1. ErbB4 deficiency exacerbates olfactory dysfunction in an early-stage Alzheimer’s disease mouse model
- Author
-
Deng, Xian-hua, Liu, Xing-yang, Wei, Yi-hua, Wang, Ke, Zhu, Jun-rong, Zhong, Jia-jun, Zheng, Jing-yuan, Guo, Rui, Zhu, Yi-fan, Ye, Qiu-hong, Wang, Meng-dan, Chen, Ying-jie, He, Jian-quan, Chen, Ze-xu, Huang, Shu-qiong, Lv, Chong-shan, Zheng, Guo-qing, Liu, Sui-feng, and Wen, Lei
- Abstract
Olfactory dysfunction is increasingly recognized as an early indicator of Alzheimer’s disease (AD). Aberrations in GABAergic function and the excitatory/inhibitory (E/I) balance within the olfactory bulb (OB) have been implicated in olfactory impairment during the initial stages of AD. While the neuregulin 1 (NRG1)/ErbB4 signaling pathway is known to regulate GABAergic transmission in the brain and is associated with various neuropsychiatric disorders, its specific role in early AD-related olfactory impairment remains incompletely understood. This study demonstrated that olfactory dysfunction preceded cognitive decline in young adult APP/PS1 mice and was characterized by reduced levels of NRG1 and ErbB4 in the OB. Further investigation revealed that deletion of ErbB4 in parvalbumin interneurons reduced GABAergic transmission and increased hyperexcitability in mitral and tufted cells (M/Ts) in the OB, thereby accelerating olfactory dysfunction in young adult APP/PS1 mice. Additionally, ErbB4 deficiency was associated with increased accumulation of Aβ and BACE1-mediated cleavage of APP, along with enhanced CDK5 signaling in the OB. NRG1 infusion into the OB was found to enhance GABAergic transmission in M/Ts and alleviate olfactory dysfunction in young adult APP/PS1 mice. These findings underscore the critical role of NRG1/ErbB4 signaling in regulating GABAergic transmission and E/I balance within the OB, contributing to olfactory impairment in young adult APP/PS1 mice, and provide novel insights for early intervention strategies in AD.
- Published
- 2024
- Full Text
- View/download PDF