{ab initio} calculation, gives a factor of 5 uncertainty in the extracted $np/pp$ ratio. Thus we see no evidence for the claimed ``unexpected structure in the high-momentum wavefunction for hydrogen-3 and helium-3''., Comment: 6 pages, 4 figures
- Published
- 2024
3. Tagged deep inelastic scattering measurement on deuterium with the LAD experiment
- Author
-
Hauenstein, F., Ayerbe Gayoso, C., Ratliff, S., Szumila-Vance, H., Schmidt, A., Ehinger, L., Hen, O., Higinbotham, D., Korover, I., Kutz, T., Nguyen, D., Piasetzky, E., and Weinstein, L. B.
- Published
- 2024
- Full Text
- View/download PDF
4. Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab
- Author
-
Accardi, A., Achenbach, P., Adhikari, D., Afanasev, A., Akondi, C. S., Akopov, N., Albaladejo, M., Albataineh, H., Albrecht, M., Almeida-Zamora, B., Amaryan, M., Androić, D., Armstrong, W., Armstrong, D. S., Arratia, M., Arrington, J., Asaturyan, A., Austregesilo, A., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bacchetta, A., Balantekin, A. B., Baltzell, N., Barion, L., Barry, P. C., Bashir, A., Battaglieri, M., Bellini, V., Belov, I., Benhar, O., Benkel, B., Benmokhtar, F., Bentz, W., Bertone, V., Bhatt, H., Bianconi, A., Bibrzycki, L., Bijker, R., Binosi, D., Biswas, D., Boër, M., Boeglin, W., Bogacz, S. A., Boglione, M., Bondí, M., Boos, E. E., Bosted, P., Bozzi, G., Brash, E. J., Briceño, R. A., Brindza, P. D., Briscoe, W. J., Brodsky, S. J., Brooks, W. K., Burkert, V. D., Camsonne, A., Cao, T., Cardman, L. S., Carman, D. S., Carpinelli, M., Cates, G. D., Caylor, J., Celentano, A., Celiberto, F. G., Cerutti, M., Chang, L., Chatagnon, P., Chen, C., Chen, J.-P., Chetry, T., Christopher, A., Christy, E., Chudakov, E., Cisbani, E., Cloët, I. C., Cobos-Martinez, J. J., Cohen, E. O., Colangelo, P., Cole, P. L., Constantinou, M., Contalbrigo, M., Costantini, G., Cosyn, W., Cotton, C., Courtoy, A., Dusa, S. Covrig, Crede, V., Cui, Z.-F., D’Angelo, A., Döring, M., Dalton, M. M., Danilkin, I., Davydov, M., Day, D., De Fazio, F., De Napoli, M., De Vita, R., Dean, D. J., Defurne, M., de Paula, W., de Téramond, G. F., Deur, A., Devkota, B., Dhital, S., Di Nezza, P., Diefenthaler, M., Diehl, S., Dilks, C., Ding, M., Djalali, C., Dobbs, S., Dupré, R., Dutta, D., Edwards, R. G., Egiyan, H., Ehinger, L., Eichmann, G., Elaasar, M., Elouadrhiri, L., Alaoui, A. El, Fassi, L. El, Emmert, A., Engelhardt, M., Ent, R., Ernst, D. J., Eugenio, P., Evans, G., Fanelli, C., Fegan, S., Fernández-Ramírez, C., Fernandez, L. A., Fernando, I. P., Filippi, A., Fischer, C. S., Fogler, C., Fomin, N., Frankfurt, L., Frederico, T., Freese, A., Fu, Y., Gamberg, L., Gan, L., Gao, F., Garcia-Tecocoatzi, H., Gaskell, D., Gasparian, A., Gates, K., Gavalian, G., Ghoshal, P. K., Giachino, A., Giacosa, F., Giannuzzi, F., Gilfoyle, G.-P., Girod, F.-X., Glazier, D. I., Gleason, C., Godfrey, S., Goity, J. L., Golubenko, A. A., Gonzàlez-Solís, S., Gothe, R. W., Gotra, Y., Griffioen, K., Grocholski, O., Grube, B., Guèye, P., Guo, F.-K., Guo, Y., Guo, L., Hague, T. J., Hammoud, N., Hansen, J.-O., Hattawy, M., Hauenstein, F., Hayward, T., Heddle, D., Heinrich, N., Hen, O., Higinbotham, D. W., Higuera-Angulo, I. M., Hiller Blin, A. N., Hobart, A., Hobbs, T., Holmberg, D. E., Horn, T., Hoyer, P., Huber, G. M., Hurck, P., Hutauruk, P. T. P., Ilieva, Y., Illari, I., Ireland, D. G., Isupov, E. L., Italiano, A., Jaegle, I., Jarvis, N. S., Jenkins, D. J., Jeschonnek, S., Ji, C.-R., Jo, H. S., Jones, M., Jones, R. T., Jones, D. C., Joo, K., Junaid, M., Kageya, T., Kalantarians, N., Karki, A., Karyan, G., Katramatou, A. T., Kay, S. J. D., Kazimi, R., Keith, C. D., Keppel, C., Kerbizi, A., Khachatryan, V., Khanal, A., Khandaker, M., Kim, A., Kinney, E. R., Kohl, M., Kotzinian, A., Kriesten, B. T., Kubarovsky, V., Kubis, B., Kuhn, S. E., Kumar, V., Kutz, T., Leali, M., Lebed, R. F., Lenisa, P., Leskovec, L., Li, S., Li, X., Liao, J., Lin, H.-W., Liu, L., Liuti, S., Liyanage, N., Lu, Y., MacGregor, I. J. D., Mack, D. J., Maiani, L., Mamo, K. A., Mandaglio, G., Mariani, C., Markowitz, P., Marukyan, H., Mascagna, V., Mathieu, V., Maxwell, J., Mazouz, M., McCaughan, M., McKeown, R. D., McKinnon, B., Meekins, D., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z.-E., Mezrag, C., Michaels, R., Miller, G. A., Mineeva, T., Miramontes, A. S., Mirazita, M., Mizutani, K., Mkrtchyan, A., Mkrtchyan, H., Moffit, B., Mohanmurthy, P., Mokeev, V. I., Monaghan, P., Montaña, G., Montgomery, R., Moretti, A., Chàvez, J. M. Morgado, Mosel, U., Movsisyan, A., Musico, P., Nadeeshani, S. A., Nadolsky, P. M., Nakamura, S. X., Nazeer, J., Nefediev, A. V., Neupane, K., Nguyen, D., Niccolai, S., Niculescu, I., Niculescu, G., Nocera, E. R., Nycz, M., Olness, F. I., Ortega, P. G., Osipenko, M., Pace, E., Pandey, B., Pandey, P., Papandreou, Z., Papavassiliou, J., Pappalardo, L. L., Paredes-Torres, G., Paremuzyan, R., Park, S., Parsamyan, B., Paschke, K. D., Pasquini, B., Passemar, E., Pasyuk, E., Patel, T., Paudel, C., Paul, S. J., Peng, J.-C., Pentchev, L., Perrino, R., Perry, R. J., Peters, K., Petratos, G. G., Phelps, W., Piasetzky, E., Pilloni, A., Pire, B., Pitonyak, D., Pitt, M. L., Polosa, A. D., Pospelov, M., Postuma, A. C., Poudel, J., Preet, L., Prelovsek, S., Price, J. W., Prokudin, A., Puckett, A. J. R., Pybus, J. R., Qin, S.-X., Qiu, J.-W., Radici, M., Rashidi, H., Rathnayake, A. D., Raue, B. A., Reed, T., Reimer, P. E., Reinhold, J., Richard, J.-M., Rinaldi, M., Ringer, F., Ripani, M., Ritman, J., West, J. Rittenhouse, Rivero-Acosta, A., Roberts, C. D., Rodas, A., Rodini, S., Rodríguez-Quintero, J., Rogers, T. C., Rojo, J., Rossi, P., Rossi, G. C., Salmè, G., Santiesteban, S. N., Santopinto, E., Sargsian, M., Sato, N., Schadmand, S., Schmidt, A., Schmidt, S. M., Schnell, G., Schumacher, R. A., Schweitzer, P., Scimemi, I., Scott, K. C., Seay, D. A., Segovia, J., Semenov-Tian-Shansky, K., Seryi, A., Sharda, A. S., Shepherd, M. R., Shirokov, E. V., Shrestha, S., Shrestha, U., Shvedunov, V. I., Signori, A., Slifer, K. J., Smith, W. A., Somov, A., Souder, P., Sparveris, N., Spizzo, F., Spreafico, M., Stepanyan, S., Stevens, J. R., Strakovsky, I. I., Strauch, S., Strikman, M., Su, S., Sumner, B. C. L., Sun, E., Suresh, M., Sutera, C., Swanson, E. S., Szczepaniak, A. P., Sznajder, P., Szumila-Vance, H., Szymanowski, L., Tadepalli, A.-S., Tadevosyan, V., Tamang, B., Tarasov, V. V., Thiel, A., Tong, X.-B., Tyson, R., Ungaro, M., Urciuoli, G. M., Usman, A., Valcarce, A., Vallarino, S., Vaquera-Araujo, C. A., Venturelli, L., Vera, F., Vladimirov, A., Vossen, A., Wagner, J., Wei, X., Weinstein, L. B., Weiss, C., Williams, R., Winney, D., Wojtsekhowski, B., Wood, M. H., Xiao, T., Xu, S.-S., Ye, Z., Yero, C., Yuan, C.-P., Yurov, M., Zachariou, N., Zhang, Z., Zhao, Y., Zhao, Z. W., Zheng, X., Zhou, X., Ziegler, V., and Zihlmann, B.
- Published
- 2024
- Full Text
- View/download PDF
5. A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12
- Author
-
Schmidt, A., Briscoe, W. J., Cortes, O., Earnest, L., Grauvogel, G. N., Ratliff, S., Seroka, E. M., Sharp, P., Strakovsky, I. I., Niculescu, G., Diehl, S., Blunden, P. G., Cline, E., Korover, I., Kutz, T., Santiesteban, S. N., Fogler, C., Weinstein, L. B., Marchand, D., Niccolai, S., Voutier, E., D'Angelo, A., Bernauer, J. C., Singh, R., Burkert, V., Hauenstein, F., Higinbotham, D. W., Nguyen, D., Pasyuk, E., Szumila-Vance, H., Wei, X., and Keller, D.
- Subjects
Nuclear Experiment - Abstract
One of the most surprising discoveries made at Jefferson Lab has been the discrepancy in the determinations of the proton's form factor ratio $\mu_p G_E^p/G_M^p$ between unpolarized cross section measurements and the polarization transfer technique. Over two decades later, the discrepancy not only persists but has been confirmed at higher momentum transfers now accessible in the 12-GeV era. The leading hypothesis for the cause of this discrepancy, a non-negligible contribution from hard two-photon exchange, has neither been conclusively proven or disproven. This state of uncertainty not only clouds our knowledge of one-dimensional nucleon structure but also poses a major concern for our field's efforts to map out the three-dimensional nuclear structure. A better understanding of multi-photon exchange over a wide phase space is needed. We propose making comprehensive measurements of two-photon exchange over a wide range in momentum transfer and scattering angle using the CLAS12 detector. Specifically, we will measure the ratio of positron-proton to electron-proton elastic scattering cross sections, using the proposed positron beam upgrade for CEBAF. The experiment will use 2.2, 4.4, and 6.6 GeV lepton beams incident on the standard CLAS12 unpolarized hydrogen target. Data will be collected by the CLAS12 detector in its standard configuration, except for a modified trigger to allow the recording of events with beam leptons scattered into the CLAS12 central detector. The sign of the beam charge, as well as the polarity of the CLAS12 solenoid and toroid, will be reversed several times in order to suppress systematics associated with local detector efficiency and time-dependent detector performance. The proposed high-precision determination of two-photon effects will be..., Comment: Experimental Proposal E12+23-008 submitted to Jefferson Lab PAC 51, 34 pages, 18 figures
- Published
- 2023
6. Comment on 'Electromagnetic form factors for nucleons in short-range correlations': arXiv:2305.13666
- Author
-
Kim, Dmitry N., Hen, Or, Miller, Gerald A., Piasetzky, E., Strikman, M., and Weinstein, L.
- Subjects
Nuclear Theory ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Experiment - Abstract
The relationship between medium modifications of nuclear quark structure functions and medium modifications of elastic electromagnetic form factors is shown to be model dependent., Comment: 2 pages, 1 figure
- Published
- 2023
7. Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
- Author
-
Accardi, A., Achenbach, P., Adhikari, D., Afanasev, A., Akondi, C. S., Akopov, N., Albaladejo, M., Albataineh, H., Albrecht, M., Almeida-Zamora, B., Amaryan, M., Androić, D., Armstrong, W., Armstrong, D. S., Arratia, M., Arrington, J., Asaturyan, A., Austregesilo, A., Avagyan, H., Averett, T., Gayoso, C. Ayerbe, Bacchetta, A., Balantekin, A. B., Baltzell, N., Barion, L., Barry, P. C., Bashir, A., Battaglieri, M., Bellini, V., Belov, I., Benhar, O., Benkel, B., Benmokhtar, F, Bentz, W., Bertone, V., Bhatt, H., Bianconi, A., Bibrzycki, L., Bijker, R., Binosi, D., Biswas, D., Boër, M., Boeglin, W., Bogacz, S. A., Boglione, M., Bondí, M., Boos, E. E., Bosted, P., Bozzi, G., Brash, E. J., Briceño, R. A., Brindza, P. D., Briscoe, W. J., Brodsky, S. J, Brooks, W. K., Burkert, V. D., Camsonne, A., Cao, T., Cardman, L. S., Carman, D. S., Carpinelli, M, Cates, G. D., Caylor, J., Celentano, A., Celiberto, F. G., Cerutti, M., Chang, Lei, Chatagnon, P., Chen, C., Chen, J-P, Chetry, T., Christopher, A., Christy, E., Chudakov, E., Cisbani, E., Cloët, I. C., Cobos-Martinez, J. J., Cohen, E. O., Colangelo, P., Cole, P. L., Constantinou, M., Contalbrigo, M., Costantini, G., Cosyn, W., Cotton, C., Courtoy, A., Dusa, S. Covrig, Crede, V., Cui, Z. -F., D'Angelo, A., Döring, M., Dalton, M. M., Danilkin, I., Davydov, M., Day, D., De Fazio, F., De Napoli, M., De Vita, R., Dean, D. J., Defurne, M., Deur, A., Devkota, B., Dhital, S., Di Nezza, P., Diefenthaler, M., Diehl, S., Dilks, C., Ding, M., Djalali, C., Dobbs, S., Dupré, R., Dutta, D., Edwards, R. G., Egiyan, H., Ehinger, L., Eichmann, G., Elaasar, M., Elouadrhiri, L., Alaoui, A. El, Fassi, L. El, Emmert, A., Engelhardt, M., Ent, R., Ernst, D. J, Eugenio, P., Evans, G., Fanelli, C., Fegan, S., Fernández-Ramírez, C., Fernandez, L. A., Fernando, I. P., Filippi, A., Fischer, C. S., Fogler, C., Fomin, N., Frankfurt, L., Frederico, T., Freese, A., Fu, Y., Gamberg, L., Gan, L., Gao, F., Garcia-Tecocoatzi, H., Gaskell, D., Gasparian, A., Gates, K, Gavalian, G., Ghoshal, P. K., Giachino, A., Giacosa, F., Giannuzzi, F., Gilfoyle, G. -P., Girod, F-X, Glazier, D. I., Gleason, C., Godfrey, S., Goity, J. L., Golubenko, A. A., Gonzàlez-Solís, S., Gothe, R. W., Gotra, Y., Griffioen, K., Grocholski, O., Grube, B., Guèye, P., Guo, F. -K., Guo, Y., Guo, L., Hague, T. J., Hammoud, N., Hansen, J. -O., Hattawy, M., Hauenstein, F., Hayward, T., Heddle, D., Heinrich, N., Hen, O., Higinbotham, D. W., Higuera-Angulo, I. M., Blin, A. N. Hiller, Hobart, A., Hobbs, T., Holmberg, D. E, Horn, T., Hoyer, P., Huber, G. M., Hurck, P., Hutauruk, P. T. P., Ilieva, Y., Illari, I., Ireland, D. G, Isupov, E. L., Italiano, A., Jaegle, I., Jarvis, N. S., Jenkins, DJ, Jeschonnek, S., Ji, C-R., Jo, H. S., Jones, M., Jones, R. T., Jones, D. C., Joo, K., Junaid, M., Kageya, T., Kalantarians, N., Karki, A., Karyan, G., Katramatou, A. T., Kay, S. J. D, Kazimi, R., Keith, C. D., Keppel, C., Kerbizi, A., Khachatryan, V., Khanal, A., Khandaker, M., Kim, A., Kinney, E. R., Kohl, M., Kotzinian, A., Kriesten, B. T., Kubarovsky, V., Kubis, B., Kuhn, S. E., Kumar, V., Kutz, T., Leali, M., Lebed, R. F., Lenisa, P., Leskovec, L., Li, S., Li, X., Liao, J., Lin, H. -W., Liu, L., Liuti, S., Liyanage, N., Lu, Y., MacGregor, I. J. D., Mack, D. J., Maiani, L, Mamo, K. A., Mandaglio, G., Mariani, C., Markowitz, P., Marukyan, H., Mascagna, V., Mathieu, V., Maxwell, J., Mazouz, M., McCaughan, M., McKeown, R. D., McKinnon, B., Meekins, D., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z. -E., Mezrag, C., Michaels, R., Miller, G. A., Mineeva, T., Miramontes, A. S., Mirazita, M., Mizutani, K., Mkrtchyan, H., Mkrtchyan, A., Moffit, B., Mohanmurthy, P., Mokeev, V. I., Monaghan, P., Montaña, G., Montgomery, R., Moretti, A., Chàvez, J. M. Morgado, Mosel, U., Movsisyan, A., Musico, P., Nadeeshani, S. A, Nadolsky, P. M., Nakamura, S. X., Nazeer, J., Nefediev, A. V., Neupane, K., Nguyen, D., Niccolai, S., Niculescu, I., Niculescu, G., Nocera, E. R., Nycz, M., Olness, F. I., Ortega, P. G., Osipenko, M., Pace, E., Pandey, B, Pandey, P., Papandreou, Z., Papavassiliou, J., Pappalardo, L. L., Paredes-Torres, G., Paremuzyan, R., Park, S., Parsamyan, B., Paschke, K. D., Pasquini, B., Passemar, E., Pasyuk, E., Patel, T., Paudel, C., Paul, S. J., Peng, J-C., Pentchev, L., Perrino, R., Perry, R. J., Peters, K., Petratos, G. G., Phelps, W., Piasetzky, E., Pilloni, A., Pire, B., Pitonyak, D., Pitt, M. L., Polosa, A. D., Pospelov, M., Postuma, A. C., Poudel, J., Preet, L., Prelovsek, S., Price, J. W., Prokudin, A., Puckett, A. J. R., Pybus, J. R., Qin, S. -X., Qiu, J. -W., Radici, M., Rashidi, H., Rathnayake, A. D, Raue, B. A., Reed, T., Reimer, P. E., Reinhold, J., Richard, J. -M., Rinaldi, M., Ringer, F., Ripani, M., Ritman, J., West, J. Rittenhouse, Rivero-Acosta, A., Roberts, C. D., Rodas, A., Rodini, S., Rodríguez-Quintero, J., Rogers, T. C., Rojo, J., Rossi, P., Rossi, G. C., Salmè, G., Santiesteban, S. N., Santopinto, E., Sargsian, M., Sato, N., Schadmand, S., Schmidt, A., Schmidt, S. M, Schnell, G., Schumacher, R. A., Schweitzer, P., Scimemi, I., Scott, K. C, Seay, D. A, Segovia, J., Semenov-Tian-Shansky, K., Seryi, A., Sharda, A. S, Shepherd, M. R., Shirokov, E. V., Shrestha, S., Shrestha, U., Shvedunov, V. I., Signori, A., Slifer, K. J., Smith, W. A., Somov, A., Souder, P., Sparveris, N., Spizzo, F., Spreafico, M., Stepanyan, S., Stevens, J. R., Strakovsky, I. I., Strauch, S., Strikman, M., Su, S., Sumner, B. C. L., Sun, E., Suresh, M., Sutera, C., Swanson, E. S., Szczepaniak, A. P, Sznajder, P., Szumila-Vance, H., Szymanowski, L., Tadepalli, A. -S., Tadevosyan, V., Tamang, B., Tarasov, V. V., Thiel, A., Tong, X. -B., Tyson, R., Ungaro, M., Urciuoli, G. M., Usman, A., Valcarce, A., Vallarino, S., Vaquera-Araujo, C. A., Venturelli, L., Vera, F., Vladimirov, A., Vossen, A., Wagner, J., Wei, X., Weinstein, L. B., Weiss, C., Williams, R., Winney, D., Wojtsekhowski, B., Wood, M. H., Xiao, T., Xu, S. -S., Ye, Z., Yero, C., Yuan, C. -P., Yurov, M., Zachariou, N., Zhang, Z., Zhao, Z. W., Zhao, Y., Zheng, X., Zhou, X., Ziegler, V., Zihlmann, B., de Paula, W, and de Téramond, G. F.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. With a track record of over 25 years in delivering the world's most intense and precise multi-GeV electron beams, CEBAF's potential for a higher energy upgrade presents a unique opportunity for an innovative nuclear physics program, which seamlessly integrates a rich historical background with a promising future. The proposed physics program encompass a diverse range of investigations centered around the nonperturbative dynamics inherent in hadron structure and the exploration of strongly interacting systems. It builds upon the exceptional capabilities of CEBAF in high-luminosity operations, the availability of existing or planned Hall equipment, and recent advancements in accelerator technology. The proposed program cover various scientific topics, including Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic highlights the key measurements achievable at a 22 GeV CEBAF accelerator. Furthermore, this document outlines the significant physics outcomes and unique aspects of these programs that distinguish them from other existing or planned facilities. In summary, this document provides an exciting rationale for the energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific potential that lies within reach, and the remarkable opportunities it offers for advancing our understanding of hadron physics and related fundamental phenomena., Comment: Updates to the list of authors; Preprint number changed from theory to experiment; Updates to sections 4 and 6, including additional figures
- Published
- 2023
8. The Present and Future of QCD
- Author
-
Achenbach, P., Adhikari, D., Afanasev, A., Afzal, F., Aidala, C. A., Al-bataineh, A., Almaalol, D. K., Amaryan, M., Androić, D., Armstrong, W. R., Arratia, M., Arrington, J., Asaturyan, A., Aschenauer, E. C., Atac, H., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Barish, K. N., Barnea, N., Basar, G., Battaglieri, M., Baty, A. A., Bautista, I., Bazilevsky, A., Beattie, C., Behera, S. C., Bellini, V., Bellwied, R., Benesch, J. F., Benmokhtar, F., Bernardes, C. A., Bernauer, J. C., Bhatt, H., Bhatta, S., Boer, M., Boettcher, T. J., Bogacz, S. A., Bossi, H. J., Brandenburg, J. D., Brash, E. J., Briceño, R. A., Briscoe, W. J., Brodsky, S. J., Brown, D. A., Burkert, V. D., Caines, H., Cali, I. A., Camsonne, A., Carman, D. S., Caylor, J., Cerci, S., Llatas, M. Chamizo, Chatterjee, S., Chen, J. P., Chen, Y., Chen, Y. -C., Chien, Y. -T., Chou, P. -C., Chu, X., Chudakov, E., Cline, E., Cloët, I. C., Cole, P. L., Connors, M. E., Constantinou, M., Cosyn, W., Dusa, S. Covrig, Cruz-Torres, R., D'Alesio, U., da Silva, C., Davoudi, Z., Dean, C. T., Dean, D. J., Demarteau, M., Deshpande, A., Detmold, W., Deur, A., Devkota, B. R., Dhital, S., Diefenthaler, M., Dobbs, S., Döring, M., Dong, X., Dotel, R., Dow, K. A., Downie, E. J., Drachenberg, J. L., Dumitru, A., Dunlop, J. C., Dupre, R., Durham, J. M., Dutta, D., Edwards, R. G., Ehlers, R. J., Fassi, L. El, Elaasar, M., Elouadrhiri, L., Engelhardt, M., Ent, R., Esumi, S., Evdokimov, O., Eyser, O., Fanelli, C., Fatemi, R., Fernando, I. P., Flor, F. A., Fomin, N., Frawley, A. D., Frederico, T., Fries, R. J., Gal, C., Gamage, B. R., Gamberg, L., Gao, H., Gaskell, D., Geurts, F., Ghandilyan, Y., Ghimire, N., Gilman, R., Gleason, C., Gnanvo, K., Gothe, R. W., Greene, S. V., Grießhammer, H. W., Grossberndt, S. K., Grube, B., Hackett, D. C., Hague, T. J., Hakobyan, H., Hansen, J. -O., Hatta, Y., Hattawy, M., Havener, L. B., Hen, O., Henry, W., Higinbotham, D. W., Hobbs, T. J., Hodges, A. M., Holmstrom, T., Hong, B., Horn, T., Howell, C. R., Huang, H. Z., Huang, M., Huang, S., Huber, G. M., Hyde, C. E., Isupov, E. L., Jacobs, P. M., Jalilian-Marian, J., Jentsch, A., Jheng, H., Ji, C. -R., Ji, X., Jia, J., Jones, D. C., Jones, M. K., Kalantarians, N., Kalicy, G., Kang, Z. B., Karthein, J. M., Keller, D., Keppel, C., Khachatryan, V., Kharzeev, D. E., Kim, H., Kim, M., Kim, Y., King, P. M., Kinney, E., Klein, S. R., Ko, H. S., Koch, V., Kohl, M., Kovchegov, Y. V., Krintiras, G. K., Kubarovsky, V., Kuhn, S. E., Kumar, K. S., Kutz, T., Lajoie, J. G., Lauret, J., Lavrukhin, I., Lawrence, D., Lee, J. H., Lee, K., Lee, S., Lee, Y. -J., Li, S., Li, W., Li, Xiaqing, Li, Xuan, Liao, J., Lin, H. -W., Lisa, M. A., Liu, K. -F., Liu, M. X., Liu, T., Liuti, S., Liyanage, N., Llope, W. J., Loizides, C., Longo, R., Lorenzon, W., Lunkenheimer, S., Luo, X., Ma, R., McKinnon, B., Meekins, D. G., Mehtar-Tani, Y., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z. -E., Michaels, R., Michel, J. K. L., Milner, R. G., Mkrtchyan, H., Mohanmurthy, P., Mohanty, B., Mokeev, V. I., Moon, D. H., Mooney, I. A., Morningstar, C., Morrison, D. P., Müller, B., Mukherjee, S., Mulligan, J., Camacho, C. Munoz, Quijada, J. A. Murillo, Murray, M. J., Nadeeshani, S. A., Nadel-Turonski, P., Nam, J. D., Nattrass, C. E., Nijs, G., Noronha, J., Noronha-Hostler, J., Novitzky, N., Nycz, M., Olness, F. I., Osborn, J. D., Pak, R., Pandey, B., Paolone, M., Papandreou, Z., Paquet, J. -F., Park, S., Paschke, K. D., Pasquini, B., Pasyuk, E., Patel, T., Patton, A., Paudel, C., Peng, C., Peng, J. C., Da Costa, H. Pereira, Perepelitsa, D. V., Peters, M. J., Petreczky, P., Pisarski, R. D., Pitonyak, D., Ploskon, M. A., Posik, M., Poudel, J., Pradhan, R., Prokudin, A., Pruneau, C. A., Puckett, A. J. R., Pujahari, P., Putschke, J., Pybus, J. R., Qiu, J. -W., Rajagopal, K., Ratti, C., Read, K. F., Reed, R., Richards, D. G., Riedl, C., Ringer, F., Rinn, T., West, J. Rittenhouse, Roche, J., Rodas, A., Roland, G., Romero-López, F., Rossi, P., Rostomyan, T., Ruan, L., Ruimi, O. M., Saha, N. R., Sahoo, N. R., Sakaguchi, T., Salazar, F., Salgado, C. W., Salmè, G., Salur, S., Santiesteban, S. N., Sargsian, M. M., Sarsour, M., Sato, N., Satogata, T., Sawada, S., Schäfer, T., Scheihing-Hitschfeld, B., Schenke, B., Schindler, S. T., Schmidt, A., Seidl, R., Shabestari, M. H., Shanahan, P. E., Shen, C., Sheng, T. -A., Shepherd, M. R., Sickles, A. M., Sievert, M. D., Smith, K. L., Song, Y., Sorensen, A., Souder, P. A., Sparveris, N., Srednyak, S., Leiton, A. G. Stahl, Stasto, A. M., Steinberg, P., Stepanyan, S., Stephanov, M., Stevens, J. R., Stewart, D. J., Stewart, I. W., Stojanovic, M., Strakovsky, I., Strauch, S., Strickland, M., Cerci, D. Sunar, Suresh, M., Surrow, B., Syritsyn, S., Szczepaniak, A. P., Tadepalli, A. S., Tang, A. H., Takaki, J. D. Tapia, Tarnowsky, T. J., Tawfik, A. N., Taylor, M. I., Tennant, C., Thiel, A., Thomas, D., Tian, Y., Timmins, A. R., Tribedy, P., Tu, Z., Tuo, S., Ullrich, T., Umaka, E., Upton, D. W., Vary, J. P., Velkovska, J., Venugopalan, R., Vijayakumar, A., Vitev, I., Vogelsang, W., Vogt, R., Vossen, A., Voutier, E., Vovchenko, V., Walker-Loud, A., Wang, F., Wang, J., Wang, X., Wang, X. -N., Weinstein, L. B., Wenaus, T. J., Weyhmiller, S., Wissink, S. W., Wojtsekhowski, B., Wong, C. P., Wood, M. H., Wunderlich, Y., Wyslouch, B., Xiao, B. W., Xie, W., Xiong, W., Xu, N., Xu, Q. H., Xu, Z., Yaari, D., Yao, X., Ye, Z., Ye, Z. H., Yero, C., Yuan, F., Zajc, W. A., Zhang, C., Zhang, J., Zhao, F., Zhao, Y., Zhao, Z. W., Zheng, X., Zhou, J., and Zurek, M.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment ,Nuclear Theory - Abstract
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research., Comment: QCD Town Meeting White Paper, as submitted to 2023 NSAC LRP committee on Feb. 28, 2023
- Published
- 2023
- Full Text
- View/download PDF
9. Searching for Prompt and Long-Lived Dark Photons in Electro-Produced $e^+e^-$ Pairs with the Heavy Photon Search Experiment at JLab
- Author
-
Adrian, P. H., Baltzell, N. A., Battaglieri, M., Bondi, M., Boyarinov, S., Bravo, C., Bueltmann, S., Butti, P., Burkert, V. D., Calvo, D., Cao, T., Carpinelli, M., Celentano, A., Charles, G., Colaneri, L., Cooper, W., Cuevas, C., D'Angelo, A., Dashyan, N., De Napoli, M., De Vita, R., Deur, A., Diamond, M., Dupre, R., Egiyan, H., Elouadrhiri, L., Essig, R., Fadeyev, V., Field, C., Filippi, A., Freyberger, A., Garcon, M., Gevorgyan, N., Girod, F. X., Graf, N., Graham, M., Griffioen, K. A., Grillo, A., Guidal, M., Herbst, R., Holtrop, M., Jaros, J., Johnson, R. P., Kalicy, G., Khandaker, M., Kubarovsky, V., Leonora, E., Livingston, K., Marsicano, L., Maruyama, T., McCarty, S., McCormick, J., McKinnon, B., Moffeit, K., Moreno, O., Camacho, C. Munoz, Nelson, T., Niccolai, S., Odian, A., Oriunno, M., Osipenko, M., Paremuzyan, R., Paul, S., Randazzo, N., Raydo, B., Reese, B., Rizzo, A., Schuster, P., Sharabian, Y. G., Simi, G., Simonyan, A., Sipala, V., Spellman, A., Sokhan, D., Solt, M., Stepanyan, S., Szumila-Vance, H., Toro, N., Uemura, S., Ungaro, M., Voskanyan, H., Weinstein, L. B., Wojtsekhowski, B., and Yale, B.
- Subjects
High Energy Physics - Experiment - Abstract
The Heavy Photon Search experiment (HPS) at the Thomas Jefferson National Accelerator Facility searches for electro-produced dark photons. We report results from the 2016 Engineering Run consisting of 10608/nb of data for both the prompt and displaced vertex searches. A search for a prompt resonance in the $e^+e^-$ invariant mass distribution between 39 and 179 MeV showed no evidence of dark photons above the large QED background, limiting the coupling of {\epsilon}^2 {\geq} 10^-5, in agreement with previous searches. The search for displaced vertices showed no evidence of excess signal over background in the masses between 60 and 150 MeV, but had insufficient luminosity to limit canonical heavy photon production. This is the first displaced vertex search result published by HPS. HPS has taken high-luminosity data runs in 2019 and 2021 that will explore new dark photon phase space., Comment: 28 pages, 46 figures
- Published
- 2022
- Full Text
- View/download PDF
10. First Measurement of $\Lambda$ Electroproduction off Nuclei in the Current and Target Fragmentation Regions
- Author
-
Chetry, T., Fassi, L. El, Brooks, W. K., Dupré, R., Alaoui, A. El, Hafidi, K., Achenbach, P., Adhikari, K. P., Akbar, Z., Armstrong, W. R., Arratia, M., Atac, H., Avakian, H., Baashen, L., Baltzell, N. A., Barion, L., Bashkanov, M., Battaglieri, M., Bedlinskiy, I., Benkel, B., Benmokhtar, F., Bianconi, A., Biselli, A. S., Bondi, M., Booth, W. A., Bossù, F., Boiarinov, S., Brinkmann, K. -Th., Briscoe, W. J., Bulumulla, D., Burkert, V. D., Carman, D. S., Carvajal, J. C., Celentano, A., Chatagnon, P., Chesnokov, V., Ciullo, G., Cole, P. L., Contalbrigo, M., Costantini, G., D'Angelo, A., Dashyan, N., De Vita, R., Defurne, M., Deur, A., Diehl, S., Djalali, C., Egiyan, H., Elouadrhiri, L., Eugenio, P., Fegan, S., Filippi, A., Gavalian, G., Ghandilyan, Y., Gilfoyle, G. P., Glazier, D. I., Golubenko, A. A., Gosta, G., Gothe, R. W., Griffioen, K. A., Guidal, M., Guo, L., Hakobyan, H., Hattawy, M., Hayward, T. B., Heddle, D., Hobart, A., Holtrop, M., Ilieva, Y., Ireland, D. G., Isupov, E. L., Jenkins, D., Jo, H. S., Kabir, M. L., Khanal, A., Khandaker, M., Kim, A., Kim, W., Klein, F. J., Kripko, A., Kubarovsky, V., Lagerquist, V., Lanza, L., Leali, M., Lee, S., Lenisa, P., Li, X., Livingston, K., MacGregor, I. J. D., Marchand, D., Mascagna, V., McKinnon, B., McLauchlin, C., Meziani, Z. E., Migliorati, S., Mineeva, T., Mirazita, M., Mokeev, V., Camacho, C. Munoz, Nadel-Turonski, P., Neupane, K., Niccolai, S., Nicol, M., Niculescu, G., Osipenko, M., Ostrovidov, A. I., Pandey, P., Paolone, M., Pappalardo, L. L., Paremuzyan, R., Pasyuk, E., Paul, S. J., Phelps, W., Pilleux, N., Pokhrel, M., Poudel, J., Price, J. W., Prok, Y., Raue, B. A., Reed, T., Richards, J., Ripani, M., Ritman, J., Rosner, G., Sabatié, F., Salgado, C., Schadmand, S., Schmidt, A., Schumacher, R. A., Sharabian, Y. G., Shirokov, E. V., Shrestha, U., Simmerling, P., Sokhan, D., Sparveris, N., Stepanyan, S., Strakovsky, I. I., Strauch, S., Tan, J. A., Trotta, N., Tyson, R., Ungaro, M., Vallarino, S., Venturelli, L., Voskanyan, H., Voutier, E., Wei, X., Weinstein, L. B., Williams, R., Wishart, R., Wood, M. H., Zachariou, N., Zhao, Z. W., and Zurek, M.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We report results of $\Lambda$ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014~GeV electron beam. These results represent the first measurements of the $\Lambda$ multiplicity ratio and transverse momentum broadening as a function of the energy fraction~($z$) in the current and target fragmentation regions. The multiplicity ratio exhibits a strong suppression at high~$z$~and~an enhancement at~low~$z$. The measured transverse momentum broadening is an order of magnitude greater than that seen for light mesons. This indicates that the propagating entity interacts very strongly with the nuclear medium, which suggests that propagation of diquark configurations in the nuclear medium takes place at least part of the time, even at high~$z$. The trends of these results are qualitatively described by the Giessen Boltzmann-Uehling-Uhlenbeck transport model, particularly for the multiplicity ratios. These observations will potentially open a new era of studies of the structure of the nucleon as well as of strange baryons., Comment: 14 pages, 6 figures
- Published
- 2022
- Full Text
- View/download PDF
11. Design of the ECCE Detector for the Electron Ion Collider
- Author
-
Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Conroy, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Gwenian, C., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector., Comment: 34 pages, 30 figures, 9 tables
- Published
- 2022
12. First Observation of Large Missing-Momentum (e,e'p) Cross-Section Scaling and the onset of Correlated-Pair Dominance in Nuclei
- Author
-
Korover, I., Denniston, A. W., Kiral, A., Schmidt, A., Lovato, A., Rocco, N., Nikolakopoulos, A., Weinstein, L. B., Piasetzky, E., Hen, O., and Collaboration, the CLAS
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report the first measurement of $x_B$-scaling in $(e,e'p)$ cross-section ratios off nuclei relative to deuterium at large missing-momentum of $350 \leq p_{miss} \leq 600$ MeV/c. The observed scaling extends over a kinematic range of $0.7 \leq x_B \leq 1.8$, which is significantly wider than $1.4 \leq x_B \leq 1.8$ previously observed for inclusive $(e,e')$ cross-section ratios. The $x_B$-integrated cross-section ratios become constant (i.e., scale) beginning at $p_{miss}\approx k_F$, the nuclear Fermi momentum. Comparing with theoretical calculations we find good agreement with Generalized Contact Formalism calculations for high missing-momentum ($> 375$ MeV/c), suggesting the observed scaling results from interacting with nucleons in short-range correlated (SRC) pairs. For low missing-momenta, mean-field calculations show good agreement with the data for $p_{miss}\le k_F$, and suggest that contributions to the measured cross-section ratios from scattering off single, un-correlated, nucleons are non-negligible up to $p_{miss}\approx 350$ MeV/c. Therefore, SRCs become dominant in nuclei at $p_{miss}\approx 350$ MeV/c, well above the nuclear Fermi Surface of $k_F \approx 250$ MeV/c., Comment: 7 pages, 4 figures and supplementary materials
- Published
- 2022
- Full Text
- View/download PDF
13. Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept
- Author
-
Bylinkin, A., Dean, C. T., Fegan, S., Gangadharan, D., Gates, K., Kay, S. J. D., Korover, I., Li, W. B., Li, X., Montgomery, R., Nguyen, D., Penman, G., Pybus, J. R., Santiesteban, N., Trotta, R., Usman, A., Baker, M. D., Frantz, J., Glazier, D. I., Higinbotham, D. W., Horn, T., Huang, J., Huber, G., Reed, R., Roche, J., Schmidt, A., Steinberg, P., Stevens, J., Goto, Y., Camacho, C. Munoz, Murray, M., Papandreou, Z., Zha, W., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Finger, M., Finger Jr., M., Friedman, M., Friscic, I., Gardner, S., Geurts, F., Gilman, R., Glimos, E., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Hoballah, M., Hoghmrtsyan, A., Hsu, P. -h. J., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Morrison, D., Movsisyan, A., Mkrtchyan, H., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Pate, S. F., Patel, M., Paus, C., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Roed, K., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Stepanov, P., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Tveter, T. S., Umaka, E., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J. -L., and Zhang, J. -X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector.
- Published
- 2022
- Full Text
- View/download PDF
14. ECCE unpolarized TMD measurements
- Author
-
Seidl, R., Vladimirov, A., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Experiment - Abstract
We performed feasibility studies for various measurements that are related to unpolarized TMD distribution and fragmentation functions. The processes studied include semi-inclusive Deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The single hadron cross sections and multiplicities were extracted as a function of the DIS variables $x$ and $Q^2$, as well as the semi-inclusive variables $z$, which corresponds to the momentum fraction the detected hadron carries relative to the struck parton and $P_T$, which corresponds to the transverse momentum of the detected hadron relative to the virtual photon. The expected statistical precision of such measurements is extrapolated to accumulated luminosities of 10 fb$^{-1}$ and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields., Comment: 12 pages, 9 figures, to be submitted in joint ECCE proposal NIM-A volume
- Published
- 2022
- Full Text
- View/download PDF
15. ECCE Sensitivity Studies for Single Hadron Transverse Single Spin Asymmetry Measurements
- Author
-
Seidl, R., Vladimirov, A., Pitonyak, D., Prokudin, A., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Experiment - Abstract
We performed feasibility studies for various single transverse spin measurements that are related to the Sivers effect, transversity and the tensor charge, and the Collins fragmentation function. The processes studied include semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The data were obtained in {\sc pythia}6 and {\sc geant}4 simulated e+p collisions at 18 GeV on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector configuration. Typical DIS kinematics were selected, most notably $Q^2 > 1 $ GeV$^2$, and cover the $x$ range from $10^{-4}$ to $1$. The single spin asymmetries were extracted as a function of $x$ and $Q^2$, as well as the semi-inclusive variables $z$, and $P_T$. They are obtained in azimuthal moments in combinations of the azimuthal angles of the hadron transverse momentum and transverse spin of the nucleon relative to the lepton scattering plane. The initially unpolarized MonteCarlo was re-weighted in the true kinematic variables, hadron types and parton flavors based on global fits of fixed target SIDIS experiments and $e^+e^-$ annihilation data. The expected statistical precision of such measurements is extrapolated to 10 fb$^{-1}$ and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields. The impact on the knowledge of the Sivers functions, transversity and tensor charges, and the Collins function has then been evaluated in the same phenomenological extractions as in the Yellow Report. The impact is found to be comparable to that obtained with the parameterized Yellow Report detector and shows that the ECCE detector configuration can fulfill the physics goals on these quantities., Comment: 22 pages, 22 figures, to be submitted to joint ECCE proposal NIM-A volume
- Published
- 2022
- Full Text
- View/download PDF
16. Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider
- Author
-
Li, X., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region., Comment: Open heavy flavor studies with the EIC reference detector design by the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear Instruments and Methods A
- Published
- 2022
17. Exclusive J/$\psi$ Detection and Physics with ECCE
- Author
-
Li, X., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the spatial distribution of gluons in the nucleus. Recently the problem of the origin of hadron mass has received lots of attention in determining the anomaly contribution $M_{a}$. The trace anomaly is sensitive to the gluon condensate, and exclusive production of quarkonia such as J/$\psi$ and $\Upsilon$ can serve as a sensitive probe to constrain it. In this paper, we present the performance of the ECCE detector for exclusive J/$\psi$ detection and the capability of this process to investigate the above physics opportunities with ECCE., Comment: 11 pages, 14 figures, 1 table
- Published
- 2022
- Full Text
- View/download PDF
18. Search for $e\to\tau$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector
- Author
-
Zhang, J. -L., Mantry, S., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Phenomenology - Abstract
The recently approved Electron-Ion Collider (EIC) will provide a unique new opportunity for searches of charged lepton flavor violation (CLFV) and other new physics scenarios. In contrast to the $e \leftrightarrow \mu$ CLFV transition for which very stringent limits exist, there is still a relatively large discovery space for the $e \to \tau$ CLFV transition, potentially to be explored by the EIC. With the latest detector design of ECCE (EIC Comprehensive Chromodynamics Experiment) and projected integral luminosity of the EIC, we find the $\tau$-leptons created in the DIS process $ep\to \tau X$ are expected to be identified with high efficiency. A first ECCE simulation study, restricted to the 3-prong $\tau$-decay mode and with limited statistics for the Standard Model backgrounds, estimates that the EIC will be able to improve the current exclusion limit on $e\to \tau$ CLFV by an order of magnitude., Comment: 11 pages, 8 figures, to be submitted to NIM
- Published
- 2022
- Full Text
- View/download PDF
19. Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider
- Author
-
Bock, F., Schmidt, N., Wang, P. K., Santiesteban, N., Horn, T., Huang, J., Lajoie, J., Camacho, C. Munoz, Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Hoghmrtsyan, A., Hsu, P. -h. J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., Shaughnessy, C. O, Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented., Comment: 19 pages, 22 figures, 5 tables
- Published
- 2022
- Full Text
- View/download PDF
20. AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider
- Author
-
Fanelli, C., Papandreou, Z., Suresh, K., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Roed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,Computer Science - Machine Learning ,High Energy Physics - Experiment ,Nuclear Experiment ,Physics - Computational Physics - Abstract
The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector., Comment: 16 pages, 18 figures, 2 appendices, 3 tables
- Published
- 2022
- Full Text
- View/download PDF
21. Scientific Computing Plan for the ECCE Detector at the Electron Ion Collider
- Author
-
Bernauer, J. C., Dean, C. T., Fanelli, C., Huang, J., Kauder, K., Lawrence, D., Osborn, J. D., Paus, C., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment ,Physics - Computational Physics - Abstract
The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing these challenges in the process of producing a complete detector proposal based upon detailed detector and physics simulations. In this document, the software and computing efforts to produce this proposal are discussed; furthermore, the computing and software model and resources required for the future of ECCE are described.
- Published
- 2022
- Full Text
- View/download PDF
22. Event Generators for High-Energy Physics Experiments
- Author
-
Campbell, J. M., Diefenthaler, M., Hobbs, T. J., Höche, S., Isaacson, J., Kling, F., Mrenna, S., Reuter, J., Alioli, S., Andersen, J. R., Andreopoulos, C., Ankowski, A. M., Aschenauer, E. C., Ashkenazi, A., Baker, M. D., Barrow, J. L., van Beekveld, M., Bewick, G., Bhattacharya, S., Bierlich, C., Bothmann, E., Bredt, P., Broggio, A., Buckley, A., Butter, A., Butterworth, J. M., Byrne, E. P., Calame, C. M. Carloni, Chakraborty, S., Chen, X., Chiesa, M., Childers, J. T., Cruz-Martinez, J., Currie, J., Darvishi, N., Dasgupta, M., Denner, A., Dreyer, F. A., Dytman, S., El-Menoufi, B. K., Engel, T., Ravasio, S. Ferrario, Figueroa, D., Flower, L., Forshaw, J. R., Frederix, R., Friedland, A., Frixione, S., Gallagher, H., Gallmeister, K., Gardiner, S., Gauld, R., Gaunt, J., Gavardi, A., Gehrmann, T., Ridder, A. Gehrmann-De, Gellersen, L., Giele, W., Gieseke, S., Giuli, F., Glover, E. W. N., Grazzini, M., Grohsjean, A., Gütschow, C., Hamilton, K., Han, T., Hatcher, R., Heinrich, G., Helenius, I., Hen, O., Hirschi, V., Höfer, M., Holguin, J., Huss, A., Ilten, P., Jadach, S., Jentsch, A., Jones, S. P., Ju, W., Kallweit, S., Karlberg, A., Katori, T., Kerner, M., Kilian, W., Kirchgaeßer, M. M., Klein, S., Knobbe, M., Krause, C., Krauss, F., Lang, J., Lang, J. -N., Lee, G., Li, S. W., Lim, M. A., Lindert, J. M., Lombardi, D., Lönnblad, L., Löschner, M., Lurkin, N., Ma, Y., Machado, P., Magerya, V., Maier, A., Majer, I., Maltoni, F., Marcoli, M., Marinelli, G., Masouminia, M. R., Mastrolia, P., Mattelaer, O., Mazzitelli, J., McFayden, J., Medves, R., Meinzinger, P., Mo, J., Monni, P. F., Montagna, G., Morgan, T., Mosel, U., Nachman, B., Nadolsky, P., Nagar, R., Nagy, Z., Napoletano, D., Nason, P., Neumann, T., Nevay, L. J., Nicrosini, O., Niehues, J., Niewczas, K., Ohl, T., Ossola, G., Pandey, V., Papadopoulou, A., Papaefstathiou, A., Paz, G., Pellen, M., Pelliccioli, G., Peraro, T., Piccinini, F., Pickering, L., Pires, J., Płaczek, W., Plätzer, S., Plehn, T., Pozzorini, S., Prestel, S., Preuss, C. T., Price, A. C., Quackenbush, S., Re, E., Reichelt, D., Reina, L., Reuschle, C., Richardson, P., Rocco, M., Rocco, N., Roda, M., Garcia, A. Rodriguez, Roiser, S., Rojo, J., Rottoli, L., Salam, G. P., Schönherr, M., Schuchmann, S., Schumann, S., Schürmann, R., Scyboz, L., Seymour, M. H., Siegert, F., Signer, A., Chahal, G. Singh, Siódmok, A., Sjöstrand, T., Skands, P., Smillie, J. M., Sobczyk, J. T., Soldin, D., Soper, D. E., Soto-Ontoso, A., Soyez, G., Stagnitto, G., Tena-Vidal, J., Tomalak, O., Tramontano, F., Trojanowski, S., Tu, Z., Uccirati, S., Ullrich, T., Ulrich, Y., Utheim, M., Valassi, A., Verbytskyi, A., Verheyen, R., Wagman, M., Walker, D., Webber, B. R., Weinstein, L., White, O., Whitehead, J., Wiesemann, M., Wilkinson, C., Williams, C., Winterhalder, R., Wret, C., Xie, K., Yang, T-Z., Yazgan, E., Zanderighi, G., Zanoli, S., and Zapp, K.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
We provide an overview of the status of Monte-Carlo event generators for high-energy particle physics. Guided by the experimental needs and requirements, we highlight areas of active development, and opportunities for future improvements. Particular emphasis is given to physics models and algorithms that are employed across a variety of experiments. These common themes in event generator development lead to a more comprehensive understanding of physics at the highest energies and intensities, and allow models to be tested against a wealth of data that have been accumulated over the past decades. A cohesive approach to event generator development will allow these models to be further improved and systematic uncertainties to be reduced, directly contributing to future experimental success. Event generators are part of a much larger ecosystem of computational tools. They typically involve a number of unknown model parameters that must be tuned to experimental data, while maintaining the integrity of the underlying physics models. Making both these data, and the analyses with which they have been obtained accessible to future users is an essential aspect of open science and data preservation. It ensures the consistency of physics models across a variety of experiments., Comment: 164 pages, 10 figures, contribution to Snowmass 2021
- Published
- 2022
23. Electron Scattering and Neutrino Physics
- Author
-
Ankowski, A. M., Ashkenazi, A., Bacca, S., Barrow, J. L., Betancourt, M., Bodek, A., Christy, M. E., Dytman, L. Doria. S., Friedland, A., Hen, O., Horowitz, C. J., Jachowicz, N., Ketchum, W., Lux, T., Mahn, K., Mariani, C., Newby, J., Pandey, V., Papadopoulou, A., Radicioni, E., Sánchez, F., Sfienti, C., Udías, J. M., Weinstein, L., Alvarez-Ruso, L., Amaro, J. E., Argüelles, C. A., Balantekin, A. B., Bolognesi, S., Brdar, V., Butti, P., Carey, S., Djurcic, Z., Dvornikov, O., Edayath, S., Gardiner, S., Isaacson, J., Jay, W., Klustová, A., McFarland, K. S., Nikolakopoulos, A., Norrick, A., Pastore, S., Paz, G., Reno, M. H., Simo, I. Ruiz, Sobczyk, J. E., Sousa, A., Toro, N., Tsai, Y. -D., Wagman, M., Walsh, J. G., and Yang, G.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Experiment ,Nuclear Theory - Abstract
A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments - both at intermediate energies affecting long-baseline Deep Underground Neutrino Experiment (DUNE), as well as at low energies affecting coherent scattering neutrino program - and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and layout a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdle in mobilizing these connections to the benefit of neutrino programs., Comment: 37 pages, contribution to Snowmass 2021
- Published
- 2022
- Full Text
- View/download PDF
24. Measurement of charged-pion production in deep-inelastic scattering off nuclei with the CLAS detector
- Author
-
Moran, S., Dupre, R., Hakobyan, H., Arratia, M., Brooks, W. K., Borquez, A., Alaoui, A. El, Fassi, L. El, Hafidi, K., Mendez, R., Mineeva, T., Paul, S. J., Amaryan, M. J., Angelini, Giovanni, Armstrong, Whitney R., Atac, H., Baltzell, N. A., Barion, L., Bashkanov, M., Battaglieri, M., Bedlinskiy, I., Benmokhtar, Fatiha, Bianconi, A., Biondo, L., Biselli, A. S., Bossu, F., Boiarinov, S., Briscoe, W. J., Bulumulla, D., Burkert, V. D., Carman, D. S., Chatagnon, P., Chesnokov, V., Chetry, T., Ciullo, G., Cole, P. L., Contalbrigo, M., Costantini, G., D'Angelo, A., Dashyan, N., De Vita, R., Defurne, M., Deur, A., Diehl, S., Djalali, C., Egiyan, H., Elouadrhiri, L., Eugenio, P., Fersch, R., Filippi, A., Gavalian, G., Ghandilyan, Y., Gilfoyle, G. P., Golubenko, A. A., Gothe, R. W., Griffioen, K. A., Guidal, M., Hattawy, M., Hauenstein, F., Hayward, T. B., Heddle, D., Hicks, K., Hobart, A., Holtrop, M., Ilieva, Y., Ireland, D. G., Isupov, E. L., Jo, H. S., Keller, D., Khanal, A., Khandaker, M., Kim, W., Klein, F. J., Kripko, A., Kubarovsky, V., Kuhn, S. E., Lanza, L., Leali, M., Lenisa, P., Livingston, K., MacGregor, I. J . D., Marchand, D., Marsicano, L., Mascagna, V., McKinnon, B., McLauchlin, C., Meziani, Z. E., Migliorati, S., Mirazita, M., Mokeev, V., Camacho, C. Munoz, Nadel-Turonski, P., Neupane, K., Niccolai, S., Niculescu, G., O'Connell, T. R., Osipenko, M., Ostrovidov, A. I., Ouillon, M., Pandey, P., Paolone, M., Pappalardo, L. L., Pasyuk, E., Phelps, W., Pogorelko, O., Poudel, J., Price, J. W., Prok, Y., Raue, B. A., Reed, Trevor, Ripani, M., Ritman, J., Rizzo, A., Rosner, G., Rowley, J., Sabatie, F., Salgado, C., Schmidt, A., Schumacher, R. A., Sharabian, Y. G., Shirokov, E. V., Shrestha, U., Sokhan, D., Soto, O., Sparveris, N., Stepanyan, S., Strakovsky, I. I., Strauch, S., Tyson, R., Ungaro, M., Venturelli, L., Voskanyan, H., Vossen, A., Voutier, E., Watts, D. P., Wei, Kevin, Wei, X., Weinstein, L. B., Wishart, R., Wood, M. H., Yale, B., Zachariou, N., Zhang, J., and Zhao, Z. W.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Background: Energetic quarks in nuclear DIS propagate through the nuclear medium. Processes that are believed to occur inside nuclei include quark energy loss through medium-stimulated gluon bremsstrahlung and intra-nuclear interactions of forming hadrons. More data are required to gain a more complete understanding of these effects. Purpose: To test the theoretical models of parton transport and hadron formation, we compared their predictions for the nuclear and kinematic dependence of pion production in nuclei. Methods: We have measured charged-pion production in semi-inclusive DIS off D, C, Fe, and Pb using the CLAS detector and the CEBAF 5.014 GeV electron beam. We report results on the nuclear-to-deuterium multiplicity ratio for $\pi^{+}$ and $\pi^{-}$ as a function of energy transfer, four-momentum transfer, and pion energy fraction or transverse momentum - the first three-dimensional study of its kind. Results: The $\pi^{+}$ multiplicity ratio is found to depend strongly on the pion fractional energy $z$, and reaches minimum values of $0.67\pm0.03$, $0.43\pm0.02$, and $0.27\pm0.01$ for the C, Fe, and Pb targets, respectively. The $z$ dependences of the multiplicity ratios for $\pi^{+}$ and $\pi^{-}$ are equal within uncertainties for C and Fe targets but show differences at the level of 10$\%$ for the Pb-target data. The results are qualitatively described by the GiBUU transport model, as well as with a model based on hadron absorption, but are in tension with calculations based on nuclear fragmentation functions. Conclusions: These precise results will strongly constrain the kinematic and flavor dependence of nuclear effects in hadron production, probing an unexplored kinematic region. They will help to reveal how the nucleus reacts to a fast quark, thereby shedding light on its color structure, transport properties, and on the mechanisms of the hadronization process., Comment: 22 pages, 5 figures, 12 tables
- Published
- 2021
- Full Text
- View/download PDF
25. Measuring Recoiling Nucleons from the Nucleus with the Electron Ion Collider
- Author
-
Hauenstein, F., Jentsch, A., Pybus, J. R., Kiral, A., Baker, M. D., Furletova, Y., Hen, O., Higinbotham, D. W., Hyde, C., Morozov, V., Romanov, D., and Weinstein, L. B.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
Short range correlated nucleon-nucleon ($NN$) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner ("spectator-nucleon tagging"). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the lab frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasi-elastic scattering for two electron and ion beam energy configurations: 5 GeV $e^{-}$ and 41 GeV/A ions, and 10 GeV $e^{-}$ and 110 GeV/A ions. We show that the knocked-out and recoiling nucleons can be detected over a wide range of initial nucleon momenta. We also show that these measurements can achieve much larger momentum transfers than current fixed target experiments. By detecting both low and high initial-momentum nucleons, the EIC will provide the data that should allow scientists to definitively show if the EMC effect and short-range correlation are connected, and to improve our understanding of color transparency., Comment: 7 pages, 7 figures
- Published
- 2021
- Full Text
- View/download PDF
26. Nucleon off-shell structure and the free neutron valence structure from A=3 inclusive electron scattering measurements
- Author
-
Segarra, E. P., Pybus, J. R., Hauenstein, F., Kutz, T., Higinbotham, D., Miller, G. A., Piasetzky, E., Schmidt, A., Strikman, M., Weinstein, L. B., and Hen, O.
- Subjects
High Energy Physics - Phenomenology ,Nuclear Experiment ,Nuclear Theory - Abstract
Understanding the differences between the distribution of quarks bound in protons and neutrons is key for constraining the mechanisms of SU(6) spin-flavor symmetry breaking in Quantum Chromodynamics (QCD). While vast amounts of proton structure measurements were done, data on the structure of the neutron is much more spars as experiments typically extract the structure of neutrons from measurements of light atomic nuclei using model-dependent corrections for nuclear effects. Recently the MARATHON collaboration performed such an extraction by measuring inclusive deep-inelastic electron-scattering on helium-3 and tritium mirror nuclei where nuclear effects are expected to be similar and thus be suppressed in the helium-3 to tritium ratio. Here we evaluate the model dependence of this extraction by examining a wide range of models including the effect of using instant-form and light-cone nuclear wave functions and several different parameterizations of nucleon modification effects, including those with and without isospin dependence. We find that, while the data cannot differentiate among the different models of nuclear structure and nucleon modification, they consistently prefer a neutron-to-proton structure function ratio of at $x_B \rightarrow 1$ of $\sim 0.4$ with a typical uncertainty ($1\sigma$) of $\sim0.05$ and $\sim0.10$ for isospin-independent and isospin-dependent modification models, respectively. While strongly favoring SU(6) symmetry breaking models based on perturbative QCD and the Schwinger-Dyson equation calculation, the MARATHON data do not completely rule out the scalar di-quark models if an isospin-dependent modification exist., Comment: 6 pages, 4 figures
- Published
- 2021
27. Transport Estimations of Final State Interaction Effects on Short-range Correlation Studies Using the $(e,e'p)$ and $(e,e'pp)$ Reactions
- Author
-
Wright, N., Papadopoulou, A., Pybus, J. R., Gardiner, S., Roda, M., Hauenstein, F., Ashkenazi, A., Weinstein, L. B., Schmidt, A., and Hen, O.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
Short range correlated (SRC) nucleon-nucleon pairs in nuclei are typically studied using measurements of electron-induced hard nucleon-knockout reactions (e.g. $(e,e'p)$ and $(e,e'pN)$), where the kinematics of the knocked-out nucleons are used to infer their initial state prior to the interaction. The validity of this inference relies on our understanding of the scattering reaction, most importantly how rescattering of the detected nucleons (final state interactions or FSI) distort their kinematical distributions. Recent SRC measurements on medium to heavy nuclei have been performed at high-$x_B$ (i.e., anti-parallel kinematics) where calculations of light nuclei indicate that such distortion effects are small. Here we study the impact of FSI on recent $^{12}$C$(e,e'p)$ and $^{12}$C$(e,e'pp)$ measurements using a transport approach. We find that while FSI can significantly distort the measured kinematical distributions of SRC breakup events, selecting high-$x_B$ anti-parallel events strongly suppresses such distortions. In addition, including the effects of FSI improves the agreement between Generalized Contact Formalism-based calculations and data and can help identify those observables that have minimal sensitivity to FSI effects. This result helps confirm the interpretation of experimental data in terms of initial-state momentum distributions and provides a new tool for the study of SRCs using lepton-scattering reactions., Comment: 9 pages, 10 figures
- Published
- 2021
28. Measurement of deeply virtual Compton scattering off Helium-4 with CLAS at Jefferson Lab
- Author
-
Dupré, R., Hattawy, M., Baltzell, N. A., Bültmann, S., De Vita, R., Alaoui, A. El, Fassi, L. El, Egiyan, H., Girod, F. X., Guidal, M., Hafidi, K., Jenkins, D., Liuti, S., Perrin, Y., Stepanyan, S., Torayev, B., Voutier, E., Amaryan, M. J., Armstrong, W. R., Atac, H., Gayoso, C. Ayerbe, Barion, L., Battaglieri, M., Bedlinskiy, I., Benmokhtar, F., Bianconi, A., Biselli, A. S., Bondi, M., Bossù, F., Boiarinov, S., Briscoe, W. J., Bulumulla, D., Burkert, V., Carman, D. S., Carvajal, J. C., Caudron, M., Celentano, A., Chatagnon, P., Chesnokov, V., Chetry, T., Ciullo, G., Clary, B. A., Cole, P. L., Contalbrigo, M., Costantini, G., Crede, V., D'Angelo, A., Dashyan, N., Defurne, M., Deur, A., Diehl, S., Djalali, C., Ehrhart, M., Elouadrhiri, L., Eugenio, P., Fegan, S., Filippi, A., Forest, T. A., Ghandilyan, Y., Gilfoyle, G. P., Gothe, R. W., Griffioen, K. A., Hakobyan, H., Hayward, T. B., Hicks, K., Hobart, A., Holtrop, M., Ilieva, Y., Ireland, D. G., Isupov, E. L., Jo, H. S., Joo, K., Joosten, S., Keller, D., Khachatryan, G., Khanal, A., Khandaker, M., Kim, A., Kim, W., Kripko, A., Kubarovsky, V., Kuhn, S. E., Lanza, L., Livingston, K., Kabir, M. L., Leali, M., Lenisa, P., MacGregor, I. J. D., Marchand, D., Markov, N., Mascagna, V., Mayer, M., McKinnon, B., Mirazita, M., Mokeev, V. I., Neupane, K., Niccolai, S., O'Connell, T. R., Osipenko, M., Paolone, M., Pappalardo, L. L., Paremuzyan, R., Pasyuk, E., Payette, D., Phelps, W., Pivnyuk, N., Pogorelko, O., Poudel, J., Prok, Y., Ripani, M., Ritman, J., Rizzo, A., Rosner, G., Rossi, P., Rowley, J., Sabatié, F., Salgado, C., Schmidt, A., Schumacher, R., Sergeyeva, V., Sharabian, Y., Shrestha, U., Sokhan, D., Soto, O., Sparveris, N., Strakovsky, I. I., Strauch, S., Tyler, N., Ungaro, M., Venturelli, L., Voskanyan, H., Vossen, A., Watts, D., Wei, K., Wei, X., Weinstein, L. B., Wishart, R., Wood, M. H., Yale, B., Zachariou, N., and Zhang, J.
- Subjects
Nuclear Experiment - Abstract
We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off $^4$He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized $^4$He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling $^4$He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent ($e^4$He$~\to~e'$$^4$He$'\gamma'$) beam spin asymmetries compared to those observed on the free proton, while the incoherent ($e^4$He$~\to~e'$p$'\gamma'$X$'$) asymmetries exhibit a 30$\%$ suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $\cal H_A$, leading the way toward 3D imaging of the partonic structure of nuclei.
- Published
- 2021
- Full Text
- View/download PDF
29. Measurement of the proton spin structure at long distances
- Author
-
Zheng, X., Deur, A., Kang, H., Kuhn, S. E., Ripani, M., Zhang, J., Adhikari, K. P., Adhikari, S., Amaryan, M. J., Atac, H., Avakian, H., Barion, L., Battaglieri, M., Bedlinskiy, I., Benmokhtar, F., Bianconi, A., Biselli, A. S., Boiarinov, S., Bondi, M., Bossu, F., Bosted, P., Briscoe, W. J., Brock, J., Brooks, W. K., Bulumulla, D., Burkert, V. D., Carlin, C., Carman, D. S., Carvajal, J. C., Celentano, A., Chatagnon, P., Chetry, T., Chen, J. -P., Choi, S., Ciullo, G., Clark, L., Cole, P. L., Contalbrigo, M., Crede, V., D'Angelo, A., Dashyan, N., De Vita, R., Defurne, M., Diehl, S., Djalali, C., Drozdov, V. A., Dupre, R., Ehrhart, M., Alaoui, A. El, Elouadrhiri, L., Eugenio, P., Fedotov, G., Fegan, S., Fersch, R., Filippi, A., Forest, T. A., Ghandilyan, Y., Gilfoyle, G. P., Giovanetti, K. L., Girod, F. -X., Glazier, D. I., Gothe, R. W., Griffioen, K. A., Guidal, M., Guler, N., Guo, L., Hafidi, K., Hakobyan, H., Hattawy, M., Hayward, T. B., Heddle, D., Hicks, K., Hobart, A., Holmstrom, T., Holtrop, M., Ilieva, Y., Ireland, D. G., Isupov, E. L., Jo, H. S., Joo, K., Joosten, S., Keith, C. D., Keller, D., Khanal, A., Khandaker, M., Kim, C. W., Kim, W., Klein, F. J., Kripko, A., Kubarovsky, V., Lanza, L., Leali, M., Lenisa, P., livingston, K., Long, E., MacGregor, I. J. D., Markov, N., Marsicano, L., Mascagna, V., McKinnon, B., Meekins, D. G., Mineeva, T., Mirazita, M., Mokeev, V., Mullen, C., Nadel-Turonski, P., Neupane, K., Niccolai, S., Osipenko, M., Ostrovidov, A. I., Paolone, M., Pappalardo, L., Park, K., Pasyuk, E., Phelps, W., Phillips, S. K., Pogorelko, O., Poudel, J., Prok, Y., Raue, B. A., Ritman, J., Rizzo, A., Rosner, G., Rossi, P., Rowley, J., Sabatie, F., Salgado, C., Schmidt, A., Schumacher, R. A., Seely, M. L., Sharabian, Y. G., Shrestha, U., Sirca, S., Slifer, K., Sparveris, N., Stepanyan, S., Strakovsky, I. I., Strauch, S., Sulkosky, V., Tyler, N., Ungaro, M., Venturelli, L., Voskanyan, H., Voutier, E., Watts, D. P., Wei, X., Weinstein, L. B., Wood, M. H., Yale, B., Zachariou, N., and Zhao, Z. W.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV$^2$. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, e.g. in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov-Drell-Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections., Comment: Published version. 10 pages, 5 figures. 20 pages of supplementary material (data tables and a figure)
- Published
- 2021
- Full Text
- View/download PDF
30. Measurements of NN Correlations in Nuclei
- Author
-
Piasetzky, E. I., Weinstein, L. B., Tanihata, Isao, editor, Toki, Hiroshi, editor, and Kajino, Toshitaka, editor
- Published
- 2023
- Full Text
- View/download PDF
31. Summary of the NuSTEC Workshop on Neutrino-Nucleus Pion Production in the Resonance Region
- Author
-
Aliaga, L., Ashkenazi, A., Bronner, C., Calcutt, J., Cherdack, D., Duffy, K., Dytman, S., Jachowicz, N., Kabirnezhad, M., Kuzmin, K., Miller, G. A., Le, T., Morfin, J. G., Mosel, U., Nieves, J., Niewczas, K., Nikolakopoulos, A., Nowak, J., Paley, J., Pawloski, G., Sato, T., Weinstein, L., and Wret, C.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment ,Nuclear Theory - Abstract
The NuSTEC workshop held at the University of Pittsburgh in October 2019 brought theorists and experimentalists together to discuss the state of modeling and measurements related to pion production in neutrino-nucleus scattering in the kinematic region where pions are produced through both resonant and non-resonant mechanisms. Modeling of this region is of critical importance to the current and future accelerator- and atmospheric-based neutrino oscillation experiments. For the benefit of the community, links to the presentations are accompanied by annotations from the speakers highlighting significant points made during the presentations and resulting discussions., Comment: 31 pages, includes links to workshop presentations
- Published
- 2020
32. Studying Short-Range Correlations with Real Photon Beams at GlueX
- Author
-
Hen, O., Patsyuk, M., Piasetzky, E., Schmidt, A., Somov, A., Szumila-Vance, H., Weinstein, L. B., Dutta, D., Gao, H., Amaryan, M., Ashkenazi, A., Beck, A., Berdnikov, V., Black, T., Briscoe, W. J., Britton, T., Brooks, W., Cruz-Torres, R., Dalton, M. M., Denniston, A., Deur, A., Egiyan, H., Fanelli, C., Fegan, S., Furletov, S., Gan, L., Guo, L., Hauenstein, F., Haykobyan, H., Higinbotham, D. W., Ireland, D. G., Johansson, G., Kamel, M., Korover, I., Kuleshov, S., Lawrence, D., Livingston, K., Mack, D., Marukyan, H., McCaughan, M., Mckinnon, B., Meytal-Beck, S., Nerline, F., Nguyen, D., Papadopoulou, A., Pauli, P., Pedroni, R., Pentchev, L., Pybus, J. R., Ratliff, S., Romanov, D., Romera, C., Salgado, C., Schmookler, B., Segarra, E. P., Seroka, E., Sharp, P., Somov, S., Strakovsky, I. I., Taylor, S., Thiel, A., and Zihlmann, B.
- Subjects
Nuclear Experiment - Abstract
The past few years has seen tremendous progress in our understanding of short-range correlated (SRC) pairing of nucleons within nuclei, much of it coming from electron scattering experiments leading to the break-up of an SRC pair. The interpretation of these experiments rests on assumptions about the mechanism of the reaction. These assumptions can be directly tested by studying SRC pairs using alternate probes, such as real photons. We propose a 30-day experiment using the Hall D photon beam, nuclear targets, and the GlueX detector in its standard configuration to study short-range correlations with photon-induced reactions. Several different reaction channels are possible, and we project sensitivity in most channels to equal or exceed the 6 GeV-era SRC experiments from Halls A and B. The proposed experiment will therefore decisively test the phenomena of np dominance, the short-distance NN interaction, and reaction theory, while also providing new insight into bound nucleon structure and the onset of color transparency., Comment: 38 pages, 26 figures, proposal for Jefferson Lab Experiment E12-19-003, submitted to Jefferson Lab PAC 47 (2019)
- Published
- 2020
33. Inclusive Electron Scattering And The GENIE Neutrino Event Generator
- Author
-
Papadopoulou, A., Ashkenazi, A., Gardiner, S., Betancourt, M., Dytman, S., Weinstein, L. B., Piasetzky, E., Hauenstein, F., Khachatryan, M., Dolan, S., Megias, G., and Hen, O.
- Subjects
Nuclear Theory ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Experiment - Abstract
The extraction of neutrino mixing parameters from accelerator-based neutrino oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino-interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator ($e$-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MEC) based on the theory-inspired SuSAv2 approach. Comparing the new $e$-GENIE predictions with inclusive electron scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer-interactions, which are dominated by resonance production, are still not well modeled by $e$-GENIE., Comment: 13 pages, 14 figures. Significantly updated following referee comments
- Published
- 2020
- Full Text
- View/download PDF
34. Short-Range Correlations and the Nuclear EMC Effect in Deuterium and Helium-3
- Author
-
Segarra, E. P., Pybus, J. R., Hauenstein, F., Higinbotham, D. W., Miller, G. A., Piasetzky, E., Schmidt, A., Strikman, M., Weinstein, L. B., and Hen, O.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment ,Nuclear Theory - Abstract
The EMC effect in deuterium and helium-3 is studied using a convolution formalism that allows isolating the impact of high-momentum nucleons in short-ranged correlated (SRC) pairs. We assume that the modification of the structure function of bound nucleons is given by a universal (i.e. nucleus independent) function of their virtuality, and find that the effect of such modifications is dominated by nucleons in SRC pairs. This SRC-dominance of nucleon modifications is observed despite the fact that the bulk of the nuclear inelastic scattering cross-section comes from interacting with low-momentum nucleons. These findings are found to be robust to model details including nucleon modification function parametrization, free nucleon structure function and treatment of nucleon motion effects. While existing data cannot discriminate between such model details, we present predictions for measured, but not yet published, tritium EMC effect and tagged nucleon structure functions in deuterium that are sensitive to the neutron structure functions and bound nucleon modification functions., Comment: 9 pages, 9 figures, 1 table, and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
35. Extracing the number of short-range corerlated nucleon pairs from inclusive electron scattering data
- Author
-
Weiss, R., Denniston, A. W., Pybus, J. R., Hen, O., Piasetzky, E., Schmidt, A., Weinstein, L. B., and Barnea, N.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high-$x_B$ and large-$Q^2$, $a_2=(\sigma_A/A)/(\sigma_d/2)$. In the non-relativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab-initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity and improves the agreement with ab-initio calculations. The ratio of similar mass isotopes, such as $^{40}$Ca and $^{48}$Ca, should be sensitive to the nuclear asymmetry dependence of SRCs, but is found to also be sensitive to low-energy nuclear structure. Thus the empirical association of SRC pair abundances with the measured $a_2$ values is only accurate to about $20\%$. Improving this will require cross-section calculations that reproduce the data while properly accounting for both nuclear structure and relativistic effects., Comment: Accepted for publication in Phys. Rev. C (Lett). 6 pages, 4 figures, and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
36. Modified Structure of Protons and Neutrons in Correlated Pairs
- Author
-
Schmookler, B., Duer, M., Schmidt, A., Hen, O., Gilad, S., Piasetzky, E., Strikman, M., Weinstein, L. B., and Collaboration, The CLAS
- Subjects
Nuclear Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
The atomic nucleus is made of protons and neutrons (nucleons), that are themselves composed of quarks and gluons. Understanding how the quark-gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification, known as the EMC effect, was first observed over 35 years ago, there is still no generally accepted explanation of its cause. Recent observations suggest that the EMC effect is related to close-proximity Short Range Correlated (SRC) nucleon pairs in nuclei. Here we report the first simultaneous, high-precision, measurements of the EMC effect and SRC abundances. We show that the EMC data can be explained by a universal modification of the structure of nucleons in neutron-proton (np) SRC pairs and present the first data-driven extraction of this universal modification function. This implies that, in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have its quark structure distorted., Comment: Published in Nature. Total: 21 pages, 9 figures, 10 tables. Main text: 7 pages, 4 figures. Methods section: 1 page. Extended Data: 1 figure, 3 table. Supplementary Materials: 11 pages, 4 figures, 7 tables
- Published
- 2020
- Full Text
- View/download PDF
37. Novel observation of isospin structure of short-range correlations in calcium isotopes
- Author
-
Nguyen, D., Ye, Z., Aguilera, P., Ahmed, Z., Albataineh, H., Allada, K., Anderson, B., Anez, D., Aniol, K., Annand, J., Arrington, J., Averett, T., Baghdasaryan, H., Bai, X., Beck, A., Beck, S., Bellini, V., Benmokhtar, F., Camsonne, A., Chen, C., Chen, J. -P., Chirapatpimol, K., Cisbani, E., Dalton, M. M., Daniel, A., Day, D., Deconinck, W., Defurne, M., Flay, D., Fomin, N., Friend, M., Frullani, S., Fuchey, E., Garibaldi, F., Gaskell, D., Gilad, S., Gilman, R., Glamazdin, S., Gu, C., Guèye, P., Hanretty, C., Hansen, J. -O., Shabestari, M. Hashemi, Higinbotham, D. W., Huang, M., Iqbal, S., Jin, G., Kalantarians, N., Kang, H., her, A. Kelle, Korover, I., LeRose, J., Leckey, J., Li, S., Lindgren, R., Long, E., Mammei, J., Margaziotis, D. J., Markowitz, P., Meekins, D., Meziani, Z. -E., Michaels, R., Mihovilovi\v, M., Muangma, N., Camacho, C. Munoz, Norum, B. E., Nuruzzaman, Pan, K., Phillips, S., Piasetzky, E., Pomerantz, I., Posik, M., Punjabi, V., Qian, X., Qiang, Y., Qiu, X., Reimer, P. E., Rakhman, A., Riordan, S., Ron, G., Rondon-Aramayo, O., Saha, A., Selvy, L., Shahinyan, A., Shneor, R., \v, S., Slifer, K., Solvignon, P., Sparveris, N., Subedi, R., Sulkosky, V., Wang, D., Watson, J. W., Weinstein, L. B., Wojtsekhowski, B., Wood, S. A., Yaron, I., Zhan, X., Zhang, J., Zhang, Y. W., Zhao, B., Zheng, X., Zhu, P., and Zielinski, R.
- Subjects
Nuclear Experiment - Abstract
Short Range Correlations (SRCs) have been identified as being responsible for the high momentum tail of the nucleon momentum distribution, n(k). Hard, short-range interactions of nucleon pairs generate the high momentum tail and imprint a universal character on n(k) for all nuclei at large momentum. Triple coincidence experiments have shown a strong dominance of np pairs, but these measurements involve large final state interactions. This paper presents the results from Jefferson Lab experiment E08014 which measured inclusive electron scattering cross-section from Ca isotopes. By comparing the inclusive cross section from 48Ca to 40Ca in a kinematic region dominated by SRCs we provide a new way to study the isospin structure of SRCs., Comment: 7 pages, 3 figures
- Published
- 2020
- Full Text
- View/download PDF
38. Probing the core of the strong nuclear interaction
- Author
-
Schmidt, A., Pybus, J. R., Weiss, R., Segarra, E. P., Hrnjic, A., Denniston, A., Hen, O., Piasetzky, E., Weinstein, L. B., Barnea, N., Strikman, M., Larionov, A., Higinbotham, D., Adhikari, S., Amaryan, M., Angelini, G., Asryan, G., Atac, H., Avakian, H., Gayoso, C. Ayerbe, Baashen, L., Barion, L., Bashkanov, M., Battaglieri, M., Beck, A., Bedlinskiy, I., Benmokhtar, F., Bianconi, A., Biselli, A. S., Bossu, F., Biarinov, S., Briscoe, W. J., Brooks, W., Burkert, V. D., Cao, F., Carman, D. S., Carvajal, J. C., Celentano, A., Chatagnon, P., Chetry, T., Ciullo, G., Clark, L., Cohen, E., Cole, P. L., Contalbrigo, M., Crede, V., Cruz-Torres, R., D'Angelo, A., Dashyan, N., De Vita, R., De Sanctis, E., Defurne, M., Deur, A., Diehl, S., Djalali, C., Duer, M., Dugger, M., Dupre, R., Egiyan, H., Ehrhart, M., Alaoui, A. El, Fassi, L. El, Eugenio, P., Filippi, A., Forest, T. A., Gavalian, G., Gilad, S., Gilfoyle, G. P., Giovanetti, K. L., Girod, F. X., Giuseppe, C., Glazier, D. I., Golovatch, E., Gothe, R. W., Griffioen, K. A., Guo, L., Hafidi, K., Hakobyan, H., Hanretty, C., Harrison, N., Hattawy, M., Hauenstein, F., Hayward, T. B., Hicks, K., Holtrop, M., Ilieva, Y., Illari, I., Ireland, D., Ishkanov, B. S., Isupov, E. L., Jenkins, D., Jo, H. S., Joo, K., Keller, D., Khachatryan, M., Khanal, A., Khandaker, M., Kim, C. W., Kim, W., Klein, F. J., Korover, I., Kubarovsky, V., Lanza, L., Leali, M., Lenisa, P., MacGregor, I. J. D., Marchand, D., Markov, N., Marsicano, L., Mascagna, V., Beck, S. May-Tal, McKinnon, B., Mirazita, M., Mokeev, V., Camacho, C. Munoz, Mustapha, B., Nadel-Turonski, P., Nanda, S., Niccolai, S., Niculescu, G., Osipenko, M., Ostrovidov, A. I., Paolone, M., Pappalardo, L. L., Paremuzyan, R., Park, K., Pasyuk, E., Patsyuk, M., Phelps, W., Pogorelko, O., Price, J. W., Prok, Y., Protopopescu, D., Ripani, M., Riser, D., Rizzo, A., Rosner, G., Rossi, P., Sabatie, F., Salgado, C., Schmookler, B., Schumacher, R. A., Sharabian, Y. G., Shrestha, U., Skorodumina, Iu., Sokhan, D., Soto, O., Sparveris, N., Stepanyan, S., Strakovsky, I. I., Strauch, S., Tan, J. A., Tyler, N., Ungaro, M., Venturelli, L., Voskanyan, H., Voutier, E., Wang, R., Watts, D. P., Wei, X., Wood, M. H., Zachariou, N., Zhang, J., Zhao, Z. W., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of Quantum Chromodynamics (QCD). However, as these equations cannot be solved directly, physicists resort to describing nuclear interactions using effective models that are well constrained at typical inter-nucleon distances in nuclei but not at shorter distances. This limits our ability to describe high-density nuclear matter such as in the cores of neutron stars. Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations thereby accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta above 400 MeV/c. As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor-force to a predominantly spin-independent scalar-force. These results demonstrate the power of using such measurements to study the nuclear interaction at short-distances and also support the use of point-like nucleons with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of atomic nuclei., Comment: Total 26 pages, 13 figures. Main text: 8 pages, 3 figures. Methods section: 6 pages. Extended Data: 8 figures, 1 table. Supplementary Materials: 8 pages, 2 figures
- Published
- 2020
- Full Text
- View/download PDF
39. The CLAS12 Backward Angle Neutron Detector (BAND)
- Author
-
Segarra, E. P., Hauenstein, F., Schmidt, A., Beck, A., Beck, S. May-Tal, Cruz-Torres, R., Denniston, A., Hrnjic, A., Kutz, T., Nambrath, A., Pybus, J. R., Pryce, K., Fogler, C., Hartlove, T., Weinstein, L. B., Vega, J., Ungerer, M., Hakobyan, H., Brooks, W. K., Piasetzky, E., Cohen, E., Duer, M., Korover, I., Barlow, J., Barriga, E., Eugenio, P., Ostrovidov, A., and Hen, O.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Backward Angle Neutron Detector (BAND) of CLAS12 detects neutrons emitted at backward angles of $155^\circ$ to $175^\circ$, with momenta between $200$ and $600$ MeV/c. It is positioned 3 meters upstream of the target, consists of $18$ rows and $5$ layers of $7.2$ cm by $7.2$ cm scintillator bars, and read out on both ends by PMTs to measure time and energy deposition in the scintillator layers. Between the target and BAND there is a 2 cm thick lead wall followed by a 2 cm veto layer to suppress gammas and reject charged particles. This paper discusses the component-selection tests and the detector assembly. Timing calibrations (including offsets and time-walk) were performed using a novel pulsed-laser calibration system, resulting in time resolutions better than $250$ ps (150 ps) for energy depositions above 2 MeVee (5 MeVee). Cosmic rays and a variety of radioactive sources were used to calibration the energy response of the detector. Scintillator bar attenuation lengths were measured. The time resolution results in a neutron momentum reconstruction resolution, $\delta p/p < 1.5$\% for neutron momentum $200\le p\le 600$ MeV/c. Final performance of the BAND with CLAS12 is shown, including electron-neutral particle timing spectra and a discussion of the off-time neutral contamination as a function of energy deposition threshold., Comment: 17 pages, 25 figures, 3 tables. Accepted for publication in NIM-A
- Published
- 2020
- Full Text
- View/download PDF
40. Laser Calibration System for Time of Flight Scintillator Arrays
- Author
-
Denniston, A., Segarra, E. P., Schmidt, A., Beck, A., Beck, S. May-Tal, Cruz-Torres, R., Hauenstein, F., Hrnjic, A., Kutz, T., Nambrath, A., Pybus, J. R., Toledo, P., Weinstein, L. B., Olivenboim, M., Piasetzky, E., Korover, I., and Hen, O.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the laser system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors., Comment: 11 pages, 11 figures
- Published
- 2020
- Full Text
- View/download PDF
41. $^{12}$C(e,e'pN) Measurements of Short Range Correlations in the Tensor-to-Scalar Interaction Transition Region
- Author
-
Korover, I., Pybus, J. R., Schmidt, A., Hauenstein, F., Duer, M., Hen, O., Piasetzky, E., Weinstein, L. B., Higinbotham, D. W., and Collaboration, the CLAS
- Subjects
Nuclear Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
High-momentum configurations of nucleon pairs at short-distance are probed using measurements of the $^{12}$C$(e,e'p)$ and $^{12}$C$(e,e'pN)$ reactions (where $N$ is either $n$ or $p$), at high-$Q^2$ and $x_B>1.1$. The data span a missing-momentum range of 300--1000 MeV/c and are predominantly sensitive to the transition region of the strong nuclear interaction from a Tensor to Scalar interaction. The data are well reproduced by theoretical calculations using the Generalized Contact Formalism with both chiral and phenomenological nucleon-nucleon ($NN$) interaction models. This agreement suggests that the measured high missing-momentum protons up to $1000$ MeV/c predominantly belong to short-ranged correlated (SRC) pairs. The measured $^{12}$C$(e,e'pN)$ / $^{12}$C$(e,e'p)$ and $^{12}$C$(e,e'pp)$ / $^{12}$C$(e,e'pn)$ cross-section ratios are consistent with a decrease in the fraction of proton-neutron SRC pairs and increase in the fraction of proton-proton SRC pairs with increasing missing momentum. This confirms the transition from an isospin-dependent tensor $NN$ interaction at $\sim 400$ MeV/c to an isospin-independent scalar interaction at high-momentum around $\sim 800$ MeV/c as predicted by theoretical calculation., Comment: Accepted for publication in Physics Letters B. 7 pages, 3 figures, and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
42. Generalized Contact Formalism Analysis of the $^4$He$(e,e'pN)$ Reaction
- Author
-
Pybus, J. R., Korover, I., Weiss, R., Schmidt, A., Barnea, N., Higinbotham, D. W., Piasetzky, E., Strikman, M., Weinstein, L. B., and Hen, O.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
Measurements of short-range correlations in exclusive $^4$He$(e,e'pN)$ reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon ($NN$) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured $^4$He$(e,e'pN)$ / $^4$He$(e,e'p)$ cross-section ratios, sensitive to nature of the $NN$ interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function., Comment: Accepted for publication in Physics Letters B. 8 pages, 4 figures and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
43. Probing few-body nuclear dynamics via 3H and 3He (e,e'p)pn cross-section measurements
- Author
-
Cruz-Torres, R., Nguyen, D., Hauenstein, F., Schmidt, A., Li, S., Abrams, D., Albataineh, H., Alsalmi, S., Androic, D., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Benmokhtar, F., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J-P., Cohen, E. O., Covrig, S., Craycraft, K., Dongwi, B., Duer, M., Duran, B., Dutta, D., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Golak, J., Gomez, J., Gu, C., Hague, A. Habarakada T., Hansen, O., Hattawy, M., Hen, O., Higinbotham, D. W., Hughes, E., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Kamada, H., Karki, A., Karki, B., Katramatou, A. T., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., King, D., King, P., Korover, I., Kutz, T., Lashley-Colthirst, N., Laskaris, G., Li, W., Liu, H., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Meziani, S. Mey-Tal Beck Z-E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nuruzzaman, N., Nycz, M., Obrecht, R., Olson, M., Ou, L., Owen, V., Pandey, B., Pandey, V., Papadopoulou, A., Park, S., Patsyuk, M., Paul, S., Petratos, G. G., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Sargsian, M., Santiesteban, N., Sawatzky, B., Segarra, E. P., Schmookler, B., Shahinyan, A., Sirca, S., Skibinski, R., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Topolnicki, K., Tortorici, F., Urciuoli, G., Weinstein, L. B., Witala, H., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report the first measurement of the \eep three-body breakup reaction cross sections in helium-3 ($^3$He) and tritium ($^3$H) at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV/c)$^2$) and $x_B>1$ kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta $40 \le p_{miss} \le 500$ MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab-initio calculations. Overall good agreement, within $\pm20\%$, is observed between data and calculations for the full $p_{miss}$ range for $^3$H and for $100 \le p_{miss} \le 350$ MeV/c for $^3$He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at $p_{miss} > 250$ MeV/c and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of $^3$He plus $^3$H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire $p_{miss}$ range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of $500$ MeV/c., Comment: Accepted for publication in PRL. 8 pages, 3 figures, and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
44. Evaluation of longitudinal double-spin asymmetry measurements in semi-inclusive deep-inelastic scattering from the proton for the ECCE detector design
- Author
-
Van Hulse, C., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., C.Cuevas, Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Mkrtchyan, H., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Costa, H. Periera da, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., Hecke, H.W. van, Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
45. Design and simulated performance of calorimetry systems for the ECCE detector at the electron ion collider
- Author
-
Bock, F., Schmidt, N., Wang, P.K., Santiesteban, N., Horn, T., Huang, J., Lajoie, J., Munoz Camacho, C., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Ayerbe Gayoso, C., Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Corrales Morales, Y., Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., El Fassi, L., Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Hoghmrtsyan, A., Hsu, P.-h.J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-h., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Periera da Costa, H., Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Tapia Araya, S., Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
46. ECCE unpolarized TMD measurements
- Author
-
Seidl, R., Vladimirov, A., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Hulse, C. Van, Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
47. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab -- 2018 update to PR12-16-001
- Author
-
Battaglieri, M., Bersani, A., Bracco, G., Caiffi, B., Celentano, A., De Vita, R., Marsicano, L., Musico, P., Panza, F., Ripani, M., Santopinto, E., Taiuti, M., Bellini, V., Bondi', M., Castorina, P., De Napoli, M., Italiano, A., Kuznetzov, V., Leonora, E., Mammoliti, F., Randazzo, N., Re, L., Russo, G., Russo, M., Shahinyan, A., Sperduto, M., Spinali, S., Sutera, C., Tortorici, F., Baltzell, N., Dalton, M., Freyberger, A., Girod, F. -X., Kharashvili, G., Kubarovsky, V., Pasyuk, E., Smith, E. S., Stepanyan, S., Szumilla-Vance, H., Ungaro, M., Whitlatch, T., Izaguirre, E., Krnjaic, G., Ehle, I., Snowden-Ifft, D., Loomba, D., Carpinelli, M., D'Urso, D., Gabrieli, A., Maccioni, G., Sant, M., Sipala, V., Ameli, F., Cisbani, E., De Persio, F., Del Dotto, A., Garibaldi, F., Meddi, F., Nicolau, C. A., Urciuoli, G. M., Chiarusi, T., Manzali, M., Pellegrino, C., Schuster, P., Toro, N., Essig, R., Wood, M. H., Holtrop., M., Paremuzyan, R., De Cataldo, G., De Leo, R., Di Bari, D., Lagamba, L., Nappi, E., Perrino, R., Balossino, I., Barion, L., Ciullo, G., Contalbrigo, M., Drago, A., Lenisa, P., Movsisyan, A., Pappalardo, L., Spizzo, F., Turisini, M., Hasch, D., Lucherini, V., Mirazita, M., Pisano, S., Rossi, P., Tomassini, S., Simi, G., D'Angelo, A., Lanza, L., Rizzo, A., Filippi, A., Genovese, M., Kunkel, M., Bashkanov, M., Murphy, A., Smith, G., Watts, D., Zachariou, N., Zana, L., Glazier, D., Ireland, D., McKinnon, B., Sokhan, D., Colaneri, L., Pereira, S. Anefalos, Afanasev, A., Briscoe, B., Strakovsky, I., Kalantarians, N., Weinstein, L., Adhikari, K. P., Dunne, J. A., Dutta, D., Fassi, L. El, Ye, L., Hicks, K., Cole, P., Dobbs, S., Fanelli, C., and Mohanmurthy, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This document complements and completes what was submitted last year to PAC45 as an update to the proposal PR12-16-001 "Dark matter search in a Beam-Dump eXperiment (BDX)" at Jefferson Lab submitted to JLab-PAC44 in 2016. Following the suggestions contained in the PAC45 report, in coordination with the lab, we ran a test to assess the beam-related backgrounds and validate the simulation framework used to design the BDX experiment. Using a common Monte Carlo framework for the test and the proposed experiment, we optimized the selection cuts to maximize the reach considering simultaneously the signal, cosmic-ray background (assessed in Catania test with BDX-Proto) and beam-related backgrounds (irreducible NC and CC neutrino interactions as determined by simulation). Our results confirmed what was presented in the original proposal: with 285 days of a parasitic run at 65 $\mu$A (corresponding to $10^{22}$ EOT) the BDX experiment will lower the exclusion limits in the case of no signal by one to two orders of magnitude in the parameter space of dark-matter coupling versus mass.
- Published
- 2019
48. Search for [formula omitted] charged lepton flavor violation at the EIC with the ECCE detector
- Author
-
Zhang, J.-L., Mantry, S., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Corrales Morales, Y., Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., El Fassi, L., Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Mkrtchyan, H., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Munoz Camacho, C., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Periera da Costa, H., Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Tapia Araya, S., Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
49. Neutron valence structure from nuclear deep inelastic scattering
- Author
-
Segarra, E. P., Schmidt, A., Kutz, T., Higinbotham, D. W., Piasetzky, E., Strikman, M., Weinstein, L. B., and Hen, O.
- Subjects
Nuclear Theory ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Experiment - Abstract
Mechanisms of spin-flavor SU(6) symmetry breaking in Quantum Chromodynamics (QCD) are studied via an extraction of the free neutron structure function from a global analysis of deep inelastic scattering (DIS) data on the proton and on nuclei from $A = 2$ (deuterium) to 208 (lead). Modification of the structure function of nucleons bound in atomic nuclei (known as the EMC effect) are consistently accounted for within the framework of a universal modification of nucleons in short-range correlated (SRC) pairs. Our extracted neutron-to-proton structure function ratio $F_2^n/F_2^p$ becomes constant for $x_B \ge 0.6$, equalling $0.47 \pm 0.04$ as $x_B \rightarrow 1$, in agreement with theoretical predictions of perturbative QCD and the Dyson Schwinger equation, and in disagreement with predictions of the Scalar Diquark dominance model. We also predict $F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}}$, recently measured, yet unpublished, by the MARATHON collaboration, the nuclear correction function that is needed to extract $F_2^n/F_2^p$ from $F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}}$, and the theoretical uncertainty associated with this extraction., Comment: Published in PRL. 6 pages, 4 figures and on-line supplementary materials
- Published
- 2019
- Full Text
- View/download PDF
50. Neutron DVCS Measurements with BONuS12 in CLAS12
- Author
-
Hattawy, M., Amaryan, M., Bültmann, S., Dodge, G., Dzbenski, N., Hyde, C., Kuhn, S., Payette, D., Poudel, J., Weinstein, L., Dupré, R., Guidal, M., Marchand, D., Muñoz, C., Niccolai, S., Voutier, E., Hafidi, K., Yi, Z., Chetry, T., El-Fassi, L., Baltzell, N., Gavalian, G., Girod, F. X., Stepanyan, S., Albayrak, I., Christy, E., Nadeeshani, A., Kalantarians, N., Gayoso, C. Ayerbe, and Jenkins, D.
- Subjects
Nuclear Experiment - Abstract
The three-dimensional picture of quarks and gluons in the nucleon is set to be revealed through deeply virtual Compton scattering (DVCS). With the absence of a free neutron target, the deuterium target represents the simplest nucleus to be used to probe the internal 3D partonic structure of the neutron. We propose here to measure the beam spin asymmetry (BSA) in incoherent neutron DVCS together with the approved E12-06-113 experiment (BONuS12) within the run group F, using the same beam time, simply with addition of beam polarization. The DVCS BSA on the quasi-free neutron will be measured in a wide range of kinematics by tagging the scattered electron and the real photon final state with the spectator proton. We will also measure BSA with all final state particles detected including the struck neutron. The proposed measurements is complementary to the approved CLAS12 experiment E12-11-003, which will also measure the quasi-free neutron DVCS by detecting the scattered neutron, but not the spectator proton. Indeed, besides providing more data for neutron DVCS, this experiment will allow a comparison of the measurement of the BSA of neutron DVCS from the approved E12-11-003 with the measurements using the two methods proposed herein. This comparison will help to understand the impact of nuclear effects, such as the final state interactions (FSI) and Fermi motion on the measurement of the neutron DVCS.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.