1. Unfairly Splitting Separable Necklaces
- Author
-
Schnider, Patrick, Stalder, Linus, and Weber, Simon
- Subjects
Computer Science - Data Structures and Algorithms ,Computer Science - Computational Geometry - Abstract
The Necklace Splitting problem is a classical problem in combinatorics that has been intensively studied both from a combinatorial and a computational point of view. It is well-known that the Necklace Splitting problem reduces to the discrete Ham Sandwich problem. This reduction was crucial in the proof of PPA-completeness of the Ham Sandwich problem. Recently, Borzechowski, Schnider and Weber [ISAAC'23] introduced a variant of Necklace Splitting that similarly reduces to the $\alpha$-Ham Sandwich problem, which lies in the complexity class UEOPL but is not known to be complete. To make this reduction work, the input necklace is guaranteed to be n-separable. They showed that these necklaces can be fairly split in polynomial time and thus this subproblem cannot be used to prove UEOPL-hardness for $\alpha$-Ham Sandwich. We consider the more general unfair necklace splitting problem on n-separable necklaces, i.e., the problem of splitting these necklaces such that each thief gets a desired fraction of each type of jewels. This more general problem is the natural necklace-splitting-type version of $\alpha$-Ham Sandwich, and its complexity status is one of the main open questions posed by Borzechowski, Schnider and Weber. We show that the unfair splitting problem is also polynomial-time solvable, and can thus also not be used to show UEOPL-hardness for $\alpha$-Ham Sandwich., Comment: 34 pages, 14 figures
- Published
- 2024