1. Mei-Gin Formula Ameliorates Obesity through Lipolysis, Fatty Oxidation, and Thermogenesis in High-Fat Diet-Induced Obese Rats
- Author
-
Hsin-Lin Cheng, Wei-Tang Chang, Jiun-Ling Lin, Chun-Tse Tsai, Ming-Ching Cheng, Shih-Chien Huang, Yue-Ching Wong, and Chin-Lin Hsu
- Subjects
Mei-Gin formula ,adipose tissue ,anti-obesity effect ,high-fat diet-induced obesity ,Chemical technology ,TP1-1185 - Abstract
Obesity is a metabolic dysfunction characterized by excessive body fat deposition as a consequence of an energy imbalance. Novel therapeutic strategies have emerged that are safe and have comparatively low side effects for obesity treatment. Functional foods and nutraceuticals have recently received a great deal of attention because of their components with the properties of antimetabolic syndrome. Based on our previous in vitro and in vivo investigations on anti-adipogenesis activity and improved body fat accumulation in serials, the combination of three ingredients (including bainiku-ekisu, black garlic, and Mesona procumbens Hemsl), comprising the Mei-Gin formula (MGF), was eventually selected as a novel inhibitor that exhibited preventive effects against obesity. Herein, we verify the anti-obesity effects of MGF in obese rats induced by a high-fat diet and discuss the potential molecular mechanisms underlying obesity development. Oral administration of MGF significantly suppressed the final body weight, weight change, energy and water intake, subcutaneous and visceral fat mass, liver weight, hepatic total lipids and triglycerides (TG), and serum levels of TG, triglycerides (TC), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (AST), uric acid, and ketone bodies and augmented fecal total lipids, TG, and cholesterol excretion in the high-dose MGF-supplemented groups. Furthermore, the corresponding lipid metabolic pathways revealed that MGF supplementation effectively increased lipolysis and fatty acid oxidation gene expression and attenuated fatty acid synthesis gene expression in the white adipose tissue (WAT) and liver and it also increased mitochondrial activation and thermogenic gene expression in the brown adipose tissue (BAT) of rats with obesity induced by a high-fat diet (HFD). These results demonstrate that the intake of MGF can be beneficial for the suppression of HFD-induced obesity in rats through the lipolysis, fatty oxidation, and thermogenesis pathway. In conclusion, these results demonstrate the anti-obesity efficacy of MGF in vivo and suggest that MGF may act as a potential therapeutic agent against obesity.
- Published
- 2023
- Full Text
- View/download PDF