472 results on '"Watabe, M"'
Search Results
2. A NEST OF PROTOCERATOPS ANDREWSI (DINOSAURIA, ORNITHISCHIA)
- Author
-
FASTOVSKY, D. E., WEISHAMPEL, D. B., WATABE, M., BARSBOLD, R., TSOGTBAATAR, KH., and NARMANDAKH, P.
- Published
- 2011
3. Analysis of corneal endothelial cell density and morphology after laser in situ keratomileusis using two types of femtosecond lasers
- Author
-
Tomita M, Waring GO IV, and Watabe M
- Subjects
Ophthalmology ,RE1-994 - Abstract
Minoru Tomita,1,2,* George O Waring IV,3,4 Miyuki Watabe,1,* 1Shinagawa LASIK Center, Chiyoda-ku, Tokyo, Japan; 2Department of Ophthalmology, Wenzhou Medical College, Wenzhou, China; 3Medical University of South Carolina, Storm Eye Institute, Charleston, SC, USA; 4Magill Laser Center, Charleston, SC, USA*These authors contributed equally to this studyPurpose: To compare two different femtosecond lasers used for flap creation during laser-assisted in situ keratomileusis (LASIK) surgery in terms of their effects on the corneal endothelium.Methods: We performed LASIK surgery on 254 eyes of 131 patients using IntraLase FS60 (Abbott Medical Optics, Inc, Irvine, CA; IntraLase group) and 254 eyes of 136 patients using Femto LDV (Ziemer Group AG, Port, Switzerland; LDV group) for corneal flap creation. The mean cell density, coefficient of variation, and hexagonality of the corneal endothelial cells were determined and the results were statistically compared.Results: There were no statistically significant differences in the corneal morphology between pre and post LASIK results in each group, nor were there significant differences between the results of both groups at 3 months post LASIK.Conclusions: Both IntraLase FS60 and Ziemer Femto LDV are able to create flaps without significant adverse effects on the corneal endothelial morphology through 3 months after LASIK surgery.Keywords: LASIK, corneal endothelium, femtosecond laser, IntraLase FS60, Ziemer LDV
- Published
- 2012
4. The sintering kinetics of ultrafine tungsten carbide powders
- Author
-
Kumar, A.K. Nanda, Watabe, M., and Kurokawa, K.
- Published
- 2011
- Full Text
- View/download PDF
5. Estimation and Generation of Design Input Motion
- Author
-
Watabe, M., Watanabe, T., Sato, T., Dan, K., Gülkan, Polat, editor, and Clough, Ray W., editor
- Published
- 1993
- Full Text
- View/download PDF
6. Dynamic Characteristics of Quaternary Sand-Gravel Deposits
- Author
-
Watabe, M., Muroi, K., Fukutake, K., Gülkan, Polat, editor, and Clough, Ray W., editor
- Published
- 1993
- Full Text
- View/download PDF
7. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer
- Author
-
Pandey, P R, Xing, F, Sharma, S, Watabe, M, Pai, S K, Iiizumi-Gairani, M, Fukuda, K, Hirota, S, Mo, Y-Y, and Watabe, K
- Published
- 2013
- Full Text
- View/download PDF
8. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells
- Author
-
Xing, F, Okuda, H, Watabe, M, Kobayashi, A, Pai, S K, Liu, W, Pandey, P R, Fukuda, K, Hirota, S, Sugai, T, Wakabayshi, G, Koeda, K, Kashiwaba, M, Suzuki, K, Chiba, T, Endo, M, Mo, Y-Y, and Watabe, K
- Published
- 2011
- Full Text
- View/download PDF
9. The magnetized steel and scintillator calorimeters of the MINOS experiment
- Author
-
Michael, D.G., Adamson, P., Alexopoulos, T., Allison, W.W.M., Alner, G.J., Anderson, K., Andreopoulos, C., Andrews, M., Andrews, R., Arroyo, C., Avvakumov, S., Ayres, D.S., Baller, B., Barish, B., Barker, M.A., Barnes, P.D., Jr., Barr, G., Barrett, W.L., Beall, E., Bechtol, K., Becker, B.R., Belias, A., Bergfeld, T., Bernstein, R.H., Bhattacharya, D., Bishai, M., Blake, A., Bocean, V., Bock, B., Bock, G.J., Boehm, J., Boehnlein, D.J., Bogert, D., Border, P.M., Bower, C., Boyd, S., Buckley-Geer, E., Byon-Wagner, A., Cabrera, A., Chapman, J.D., Chase, T.R., Chernichenko, S.K., Childress, S., Choudhary, B.C., Cobb, J.H., Coleman, S.J., Cossairt, J.D., Courant, H., Crane, D.A., Culling, A.J., Damiani, D., Dawson, J.W., de Jong, J.K., DeMuth, D.M., De Santo, A., Dierckxsens, M., Diwan, M.V., Dorman, M., Drake, G., Ducar, R., Durkin, T., Erwin, A.R., Escobar, C.O., Evans, J.J., Fackler, O.D., Falk Harris, E., Feldman, G.J., Felt, N., Fields, T.H., Ford, R., Frohne, M.V., Gallagher, H.R., Gebhard, M., Godley, A., Gogos, J., Goodman, M.C., Gornushkin, Yu., Gouffon, P., Grashorn, E.W., Grossman, N., Grudzinski, J.J., Grzelak, K., Guarino, V., Habig, A., Halsall, R., Hanson, J., Harris, D., Harris, P.G., Hartnell, J., Hartouni, E.P., Hatcher, R., Heller, K., Hill, N., Ho, Y., Howcroft, C., Hylen, J., Ignatenko, M., Indurthy, D., Irwin, G.M., James, C., Jenner, L., Jensen, D., Joffe-Minor, T., Kafka, T., Kang, H.J., Kasahara, S.M.S., Kilmer, J., Kim, H., Kim, M.S., Koizumi, G., Kopp, S., Kordosky, M., Koskinen, D.J., Kostin, M., Kotelnikov, S.K., Krakauer, D.A., Kumaratunga, S., Ladran, A.S., Lang, K., Laughton, C., Lebedev, A., Lee, R., Lee, W.Y., Libkind, M.A., Liu, J., Litchfield, P.J., Litchfield, R.P., Longley, N.P., Lucas, P., Luebke, W., Madani, S., Maher, E., Makeev, V., Mann, W.A., Marchionni, A., Marino, A.D., Marshak, M.L., Marshall, J.S., McDonald, J., McGowan, A.M., Meier, J.R., Merzon, G.I., Messier, M.D., Milburn, R.H., Miller, J.L., Miller, W.H., Mishra, S.R., Miyagawa, P.S., Moore, C.D., Morfín, J., Morse, R., Mualem, L., Mufson, S., Murgia, S., Murtagh, M.J., Musser, J., Naples, D., Nelson, C., Nelson, J.K., Newman, H.B., Nezrick, F., Nichol, R.J., Nicholls, T.C., Ochoa-Ricoux, J.P., Oliver, J., Oliver, W.P., Onuchin, V.A., Osiecki, T., Ospanov, R., Paley, J., Paolone, V., Para, A., Patzak, T., Pavlović, Ž., Pearce, G.F., Pearson, N., Peck, C.W., Perry, C., Peterson, E.A., Petyt, D.A., Ping, H., Piteira, R., Pla-Dalmau, A., Plunkett, R.K., Price, L.E., Proga, M., Pushka, D.R., Rahman, D., Rameika, R.A., Raufer, T.M., Read, A.L., Rebel, B., Reyna, D.E., Rosenfeld, C., Rubin, H.A., Ruddick, K., Ryabov, V.A., Saakyan, R., Sanchez, M.C., Saoulidou, N., Schneps, J., Schoessow, P.V., Schreiner, P., Schwienhorst, R., Semenov, V.K., Seun, S.-M., Shanahan, P., Shield, P.D., Shivane, R., Smart, W., Smirnitsky, V., Smith, C., Smith, P.N., Sousa, A., Speakman, B., Stamoulis, P., Stefanik, A., Sullivan, P., Swan, J.M., Symes, P.A., Tagg, N., Talaga, R.L., Terekhov, A., Tetteh-Lartey, E., Thomas, J., Thompson, J., Thomson, M.A., Thron, J.L., Trendler, R., Trevor, J., Trostin, I., Tsarev, V.A., Tzanakos, G., Urheim, J., Vahle, P., Vakili, M., Vaziri, K., Velissaris, C., Verebryusov, V., Viren, B., Wai, L., Ward, C.P., Ward, D.R., Watabe, M., Weber, A., Webb, R.C., Wehmann, A., West, N., White, C., White, R.F., Wojcicki, S.G., Wright, D.M., Wu, Q.K., Yan, W.G., Yang, T., Yumiceva, F.X., Yun, J.C., Zheng, H., Zois, M., and Zwaska, R.
- Published
- 2008
- Full Text
- View/download PDF
10. Occurrence of Cryptosporidium parvum and Bacterial Pathogens in Faecal Material in the Red Fox (Vulpes vulpes) Population
- Author
-
Nagano, Y., Finn, M. B., Lowery, C. J., Murphy, T., Moriarty, J., Power, E., Toolan, D., O’Loughlin, A., Watabe, M., McCorry, K. A., Crothers, E., Dooley, J. S. G., Rao, J. R., Rooney, P. J., Millar, B. C., Matsuda, M., Elborn, J. S., and Moore, J. E.
- Published
- 2007
- Full Text
- View/download PDF
11. SO-30 RAS status in circulating-tumor DNA after chemotherapy in RAS-mutant mCRC: The RASMEX study (JACCRO CC-17)
- Author
-
Nishina, S., Izawa, N., Watabe, M., Matsumoto, T., Kataoka, M., Sugaya, A., Kashiwada, T., Oki, E., Makiyama, A., Yaguchi, Y., Ohta, T., Toyokawa, T., Miura, Y., Kobayashi, K., Kito, Y., Muto, O., Kagawa, Y., Satake, H., Takeuchi, M., Ichikawa, W., Fujii, M., and Sunakawa, Y.
- Published
- 2023
- Full Text
- View/download PDF
12. Key index framework for quantitative sustainability assessment of energy infrastructures in a smart city: An example of Western Sydney
- Author
-
Yang, J, Liu, H, Wang, Y, Qiu, Z, Dong, Z, Suzuki, T, Noguchi, T, Watabe, M, Yang, J, Liu, H, Wang, Y, Qiu, Z, Dong, Z, Suzuki, T, Noguchi, T, and Watabe, M
- Published
- 2020
13. Vitamin E ointment at high dose levels suppresses contact dermatitis in rats by stabilizing keratinocytes
- Author
-
Kuriyama, K., Shimizu, T., Horiguchi, T., Watabe, M., and Abe, Y.
- Published
- 2002
- Full Text
- View/download PDF
14. The X-gene of human hepatitis B virus transactivates the c-jun and α-fetoprotein genes
- Author
-
Zhou, M. X., Watabe, M., and Watabe, K.
- Published
- 1994
- Full Text
- View/download PDF
15. Surface reaction-diffusion kinetics on lattice at the microscopic scale
- Author
-
Chew, WX, Kaizu, K, Watabe, M, Muniandy, SV, Takahashi, K, Arjunan, SNV, Chew, WX, Kaizu, K, Watabe, M, Muniandy, SV, Takahashi, K, and Arjunan, SNV
- Abstract
Microscopic models of reaction-diffusion processes on the cell membrane can link local spatiotemporal effects to macroscopic self-organized patterns often observed on the membrane. Simulation schemes based on the microscopic lattice method (MLM) can model these processes at the microscopic scale by tracking individual molecules, represented as hard spheres, on fine lattice voxels. Although MLM is simple to implement and is generally less computationally demanding than off-lattice approaches, its accuracy and consistency in modeling surface reactions have not been fully verified. Using the Spatiocyte scheme, we study the accuracy of MLM in diffusion-influenced surface reactions. We derive the lattice-based bimolecular association rates for two-dimensional (2D) surface-surface reaction and one-dimensional (1D) volume-surface adsorption according to the Smoluchowski-Collins-Kimball model and random walk theory. We match the time-dependent rates on lattice with off-lattice counterparts to obtain the correct expressions for MLM parameters in terms of physical constants. The expressions indicate that the voxel size needs to be at least 0.6% larger than the molecule to accurately simulate surface reactions on triangular lattice. On square lattice, the minimum voxel size should be even larger, at 5%. We also demonstrate the ability of MLM-based schemes such as Spatiocyte to simulate a reaction-diffusion model that involves all dimensions: three-dimensional (3D) diffusion in the cytoplasm, 2D diffusion on the cell membrane, and 1D cytoplasm-membrane adsorption. With the model, we examine the contribution of the 2D reaction pathway to the overall reaction rate at different reactant diffusivity, reactivity, and concentrations.
- Published
- 2019
16. Abnormal results of biochemical liver function tests in breast-fed infants with prolonged indirect hyperbilirubinaemia
- Author
-
Tazawa, Y., Abukawa, D., Watabe, M., Nakagawa, M., and Yamada, M.
- Published
- 1991
- Full Text
- View/download PDF
17. Prevalence of bacterial faecal pathogens in separated and unseparated stored pig slurry
- Author
-
Watabe, M., Rao, J. R., Stewart, T. A., Xu, J., Millar, B. C., Xiao, L., Lowery, C. J., Dooley, J. S.G., and Moore, J. E.
- Published
- 2003
18. Molecular determination of carriage of the mecA locus in coagulase negative staphylococci in screening swabs from patients in an intensive care unit
- Author
-
Moore, J E, Millar, B C, Crowe, M, Buchanan, J, Watabe, M, Murphy, P G, Yongmin, X, Milligan, K, and McClelland, A
- Published
- 2003
19. Mutational analysis of enhancer domains responsive to trans-activation by the X gene of human hepatitis B virus
- Author
-
Goodarzi, G., Ohno, H., Adams, R., Darabi, A., Tewari, A., Watabe, M., and Watabe, K.
- Published
- 1990
- Full Text
- View/download PDF
20. Crystal structure of dichlorobis(3,5-dimethylisoxazolato)palladium(II), PdCl2(C5H7NO)2
- Author
-
Horiuchi A., Horn E., Ito K., Nakahodo T., Watabe M., Takahashim Τ. T., and Horiuchi C. A
- Subjects
Physics ,QC1-999 ,Crystallography ,QD901-999 - Published
- 2005
- Full Text
- View/download PDF
21. Nuclear Spin-Lattice Relaxation in the Organic Superconductor (BEDT-TTF)2Cu(NCS)2: Measurements by the Field Cycling Technique
- Author
-
Takahashi, T., primary, Kanoda, K., additional, Sakao, K., additional, Watabe, M., additional, Mori, H., additional, and Saito, G., additional
- Published
- 1990
- Full Text
- View/download PDF
22. THERMODYNAMIC PROPERTIES OF A LIQUID METAL USING A SOFT-SPHERE REFERENCE SYSTEM
- Author
-
HASEGAWA, M., primary, KONDO, I., additional, WATABE, M., additional, and YOUNG, W.H., additional
- Published
- 1990
- Full Text
- View/download PDF
23. Reaction-diffusion kinetics on lattice at the microscopic scale
- Author
-
Chew, WX, Kaizu, K, Watabe, M, Muniandy, SV, Takahashi, K, Arjunan, SNV, Chew, WX, Kaizu, K, Watabe, M, Muniandy, SV, Takahashi, K, and Arjunan, SNV
- Abstract
Lattice-based stochastic simulators are commonly used to study biological reaction-diffusion processes. Some of these schemes that are based on the reaction-diffusion master equation (RDME) can simulate for extended spatial and temporal scales but cannot directly account for the microscopic effects in the cell such as volume exclusion and diffusion-influenced reactions. Nonetheless, schemes based on the high-resolution microscopic lattice method (MLM) can directly simulate these effects by representing each finite-sized molecule explicitly as a random walker on fine lattice voxels. The theory and consistency of MLM in simulating diffusion-influenced reactions have not been clarified in detail. Here, we examine MLM in solving diffusion-influenced reactions in three-dimensional space by employing the spatiocyte simulation scheme. Applying the random walk theory, we construct the general theoretical framework underlying the method and obtain analytical expressions for the total rebinding probability and the effective reaction rate. By matching Collins-Kimball and lattice-based rate constants, we obtained the exact expressions to determine the reaction acceptance probability and voxel size. We found that the size of voxel should be about 2% larger than the molecule. The theoretical framework of MLM is validated by numerical simulations, showing good agreement with the off-lattice particle-based method, enhanced Green's function reaction dynamics (egfrd). MLM run time is more than an order of magnitude faster than egfrd when diffusing macromolecules with typical concentrations observed in the cell. MLM also showed good agreements with egfrd and mean-field models in case studies of two basic motifs of intracellular signaling, the protein production-degradation process and the dual phosphorylation-dephosphorylation cycle. In addition, when a reaction compartment is populated with volume-excluding obstacles, MLM captures the nonclassical reaction kinetics caused by anomalou
- Published
- 2018
24. Paleomagnetic and palynologic analyses of Albian to Santonian strata at Bayn Shireh, Burkhant, and Khuren Dukh, eastern Gobi Desert, Mongolia
- Author
-
Hicks, J.F., Brinkman, D.L., Nichols, D.J., and Watabe, M.
- Published
- 1999
- Full Text
- View/download PDF
25. Introduction
- Author
-
Ohbayashi, K., Watabe, M., Cardona, Manuel, editor, Fulde, Peter, editor, von Klitzing, Klaus, editor, Queisser, Hans-Joachim, editor, Lotsch, Helmut K. V., editor, Ohbayashi, Kohji, editor, and Watabe, Mitsuo, editor
- Published
- 1989
- Full Text
- View/download PDF
26. Study of Giant Resonances in the ^<24>Mg (e, e'α) Reaction(I. Nuclear Physics)
- Author
-
Takahashi, K., Abe, K., Hashimoto, R., Hayashi, Y., Hirose, K., Ishikawa, T., Kanda, H., Maeda, K., Miyase, H., Nishikawa, I., Sato, Y., Tamae, T., Tsubota, H., Utoyama, M., Wakamatsu, M., Watabe, M., and Yamaguchi, Y.
- Published
- 2007
27. Chronic pancreatitis in a child with glycogen storage disease type 1
- Author
-
Kikuchi, M., Hasegawa, K., Handa, I., Watabe, M., Narisawa, K., and Tada, K.
- Published
- 1991
- Full Text
- View/download PDF
28. Study of Giant Resonances of ^9Be with the (e, e'n) Reaction(I. Nuclear Physics)
- Author
-
Toda, H., Tamae, T., Asano, Y., Kanda, H., Kino, K., Konno, O., Maeda, K., Miyase, H., Nishikawa, I., Takahashi, K., Terasawa, T., Tsubota, H., Utoyama, M., Watabe, M., Yamaguchi, Y., and Yamazaki, H.
- Subjects
Nuclear Experiment - Abstract
The (e, e' n) cross sections have been measured in the giant resonance region at three momentum transfers. The E1 cross section shows a shallow minimum at 22 MeV. It is believed that the reaction mechanism is different from each other in the both sides of the minimum. The angular distribution of emitted neutrons and the momentum-transfer dependence of the cross section suggest that the E2 component is distributed over a wide energy region. About 40% of branching-ratio is observed to leave the residual ^8Be nucleus at levels of 16.6 and 16.9 MeV.
- Published
- 2002
29. Isovector E2/E0 strength in ^<28>Si studied by the (e, e'n) reaction II(I. Nuclear Physics)
- Author
-
Kino, K., Asano, Y., Higuchi, M., Idosawa, T., Matsuura, Y., Nakagawa, T., Nishikawa, I., Saito, T., Suzuki, T., Takahashi, K., Tamae, T., Toda, H., Tsubota, H., Ueno, H., Utoyama, M., and Watabe, M.
- Abstract
We have measured the ^Si (e, e'n) reaction in the excitation energy range 28.5- 39.5 MeV which is higher than that in the previous experiment. The obtained E1 strength agreed with that of the photoreaction. The E2-E0 component below 22 MeV showed a difference to that of the (e, e'p_^) reaction and was similar to the (e, e' α_1) and ( α, α ') reactions which contain dominantly isoscalar resonances. In the higher energy, the present E2-E0 data have a broad bump from 23 to 35 MeV which is not seen in the (α, α') reaction ; it is thought to be attributed to the isovector excitation. This interpretation is partially supported by the result of the ^Si(^7Li, ^7Be) ^Al experiment.
- Published
- 2002
30. A computational framework for bioimaging simulation
- Author
-
Watabe, M, Arjunan, SNV, Fukushima, S, Iwamoto, K, Kozuka, J, Matsuoka, S, Shindo, Y, Ueda, M, Takahashi, K, Watabe, M, Arjunan, SNV, Fukushima, S, Iwamoto, K, Kozuka, J, Matsuoka, S, Shindo, Y, Ueda, M, and Takahashi, K
- Abstract
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.
- Published
- 2015
31. On surface properties of a weakly-coupled classical one-component plasma: The size effect in finite systems
- Author
-
Hasegawa, M. and Watabe, M.
- Published
- 1985
- Full Text
- View/download PDF
32. Search for sterile neutrino mixing in the MINOS long-baseline experiment
- Author
-
Adamson, P. Andreopoulos, C. Auty, D. J. Ayres, D. S. and Backhouse, C. Barnes, Jr., P. D. Barr, G. Barrett, W. L. and Bishai, M. Blake, A. Bock, G. J. Boehnlein, D. J. and Bogert, D. Bower, C. Cavanaugh, S. Chapman, J. D. and Cherdack, D. Childress, S. Choudhary, B. C. Coelho, J. A. B. and Cobb, J. H. Coleman, S. J. Cravens, J. P. and Cronin-Hennessy, D. Culling, A. J. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Erwin, A. R. and Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. and Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. and Gouffon, P. Gran, R. Grashorn, E. W. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. and Heller, K. Himmel, A. Holin, A. Huang, X. Hylen, J. and Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. and Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. and Kordosky, M. Koskinen, D. J. Krahn, Z. Kreymer, A. Lang, K. Ling, J. Litchfield, P. J. Litchfield, R. P. and Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marchionni, A. and Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. and Mehdiyev, R. Meier, J. R. Messier, M. D. Metelko, C. J. and Michael, D. G. Miller, W. H. Mishra, S. R. Mitchell, J. and Moore, C. D. Morfin, J. Mualem, L. Mufson, S. and Musser, J. Naples, D. Nelson, J. K. Newman, H. B. and Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Orchanian, M. Osiecki, T. Ospanov, R. Paley, J. and Paolone, V. Patterson, R. B. Pavlovic, Z. Pawloski, G. and Pearce, G. F. Pittam, R. Plunkett, R. K. Rahaman, A. and Rameika, R. A. Raufer, T. M. Rebel, B. Rodrigues, P. A. and Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. and Saoulidou, N. Schneps, J. Schreiner, P. Shanahan, P. and Smart, W. Smith, C. Sousa, A. Stamoulis, P. Strait, M. and Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. and Tinti, G. Toner, R. Tzanakos, G. Urheim, J. Vahle, P. and Viren, B. Watabe, M. Weber, A. Webb, R. C. West, N. and White, C. Whitehead, L. Wojcicki, S. G. Wright, D. M. and Yang, T. Zhang, K. Zwaska, R. MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10(20) protons on target in which neutrinos of energies between similar to 500 MeV and 120 GeV are produced predominantly as nu(mu), the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the nu(mu) flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C. L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles theta(24) and theta(34) are constrained to be less than 11 degrees and 56 degrees at 90% C. L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime tau(3)/m(3) > 2.1 x 10(-12) s/eV at 90% C.L.
- Published
- 2010
33. Observation of muon intensity variations by season with the MINOS far detector
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Ayres, D. S. Backhouse, C. Barnett, J. Barr, G. Barrett, W. L. Becker, B. R. Bishai, M. Blake, A. and Bock, B. Bock, G. J. Boehnlein, D. J. Bogert, D. Bower, C. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. and Cronin-Hennessy, D. Culling, A. J. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Fields, T. H. and Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. and Gouffon, P. Gran, R. Grashorn, E. W. Grzelak, K. and Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. and Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. and Kordosky, M. Korman, K. Koskinen, D. J. Krahn, Z. and Kreymer, A. Lang, K. Ling, J. Litchfield, P. J. and Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marshak, M. L. and Marshall, J. S. Mayer, N. McGowan, A. M. Mehdiyev, R. and Meier, J. R. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, Kw. H. Mishra, S. R. Mitchell, J. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Musser, J. and Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. and Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Osprey, S. Paley, J. Patterson, R. B. and Patzak, T. Pawloski, G. Pearce, G. F. Peterson, E. A. and Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. and Raufer, T. M. Rebel, B. Reichenbacher, J. Rodrigues, P. A. and Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. and Saoulidou, N. Schneps, J. Schreiner, P. Shanahan, P. and Smart, W. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. and Strait, M. Tagg, N. Talaga, R. L. Thomas, J. and Thomson, M. A. Thron, J. L. Tinti, G. Toner, R. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. and Watabe, M. Weber, A. Webb, R. C. West, N. White, C. and Whitehead, L. Wojcicki, S. G. Wright, D. M. Yang, T. and Zois, M. Zhang, K. Zwaska, R. MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Experiment - Abstract
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E-p greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments.
- Published
- 2010
34. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Ayres, D. S. Backhouse, C. Barnes, Jr., P. D. and Barr, G. Barrett, W. L. Bhattacharya, D. Bishai, M. and Blake, A. Bock, G. J. Boehnlein, D. J. Bogert, D. Bower, C. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Coelho, J. A. B. Coleman, S. J. and Cronin-Hennessy, D. Culling, A. J. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Erwin, A. R. and Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. and Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. and Gouffon, P. Gran, R. Grashorn, E. W. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. and Heller, K. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. and Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Kim, J. J. Koizumi, G. Kopp, S. and Kordosky, M. Koskinen, D. J. Krahn, Z. Kreymer, A. and Lang, K. Ling, J. Litchfield, P. J. Litchfield, R. P. and Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marshak, M. L. and Marshall, J. S. Mayer, N. McGowan, A. M. Mehdiyev, R. and Meier, J. R. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, W. H. Mishra, S. R. Mitchell, J. Moore, C. D. and Morfin, J. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. and Ospanov, R. Paley, J. Paolone, V. Patterson, R. B. and Pavlovic, Z. Pawloski, G. Pearce, G. F. Petyt, D. A. and Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. and Raufer, T. M. Rebel, B. Rodrigues, P. A. Rosenfeld, C. and Rubin, H. A. Ryabov, V. A. Sanchez, M. C. Saoulidou, N. and Schneps, J. Schreiner, P. Semenov, V. K. Shanahan, P. and Smart, W. Smith, C. Sousa, A. Stamoulis, P. Strait, M. and Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. and Tinti, G. Toner, R. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Watabe, M. Weber, A. Webb, R. C. West, N. White, C. Whitehead, L. Wojcicki, S. G. and Wright, D. M. Yang, T. Zois, M. Zhang, K. Zwaska, R. and MINOS Collaboration
- Subjects
High Energy Physics::Experiment - Abstract
The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS near detector exposed to the NuMI beam from the main injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of nu-Fe ((nu) over bar - Fe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2%-8% (3%-9%) and their ratio which is measured with precision 2%-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.
- Published
- 2010
35. Search for muon-Neutrino to electron-Neutrino transitions in MINOS
- Author
-
Adamson, P. Andreopoulos, C. Arms, K.E. Armstrong, R. Auty, D.J. Ayres, D.S. Backhouse, C. Barnes, P.D. Barr, G. Barrett, W.L. Becker, B.R. Belias, A. Bernstein, R.H. Betancourt, M. Bhattacharya, D. Bishai, M. Blake, A. Bock, G.J. Boehm, J. Boehnlein, D.J. Bogert, D. Bower, C. Cavanaugh, S. Chapman, J.D. Cherdack, D. Childress, S. Choudhary, B.C. Cobb, J.H. Coelho, J.A.B. Coleman, S.J. Cronin-Hennessy, D. Culling, A.J. Danko, I.Z. De Jong, J.K. Devenish, N.E. Diwan, M.V. Dorman, M. Erwin, A.R. Escobar, C.O. Evans, J.J. Falk, E. Feldman, G.J. Frohne, M.V. Gallagher, H.R. Godley, A. Goodman, M.C. Gouffon, P. Gran, R. Grashorn, E.W. Grzelak, K. Habig, A. Harris, D. Harris, P.G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Howcroft, C. Huang, X. Hylen, J. Irwin, G.M. Isvan, Z. Jaffe, D.E. James, C. Jensen, D. Kafka, T. Kasahara, S.M.S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D.J. Krahn, Z. Kreymer, A. Lang, K. Ling, J. Litchfield, P.J. Litchfield, R.P. Loiacono, L. Lucas, P. Ma, J. Mann, W.A. Marshak, M.L. Marshall, J.S. Mayer, N. McGowan, A.M. Mehdiyev, R. Meier, J.R. Messier, M.D. Metelko, C.J. Michael, D.G. Miller, W.H. Mishra, S.R. Mitchell, J. Moore, C.D. Morfín, J. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J.K. Newman, H.B. Nichol, R.J. Nicholls, T.C. Ochoa-Ricoux, J.P. Oliver, W.P. Ospanov, R. Paley, J. Para, A. Patterson, R.B. Patzak, T. Pavlović, Ž. Pawloski, G. Pearce, G.F. Petyt, D.A. Pittam, R. Plunkett, R.K. Rahaman, A. Rameika, R.A. Raufer, T.M. Rebel, B. Reichenbacher, J. Rodrigues, P.A. Rosenfeld, C. Rubin, H.A. Ryabov, V.A. Sanchez, M.C. Saoulidou, N. Schneps, J. Schreiner, P. Shanahan, P. Smart, W. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Tagg, N. Talaga, R.L. Thomas, J. Thomson, M.A. Thron, J.L. Tinti, G. Toner, R. Tsarev, V.A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Ward, D.R. Watabe, M. Weber, A. Webb, R.C. West, N. White, C. Whitehead, L. Wojcicki, S.G. Wright, D.M. Yang, T. Zhang, K. Zheng, H. Zois, M. Zwaska, R.
- Abstract
This Letter reports on a search for νμ→νe transitions by the MINOS experiment based on a 3.14×1020 protons-on-target exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of 27±5(stat)±2(syst) events predicted by the measurements in the Near Detector. If interpreted in terms of νμ→νe oscillations, this 1.5σ excess of events is consistent with sin 2(2θ13) comparable to the CHOOZ limit when |Δm2|=2.43×10-3eV2 and sin 2(2θ23)=1.0 are assumed. © 2009 The American Physical Society.
- Published
- 2009
36. Sudden stratospheric warmings seen in MINOS deep underground muon data
- Author
-
Osprey, S. Barnett, J. Smith, J. Adamson, P. Andreopoulos, C. Arms, K.E. Armstrong, R. Auty, D.J. Ayres, D.S. Baller, B. Barnes Jr., P.D. Barr, G.D. Barrett, W.L. Becker, B.R. Belias, A. Bernstein, R.H. Bhattacharya, D. Bishai, M. Blake, A. Bock, G.J. Boehm, J. Boehnlein, D.J. Bogert, D. Bower, C. Buckley-Geer, E. Cavanaugh, S. Chapman, J.D. Cherdack, D. Childress, S. Choudhary, B.C. Cobb, J.H. Coleman, S.J. Culling, A.J. De Jong, J.K. Dierckxsens, M. Diwan, M.V. Dorman, M. Dytman, S.A. Escobar, C.O. Evans, J.J. Falk, E. Feldman, G.J. Frohne, M.V. Gallagher, H.R. Godley, A. Goodman, M.C. Gouffon, P. Gran, R. Grashorn, E.W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P.G. Hartnell, J. Hatcher, R. Himmel, A. Holin, A. Hylen, J. Irwin, G.M. Ishitsuka, M. Jaffe, D.E. James, C. Jensen, D. Kafka, T. Kasahara, S.M.S. Kim, J.J. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D.J. Kreymer, A. Kumaratunga, S. Lang, K. Ling, J. Litchfield, P.J. Litchfield, R.P. Loiacono, L. Lucas, P. Ma, J. Mann, W.A. Marshak, M.L. Marshall, J.S. Mayer, N. McGowan, A.M. Meier, J.R. Messier, M.D. Metelko, C.J. Michael, D.G. Miller, L. Miller, W.H. Mishra, S.R. Moore, C.D. Morfin, J.G. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J.K. Newman, H.B. Nichol, R.J. Nicholls, T.C. Ochoa-Ricoux, J.P. Oliver, W.P. Ospanov, R. Paley, J. Paolone, V. Pavlovic, Z. Pawloski, G. Pearce, G.F. Peck, C.W. Petyt, D.A. Pittam, R. Plunkett, R.K. Rahaman, A. Rameika, R.A. Raufer, T.M. Rebel, B. Reichenbacher, J. Rodrigues, P.A. Rosenfeld, C. Rubin, H.A. Ruddick, K. Sanchez, M.C. Saoulidou, N. Schneps, J. Schreiner, P. Seun, S.M. Shanahan, P. Smart, W. Smith, C. Smith, R. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Symes, P. Tagg, N. Talaga, R.L. Tavera, M.A. Thomas, J. Thompson, J. Thomson, M.A. Thron, J.L. Tinti, G. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Watabe, M. Weber, A. Webb, R.C. Wehmann, A. West, N. White, C. Wojcicki, S.G. Wright, D.M. Yang, T. Zhang, K. Zwaska, R.
- Abstract
The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere. Copyright 2009 by the American Geophysical Union.
- Published
- 2009
37. Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. and Barish, B. Barnes, Jr., P. D. Barr, G. Barrett, W. L. and Beall, E. Becker, B. R. Belias, A. Bernstein, R. H. and Bhattacharya, D. Bishai, M. Blake, A. Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. and Bower, C. Buckley-Geer, E. Cabrera, A. Cavanaugh, S. and Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. and Cobb, J. H. Coleman, S. J. Culling, A. J. De Jong, J. K. and Dierckxsens, M. Diwan, M. V. Dorman, M. Drakoulakos, D. and Durkin, T. Dytman, S. A. Erwin, A. R. Escobar, C. O. and Evans, J. J. Harris, E. Falk Feldman, G. J. Fields, T. H. and Ford, R. Frohne, M. V. Gallagher, H. R. Godley, A. and Gogos, J. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. and Harris, P. G. Hartnell, J. Hartouni, E. P. Hatcher, R. and Heller, K. Himmel, A. Holin, A. Howcroft, C. Hylen, J. and Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. and James, C. Jenner, L. Jensen, D. Kafka, T. Kang, H. J. and Kasahara, S. M. S. Kim, M. S. Koizumi, G. Kopp, S. and Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. and Kumaratunga, S. Lang, K. Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. Lucas, P. Mann, W. A. Marchionni, A. Marino, A. D. and Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. and Meier, J. R. Merzon, G. I. Messier, M. D. Metelko, C. J. and Michael, D. G. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Moore, C. D. Morfin, J. and Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. and Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. and Pavlovic, Z. Pearce, G. F. Peck, C. W. Peterson, E. A. and Petyt, D. A. Ping, H. Pittam, R. Plunkett, R. K. and Rahman, D. Rameika, R. A. Raufer, T. M. Rebel, B. and Reichenbacher, J. Reyna, D. E. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. and Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. and Semenov, V. K. Seun, S. -M. Shanahan, P. Smart, W. and Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. and Stamoulis, P. Strait, M. Symes, P. A. Tagg, N. Talaga, R. L. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. and Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. and Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. and Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zheng, H. Zois, M. and Zwaska, R. Minos Collaboration
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment - Abstract
We report the results of a search for nu(mu) disappearance by the Main Injector Neutrino Oscillation Search [D. G. Michael (MINOS), Phys. Rev. Lett. 97, 191801 (2006).]. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27x10(20) protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 nu(mu) charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to |Delta m(2)|=2.74(-0.26)(+0.44) x 10(-3) eV(2)/c(4) and sin(2)2 theta > 0.87 at 68% confidence level.
- Published
- 2008
38. Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Ayres, D. S. Baller, B. Barnes, Jr., P. D. and Barr, G. Barrett, W. L. Becker, B. R. Belias, A. and Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. and Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Bower, C. Buckley-Geer, E. Cavanaugh, S. Chapman, J. D. and Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. and Coleman, S. J. Culling, A. J. de Jong, J. K. Dierckxsens, M. and Diwan, M. V. Dorman, M. Dytman, S. A. Escobar, C. O. and Evans, J. J. Harris, E. Falk Feldman, G. J. Frohne, M. V. and Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. and Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. and Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jensen, D. and Kafka, T. Kasahara, S. M. S. Kim, J. J. Kim, M. S. and Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. and Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. and Ling, J. Litchfield, P. J. Litchfield, R. P. Loiacono, L. and Lucas, P. Ma, J. Mann, W. A. Marchionni, A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, J. L. Miller, W. H. Mishra, S. R. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. and Musser, J. Naples, D. Nelson, J. K. Newman, H. B. and Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Ospanov, R. Paley, J. Paolone, V. Para, A. and Patzak, T. Pavlovic, Z. Pawloski, G. Pearce, G. F. Peck, C. W. Peterson, E. A. Petyt, D. A. Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. Raufer, T. M. Rebel, B. and Reichenbacher, J. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Sanchez, M. C. and Saoulidou, N. Schneps, J. Schreiner, P. Seun, S. -M. and Shanahan, P. Smart, W. Smith, C. Sousa, A. Speakman, B. and Stamoulis, P. Strait, M. Symes, P. Tagg, N. Talaga, R. L. Tavera, M. A. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. and Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Ward, C. P. and Ward, D. R. Watabe, M. Weber, A. Webb, R. C. and Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Yang, T. Zois, M. Zhang, K. Zwaska, R. MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Phenomenology ,High Energy Physics::Experiment - Abstract
This Letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum-mechanical oscillations of neutrino flavor with mass splitting vertical bar Delta m(2)vertical bar = (2.43 +/- 0.13) x 10(-3) eV(2) (68% C.L.) and mixing angle sin(2)(2 theta) > 0.90 (90% C.L.). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight: namely, neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard-deviation levels, respectively.
- Published
- 2008
39. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. and Barish, B. Barnes, Jr., P. D. Barr, G. Barrett, W. L. and Beall, E. Becker, B. R. Belias, A. Bergfeld, T. and Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. and Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Buckley-Geer, E. Cabrera, A. and Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Culling, A. J. de Jong, J. K. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. Drakoulakos, D. Durkin, T. Erwin, A. R. Escobar, C. O. Evans, J. J. and Harris, E. Falk Feldman, G. J. Fields, T. H. Ford, R. and Frohne, M. V. Gallagher, H. R. Giurgiu, G. A. Godley, A. and Gogos, J. Goodman, M. C. Gouffon, P. Gran, R. and Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. and Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. and Hatcher, R. Heller, K. Holin, A. Howcroft, C. Hylen, J. and Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. and James, C. Jenner, L. Jensen, D. Joffe-Minor, T. Kafka, T. Kang, H. J. Kasahara, S. M. S. Kim, M. S. Koizumi, G. and Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. and Kreymer, A. Kumaratunga, S. Lang, K. Lebedev, A. and Lee, R. Ling, J. Liu, J. Litchfield, P. J. Litchfield, R. P. Lucas, P. Mann, W. A. Marchionni, A. Marino, A. D. and Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. and Meier, J. R. Merzon, G. I. Messier, M. D. Michael, D. G. and Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. and Mislivec, A. Miyagawa, P. S. Moore, C. D. Morfin, J. and Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. and Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. and Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. and Pavlovic, Z. Pearce, G. F. Peck, C. W. Peterson, E. A. and Petyt, D. A. Ping, H. Piteira, R. Pittam, R. and Plunkett, R. K. Rahman, D. Rameika, R. A. Raufer, T. M. and Rebel, B. Reichenbacher, J. Reyna, D. E. Rosenfeld, C. and Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. and Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. and Semenov, V. K. Seun, S.-M. Shanahan, P. Smart, W. and Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. and Stamoulis, P. Symes, P. A. Tagg, N. Talaga, R. L. and Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. and Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. and Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. and Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Wu, Q. K. Yang, T. Yumiceva, F. X. and Zheng, H. Zois, M. Zwaska, R. MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment - Abstract
We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91x10(6) cm(2) sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R=0.65(-0.12)(+0.15)(stat)+/- 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin(2)2 theta(23) and Delta m(23)(2) excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into mu(-) and mu(+) in both the data and Monte Carlo events and found the ratio of the total number of mu(-) to mu(+) in both samples. The ratio of those ratios, R boolean AND(CPT), is a test of CPT conservation. The result R boolean AND(CPT)=0.72(-0.18)(+0.24)(stat)(-0.04)(+0.08)(syst) is consistent with CPT conservation.
- Published
- 2007
40. Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS
- Author
-
Adamson, P., Andreopoulos, C., Arms, K.E., Armstrong, R., Auty, D.J., Avvakumov, S., Ayres, D.S., Baller, B., Barish, B., Barnes, P.D., Barr, G., Barrett, W.L., Beall, E., Becker, .B.R., Belias, A., Bergfeld, T., Bernstein, R.H., Bhattacharya, D., Bishai, M., Blake, A., Bock, B., Bock, G.J., Boehm, J., Boehnlein, D.J., Bogert, D., Border, P.M., Bower, C., Buckley-Geer, E., Bungau, C., Cabrera, A., Chapman, J.D., Cherdack, D., Childress, S., Choudhary, B.C., Cobb, J.H., Culling, A.J., De Jong, J.K., De Santo, A., Dierckxsens, M., Diwan, M.V., Dorman, M., Drakoulakos, D., Durkin, T., Erwin, A.R., Escobar, C.O., Evans, J.J., Falk Harris, E., Feldman, G.J., Fields, T.H., Ford, R., Frohne, M.V., Gallagher, H.R., Giurgiu, G.A., Godley, A., Gogos, J., Goodman, M.C., Gouffon, P., Gran, R., Grashorn, E.W., Grossman, N., Grzelak, K., Habig, A., Harris, D., Harris, P.G., Hartnell, J., Hartouni, E.P., Hatcher, R., Heller, K., Holin, A., Howcroft, C., Hylen, J., Indurthy, D., Irwin, G.M., Ishitsuka, M., Jaffe, D.E., James, C., Jenner, L., Jensen, D., Joffe-Minor, T., Kafka, T., Kang, H.J., Kasahara, S.M.S., Kim, M.S., Koizumi, G., Kopp, S., Kordosky, M., Koskinen, D.J., Kotelnikov, S.K., Kreymer, A., Kumaratunga, S., Lang, K., Lebedev, A., Lee, R., Ling, J., Liu, J., Litchfield, P.J., Litchfield, R.P., Lucas, Philippe, Mann, W.A., Marchionni, A., Marino, A.D., Marshak, M.L., Marshall, J.S., Mayer, N., Mcgowan, A.M., Meier, J.R., Merzon, G.I., Messier, M.D., Michael, D.G., Milburn, R.H., Miller, J.L., Mishra, S.R., Mislivec, A., Miyagawa, P.S., Moore, C.D., Morfin, J., Mualem, L., Mufson, S., Murgia, S., Musser, J., Naples, D., Nelson, J.K., Newman, H.B., Nichol, R.J., Nicholls, T.C., Ochoa-Ricoux, J.P., Oliver, W.P., Osiecki, T., Ospanov, R., Paley, J., Paolone, V., Para, A., Patzak, T., Pavlovic, Z., Pearce, G.F., Peck, C.W., Peterson, E.A., Petyt, D.A., Ping, H., Piteira, R., Pittam, R., Plunkett, R.K., Rahman, D., Rameika, R.A., Raufer, T.M., Rebel, B., Reichenbacher, J., Reyna, D.E., Rosenfeld, C., Rubin, H.A., Ruddick, K., Ryabov, V.A., Saakyan, R., Sanchez, M.C., Saoulidou, N., Schneps, J., Schreiner, P., Semenov, V.K., Seun, S.-M., Shanahan, P., Smart, W., Smirnitsky, V., Smith, C., Sousa, A., Speakman, B., Stamoulis, P., Symes, P.A., Tagg, N., Talaga, R.L., Tetteh-Lartey, E., Thomas, J., Thompson, J., Thomson, M.A., Thron, J.L., Tinti, G., Trostin, I., Tsarev, V.A., Tzanakos, G., Urheim, J., Vahle, P., Velissaris, C., Verebryusov, V., Viren, B., Ward, C.P., Ward, D.R., Watabe, M., Weber, A., Webb, R.C., Wehmann, A., West, N., White, C., Wojcicki, S.G., Wright, D.M., Wu, Q.K., Yang, T., Yumiceva, F.X., Zheng, H., Zois, M., Zwaska, R., APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie (APC (UMR_7164)), MINOS, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,FOS: Physical sciences ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio., Comment: 16 pages, 17 figures
- Published
- 2007
- Full Text
- View/download PDF
41. Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam
- Author
-
Adamson, P. Andreopoulos, C. Arms, K.E. Armstrong, R. Auty, D.J. Avvakumov, S. Ayres, D.S. Baller, B. Barish, B. Barnes, P.D. Barr, G. Barrett, W.L. Beall, E. Becker, B.R. Belias, A. Bergfeld, T. Bernstein, R.H. Bhattacharya, D. Bishai, M. Blake, A. Bock, B. Bock, G.J. Boehm, J. Boehnlein, D.J. Bogert, D. Border, P.M. Bower, C. Buckley-Geer, E. Cabrera, A. Chapman, J.D. Cherdack, D. Childress, S. Choudhary, B.C. Cobb, J.H. Coleman, S.J. Culling, A.J. De Jong, J.K. De Santo, A. Dierckxsens, M. Diwan, M.V. Dorman, M. Drakoulakos, D. Durkin, T. Erwin, A.R. Escobar, C.O. Evans, J.J. Harris, E.F. Feldman, G.J. Fields, T.H. Fitzpatrick, T. Ford, R. Frohne, M.V. Gallagher, H.R. Giurgiu, G.A. Godley, A. Gogos, J. Goodman, M.C. Gouffon, P. Gran, R. Grashorn, E.W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P.G. Hartnell, J. Hartouni, E.P. Hatcher, R. Heller, K. Holin, A. Howcroft, C. Hylen, J. Indurthy, D. Irwin, G.M. Ishitsuka, M. Jaffe, D.E. James, C. Jenner, L. Jensen, D. Joffe-Minor, T. Kafka, T. Kang, H.J. Kasahara, S.M.S. Kim, M.S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D.J. Kotelnikov, S.K. Kreymer, A. Kumaratunga, S. Lang, K. Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P.J. Litchfield, R.P. Lucas, P. Luebke, W. Mann, W.A. Marchionni, A. Marino, A.D. Marshak, M.L. Marshall, J.S. Mayer, N. McGowan, A.M. Meier, J.R. Merzon, G.I. Messier, M.D. Michael, D.G. Milburn, R.H. Miller, J.L. Miller, W.H. Mishra, S.R. Mislivec, A. Miyagawa, P.S. Moore, C.D. Morfín, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J.K. Newman, H.B. Nichol, R.J. Nicholls, T.C. Ochoa-Ricoux, J.P. Oliver, W.P. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlović, Ž. Pearce, G.F. Peck, C.W. Perry, C. Peterson, E.A. Petyt, D.A. Ping, H. Piteira, R. Pittam, R. Plunkett, R.K. Rahman, D. Rameika, R.A. Raufer, T.M. Rebel, B. Reichenbacher, J. Reyna, D.E. Rosenfeld, C. Rubin, H.A. Ruddick, K. Ryabov, V.A. Saakyan, R. Sanchez, M.C. Saoulidou, N. Saranen, D. Schneps, J. Schreiner, P. Semenov, V.K. Seun, S.-M. Shanahan, P. Smart, W. Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Symes, P.A. Tagg, N. Talaga, R.L. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M.A. Thron, J.L. Tinti, G. Trostin, I. Tsarev, V.A. Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. Viren, B. Ward, C.P. Ward, D.R. Watabe, M. Weber, A. Webb, R.C. Wehmann, A. West, N. White, C. Wojcicki, S.G. Wright, D.M. Wu, Q.K. Yang, T. Yumiceva, F.X. Zheng, H. Zois, M. Zwaska, R.
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment - Abstract
The velocity of a ∼3GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.1±2.9×10-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mν
- Published
- 2007
42. Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector
- Author
-
Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. and Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. and Barish, B. Barnes, Jr., P. D. Barr, G. Barrett, W. L. and Beall, E. Becker, B. R. Belias, A. Bergfeld, T. and Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. and Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Buckley-Geer, E. Bungau, C. and Cabrera, A. Chapman, J. D. Cherdack, D. Childress, S. and Choudhary, B. C. Cobb, J. H. Culling, A. J. de Jong, J. K. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. and Drakoulakos, D. Durkin, T. Erwin, A. R. Escobar, C. O. and Evans, J. J. Harris, E. Falk Feldman, G. J. Fields, T. H. Ford, R. Frohne, M. V. Gallagher, H. R. Giurgiu, G. A. Godley, A. Gogos, J. Goodman, M. C. Gouffon, P. and Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. and Hatcher, R. Heller, K. Holin, A. Howcroft, C. Hylen, J. Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. and James, C. Jenner, L. Jensen, D. Joffe-Minor, T. and Kafka, T. Kang, H. J. Kasahara, S. M. S. Kim, M. S. and Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. and Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. and Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P. J. and Litchfield, R. P. Lucas, P. Mann, W. A. Marchionni, A. and Marino, A. D. Marshak, M. L. Marshall, J. S. Mayer, N. and McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. and Michael, D. G. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Miyagawa, P. S. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. and Musser, J. Naples, D. Nelson, J. K. Newman, H. B. and Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. and Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Peck, C. W. Peterson, E. A. Petyt, D. A. Ping, H. Piteira, R. and Pittam, R. Plunkett, R. K. Rahman, D. Rameika, R. A. and Raufer, T. M. Rebel, B. Reichenbacher, J. Reyna, D. E. and Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. and Saakyan, R. Sanchez, M. C. Saoulidou, N. Schneps, J. and Schreiner, P. Semenov, V. K. Seun, S. -M. Shanahan, P. and Smart, W. Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Symes, P. A. Tagg, N. Talaga, R. L. and Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. and Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. and Tzanakos, G. Urheim, J. Vahle, P. Velissaris, C. and Verebryusov, V. Viren, B. Ward, C. P. Ward, D. R. and Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. and White, C. Wojcicki, S. G. Wright, D. M. Wu, Q. K. and Yang, T. Yumiceva, F. X. Zheng, H. Zois, M. Zwaska, R. and MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment - Abstract
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N-mu(+)/N-mu(-)=1.374 +/- 0.004(stat)(-0.010)(+0.012)(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.
- Published
- 2007
43. Introduction
- Author
-
Ohbayashi, K., primary and Watabe, M., additional
- Published
- 1989
- Full Text
- View/download PDF
44. First observations of separated atmospheric nu(mu) and (nu)over-bar(mu) events in the MINOS detector
- Author
-
Adamson, P, Alexopoulos, T, Allison, WWM, Alner, GJ, Anderson, K, Andreopoulos, C, Andrews, M, Andrews, R, Arroyo, C, Avvakumov, S, Ayres, DS, Baller, B, Barish, B, Barker, MA, Barnes, PD, Barr, G, Barrett, WL, Beall, E, Becker, BR, Belias, A, Bergfeld, T, Bernstein, RH, Bhattacharya, D, Bishai, M, Blake, A, Bocean, V, Bock, B, Bock, GJ, Boehm, J, Boehnlein, DJ, Bogert, D, Border, PM, Bower, C, Boyd, S, Buckley-Geer, E, Byon-Wagner, A, Cabrera, A, Chapman, JD, Chase, TR, Chernichenko, SK, Childress, S, Choudhary, BC, Cobb, JH, Cossairt, JD, Courant, H, Crane, DA, Culling, AJ, Dawson, JW, DeMuth, DM, De Santo, A, Dierckxsens, M, Diwan, MV, Dorman, M, Drake, G, Ducar, R, Durkin, T, Erwin, AR, Escobar, CO, Evans, J, Fackler, OD, Harris, EF, Feldman, GJ, Felt, N, Fields, TH, Ford, R, Frohne, MV, Gallagher, HR, Gebhard, M, Godley, A, Gogos, J, Goodman, MC, Gornushkin, Y, Gouffon, P, Grashorn, E, Grossman, N, Grudzinski, JJ, Grzelak, K, Guarino, V, Habig, A, Halsall, R, Hanson, J, Harris, D, Harris, PG, Hartnell, J, Hartouni, EP, Hatcher, R, Heller, K, Hill, N, Ho, Y, Howcroft, C, Hylen, J, Ignatenko, M, Indurthy, D, Irwin, GM, James, C, Jenner, L, Jensen, D, Joffe-Minor, T, Kafka, T, Kang, HJ, Kasahara, SMS, Kilmer, J, Kim, H, Koizumi, G, Kopp, S, Kordosky, M, Koskinen, DJ, Kostin, M, Krakauer, DA, Kumaratunga, S, Ladran, AS, Lang, K, Laughton, C, Lebedev, A, Lee, R, Lee, WY, Libkind, MA, Liu, J, Litchfield, PJ, Litchfield, RP, Longley, NP, Lucas, P, Luebke, W, Madani, S, Maher, E, Makeev, V, Mann, WA, Marchionni, A, Marino, AD, Marshak, ML, Marshall, JS, McDonald, J, McGowan, A, Meier, JR, Merzon, GI, Messier, MD, Michael, DG, Milburn, RH, Miller, JL, Miller, WH, Mishra, SR, Miyagawa, PS, Moore, C, Morfin, J, Morse, R, Mualem, L, Mufson, S, Murgia, S, Murtagh, MJ, Musser, J, Naples, D, Nelson, C, Nelson, JK, Newman, HB, Nezrick, F, Nichol, RJ, Nicholls, TC, Ochoa-Ricoux, JP, Oliver, J, Oliver, WP, Onuchin, VA, Osiecki, T, Ospanov, R, Paley, J, Paolone, V, Para, A, Patzak, T, Pavlovich, Z, Pearce, GF, Pearson, N, Peck, CW, Perry, C, Peterson, EA, Petyt, DA, Ping, H, Piteira, R, Pla-Dalmau, A, Plunkett, RK, Price, LE, Proga, M, Pushka, DR, Rahman, D, Rameika, RA, Raufer, TM, Read, AL, Rebel, B, Reyna, DE, Rosenfeld, C, Rubin, HA, Ruddick, K, Ryabov, VA, Saakyan, R, Sanchez, MC, Saoulidou, N, Schneps, J, Schoessow, PV, Schreiner, P, Schwienhorst, R, Semenov, VK, Seun, SM, Shanahan, P, Shield, PD, Smart, W, Smirnitsky, V, Smith, C, Smith, PN, Sousa, A, Speakman, B, Stamoulis, P, Stefanik, A, Sullivan, P, Swan, JM, Symes, PA, Tagg, N, Talaga, RL, Tetteh-Lartey, E, Thomas, J, Thompson, J, Thomson, MA, Thron, JL, Trendler, R, Trevor, J, Trostin, I, Tsarev, VA, Tzanakos, G, Urheim, J, Vahle, P, Vakili, M, Vaziri, K, Velissaris, C, Verebryusov, V, Viren, B, Wai, L, Ward, CP, Ward, DR, Watabe, M, Weber, A, Webb, RC, Wehmann, A, West, N, White, C, White, RF, Wojcicki, SG, Wright, DM, Wu, QK, Yan, WG, Yang, T, Yumiceva, FX, Yun, JC, Zheng, H, Zois, M, Zwaska, R, and Collaboration, MMINOS
- Published
- 2006
45. First observations of separated atmospheric νμ and ν̄μ events in the MINOS detector
- Author
-
Adamson, P, Alexopoulos, T, Allison, WWM, Alner, GJ, Anderson, K, Andreopoulos, C, Andrews, M, Andrews, R, Arroyo, C, Avvakumov, S, Ayres, DS, Baller, B, Barish, B, Barker, MA, Barnes Jr, PD, Barr, G, Barrett, WL, Beall, E, Becker, BR, Belias, A, Bergfeld, T, Bernstein, RH, Bhattacharya, D, Bishai, M, Blake, A, Bocean, V, Bock, B, Bock, GJ, Boehm, J, Boehnlein, DJ, Bogert, D, Border, PM, Bower, C, Boyd, S, Buckley-Geer, E, Byon-Wagner, A, Cabrera, A, Chapman, JD, Chase, TR, Chernichenko, SK, Childress, S, Choudhary, BC, Cobb, JH, Cossairt, JD, Courant, H, Crane, DA, Culling, AJ, Dawson, JW, DeMuth, DM, De Santo, A, Dierckxsens, M, Diwan, MV, Dorman, M, Drake, G, Ducar, R, Durkin, T, Erwin, AR, Escobar, CO, Evans, J, Fackler, OD, Harris, EF, Feldman, GJ, Felt, N, Fields, TH, Ford, R, Frohne, MV, Gallagher, HR, Gebhard, M, Godley, A, Gogos, J, Goodman, MC, Gornushkin, Y, Gouffon, P, Grashorn, E, Grossman, N, Grudzinski, JJ, Grzelak, K, Guarino, V, Habig, A, Halsall, R, Hanson, J, Harris, D, Harris, PG, Hartnell, J, Hartouni, EP, Hatcher, R, Heller, K, Hill, N, Ho, Y, Howcroft, C, Hylen, J, Ignatenko, M, Indurthy, D, Irwin, GM, James, C, Jenner, L, Jensen, D, Joffe-Minor, T, Kafka, T, Kang, HJ, Kasahara, SMS, Kilmer, J, Kim, H, Koizumi, G, Kopp, S, Kordosky, M, Koskinen, DJ, Kostin, M, Krakauer, DA, Kumaratunga, S, Ladran, AS, Lang, K, Laughton, C, Lebedev, A, Lee, R, Lee, WY, Libkind, MA, Liu, J, Litchfield, PJ, Litchfield, RP, Longley, NP, Lucas, P, Luebke, W, Madani, S, Maher, E, Makeev, V, Mann, WA, Marchionni, A, Marino, AD, Marshak, ML, Marshall, JS, McDonald, J, McGowan, A, Meier, JR, Merzon, GI, Messier, MD, Michael, DG, Milburn, RH, Miller, JL, Miller, WH, Mishra, SR, Miyagawa, PS, Moore, C, Morfín, J, Morse, R, Mualem, L, Mufson, S, Murgia, S, Murtagh, MJ, Musser, J, Naples, D, Nelson, C, Nelson, JK, Newman, HB, Nezrick, F, Nichol, RJ, Nicholls, TC, Ochoa-Ricoux, JP, Oliver, J, Oliver, WP, Onuchin, VA, Osiecki, T, Ospanov, R, Paley, J, Paolone, V, Para, A, Patzak, T, Pavlovich, Z, Pearce, GF, Pearson, N, Peck, CW, Perry, C, Peterson, EA, Petyt, DA, Ping, H, Piteira, R, Pla-Dalmau, A, Plunkett, RK, Price, LE, Proga, M, Pushka, DR, Rahman, D, Rameika, RA, Raufer, TM, Read, AL, Rebel, B, Reyna, DE, Rosenfeld, C, Rubin, HA, Ruddick, K, Ryabov, VA, Saakyan, R, Sanchez, MC, Saoulidou, N, Schneps, J, Schoessow, PV, Schreiner, P, Schwienhorst, R, Semenov, VK, Seun, S-M, Shanahan, P, Shield, PD, Smart, W, Smirnitsky, V, Smith, C, Smith, PN, Sousa, A, Speakman, B, Stamoulis, P, Stefanik, A, Sullivan, P, Swan, JM, Symes, PA, Tagg, N, Talaga, RL, Tetteh-Lartey, E, Thomas, J, Thompson, J, Thomson, MA, Thron, JL, Trendler, R, Trevor, J, Trostin, I, Tsarev, VA, Tzanakos, G, Urheim, J, Vahle, P, Vakili, M, Vaziri, K, Velissaris, C, Verebryusov, V, Viren, B, Wai, L, Ward, CP, Ward, DR, Watabe, M, Weber, A, Webb, RC, Wehmann, A, West, N, White, C, White, RF, Wojcicki, SG, Wright, DM, Wu, QK, Yan, WG, Yang, T, Yumiceva, FX, Yun, JC, Zheng, H, Zois, M, and Zwaska, R
- Abstract
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of νμ and ν̄μ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.) ±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field νμ and ν̄μ interactions are separated. The ratio of ν̄μ to νμ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving Rν̄μ/νμdata/Rν̄μ/νμMC=0.96-0. 27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for νμ and ν̄μ. © 2006 The American Physical Society.
- Published
- 2006
46. First observations of separated atmospheric nu(mu) and (nu)over-bar(mu) events in the MINOS detector
- Author
-
Adamson, P Alexopoulos, T Allison, WWM Alner, GJ and Anderson, K Andreopoulos, C Andrews, M Andrews, R and Arroyo, C Avvakumov, S Ayres, DS Baller, B Barish, B and Barker, MA Barnes, PD Barr, G Barrett, WL Beall, E and Becker, BR Belias, A Bergfeld, T Bernstein, RH and Bhattacharya, D Bishai, M Blake, A Bocean, V Bock, B and Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Border, PM and Bower, C Boyd, S Buckley-Geer, E Byon-Wagner, A Cabrera, A Chapman, JD Chase, TR Chernichenko, SK Childress, S and Choudhary, BC Cobb, JH Cossairt, JD Courant, H and Crane, DA Culling, AJ Dawson, JW DeMuth, DM De Santo, A and Dierckxsens, M Diwan, MV Dorman, M Drake, G Ducar, R and Durkin, T Erwin, AR Escobar, CO Evans, J Fackler, OD and Harris, EF Feldman, GJ Felt, N Fields, TH Ford, R and Frohne, MV Gallagher, HR Gebhard, M Godley, A Gogos, J Goodman, MC Gornushkin, Y Gouffon, P Grashorn, E and Grossman, N Grudzinski, JJ Grzelak, K Guarino, V Habig, A Halsall, R Hanson, J Harris, D Harris, PG and Hartnell, J Hartouni, EP Hatcher, R Heller, K Hill, N and Ho, Y Howcroft, C Hylen, J Ignatenko, M Indurthy, D and Irwin, GM James, C Jenner, L Jensen, D Joffe-Minor, T Kafka, T Kang, HJ Kasahara, SMS Kilmer, J Kim, H and Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kostin, M Krakauer, DA Kumaratunga, S Ladran, AS Lang, K and Laughton, C Lebedev, A Lee, R Lee, WY Libkind, MA and Liu, J Litchfield, PJ Litchfield, RP Longley, NP Lucas, P Luebke, W Madani, S Maher, E Makeev, V Mann, WA and Marchionni, A Marino, AD Marshak, ML Marshall, JS and McDonald, J McGowan, A Meier, JR Merzon, GI Messier, MD and Michael, DG Milburn, RH Miller, JL Miller, WH and Mishra, SR Miyagawa, PS Moore, C Morfin, J Morse, R and Mualem, L Mufson, S Murgia, S Murtagh, MJ Musser, J and Naples, D Nelson, C Nelson, JK Newman, HB Nezrick, F and Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, J and Oliver, WP Onuchin, VA Osiecki, T Ospanov, R Paley, J and Paolone, V Para, A Patzak, T Pavlovich, Z Pearce, GF and Pearson, N Peck, CW Perry, C Peterson, EA Petyt, DA and Ping, H Piteira, R Pla-Dalmau, A Plunkett, RK Price, LE Proga, M Pushka, DR Rahman, D Rameika, RA Raufer, TM Read, AL Rebel, B Reyna, DE Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Saakyan, R Sanchez, MC and Saoulidou, N Schneps, J Schoessow, PV Schreiner, P and Schwienhorst, R Semenov, VK Seun, SM Shanahan, P Shield, PD Smart, W Smirnitsky, V Smith, C Smith, PN Sousa, A Speakman, B Stamoulis, P Stefanik, A Sullivan, P and Swan, JM Symes, PA Tagg, N Talaga, RL Tetteh-Lartey, E and Thomas, J Thompson, J Thomson, MA Thron, JL and Trendler, R Trevor, J Trostin, I Tsarev, VA Tzanakos, G and Urheim, J Vahle, P Vakili, M Vaziri, K Velissaris, C and Verebryusov, V Viren, B Wai, L Ward, CP Ward, DR and Watabe, M Weber, A Webb, RC Wehmann, A West, N and White, C White, RF Wojcicki, SG Wright, DM Wu, QK and Yan, WG Yang, T Yumiceva, FX Yun, JC Zheng, H Zois, M Zwaska, R MMINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,High Energy Physics::Experiment - Abstract
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nu(mu) and (nu) over bar (mu) charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving R-up/down(data)/R-up/down(MC)=0.62(-0.14)(+0.19)(stat.)+/- 0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nu(mu) and (nu) over bar (mu) interactions are separated. The ratio of (nu) over bar (mu) to nu(mu) events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R-(nu) over bar mu/nu(data)(mu)/R-(nu) over bar mu/nu(MC)(mu)=0.96(-0.27)(+0.38)(stat.)+/- 0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nu(mu) and (nu) over bar (mu).
- Published
- 2006
47. Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam
- Author
-
Michael, D. G. Adamson, P. Alexopoulos, T. Allison, W. W. M. and Alner, G. J. Anderson, K. Andreopoulos, C. Andrews, M. and Andrews, R. Arms, K. E. Armstrong, R. Arroyo, C. and Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. and Barish, B. Barker, M. A. Barnes, Jr., P. D. Barr, G. and Barrett, W. L. Beall, E. Becker, B. R. Belias, A. and Bergfeld, T. Bernstein, R. H. Bhattacharya, D. Bishai, M. and Blake, A. Bocean, V. Bock, B. Bock, G. J. Boehm, J. and Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. and Boyd, S. Buckley-Geer, E. Bungau, C. Byon-Wagner, A. and Cabrera, A. Chapman, J. D. Chase, T. R. Cherdack, D. and Chernichenko, S. K. Childress, S. Choudhary, B. C. Cobb, J. H. Cossairt, J. D. Courant, H. Crane, D. A. Culling, A. J. Dawson, J. W. de Jong, J. K. DeMuth, D. M. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. Drake, G. and Drakoulakos, D. Ducar, R. Durkin, T. Erwin, A. R. and Escobar, C. O. Evans, J. J. Fackler, O. D. Harris, E. Falk and Feldman, G. J. Felt, N. Fields, T. H. Ford, R. and Frohne, M. V. Gallagher, H. R. Gebhard, M. Giurgiu, G. A. and Godley, A. Gogos, J. Goodman, M. C. Gornushkin, Yu. and Gouffon, P. Gran, R. Grashorn, E. Grossman, N. and Grudzinski, J. J. Grzelak, K. Guarino, V. Habig, A. and Halsall, R. Hanson, J. Harris, D. Harris, P. G. and Hartnell, J. Hartouni, E. P. Hatcher, R. Heller, K. and Hill, N. Ho, Y. Holin, A. Howcroft, C. Hylen, J. and Ignatenko, M. Indurthy, D. Irwin, G. M. Ishitsuka, M. and Jaffe, D. E. James, C. Jenner, L. Jensen, D. and Joffe-Minor, T. Kafka, T. Kang, H. J. Kasahara, S. M. S. and Kilmer, J. Kim, H. Kim, M. S. Koizumi, G. Kopp, S. and Kordosky, M. Koskinen, D. J. Kostin, M. Kotelnikov, S. K. and Krakauer, D. A. Kreymer, A. Kumaratunga, S. Ladran, A. S. Lang, K. Laughton, C. Lebedev, A. Lee, R. Lee, W. Y. Libkind, M. A. Ling, J. Liu, J. Litchfield, P. J. and Litchfield, R. P. Longley, N. P. Lucas, P. Luebke, W. and Madani, S. Maher, E. Makeev, V. Mann, W. A. Marchionni, A. Marino, A. D. Marshak, M. L. Marshall, J. S. Mayer, N. McDonald, J. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Miyagawa, P. S. Moore, C. D. Morfin, J. Morse, R. Mualem, L. Mufson, S. and Murgia, S. Murtagh, M. J. Musser, J. Naples, D. Nelson, C. Nelson, J. K. Newman, H. B. Nezrick, F. Nichol, R. J. and Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, J. Oliver, W. P. Onuchin, V. A. Osiecki, T. Ospanov, R. Paley, J. and Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Pearson, N. Peck, C. W. Perry, C. Peterson, E. A. and Petyt, D. A. Ping, H. Piteira, R. Pittam, R. and Pla-Dalmau, A. Plunkett, R. K. Price, L. E. Proga, M. and Pushka, D. R. Rahman, D. Rameika, R. A. Raufer, T. M. and Read, A. L. Rebel, B. Reichenbacher, J. Reyna, D. E. and Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. and Saakyan, R. Sanchez, M. C. Saoulidou, N. Schneps, J. and Schoessow, P. V. Schreiner, P. Schwienhorst, R. Semenov, V. K. Seun, S. -M. Shanahan, P. Shield, P. D. Smart, W. and Smirnitsky, V. Smith, C. Smith, P. N. Sousa, A. and Speakman, B. Stamoulis, P. Stefanik, A. Sullivan, P. and Swan, J. M. Symes, P. A. Tagg, N. Talaga, R. L. and Terekhov, A. Tetteh-Lartey, E. Thomas, J. Thompson, J. and Thomson, M. A. Thron, J. L. Tinti, G. Trendler, R. and Trevor, J. Trostin, I. Tsarev, V. A. Tzanakos, G. and Urheim, J. Vahle, P. Vakili, M. Vaziri, K. Velissaris, C. Verebryusov, V. Viren, B. Wai, L. Ward, C. P. and Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. and West, N. White, C. White, R. F. Wojcicki, S. G. and Wright, D. M. Wu, Q. K. Yan, W. G. Yang, T. Yumiceva, F. X. Yun, J. C. Zheng, H. Zois, M. Zwaska, R. MINOS Collaboration
- Subjects
Physics::Instrumentation and Detectors ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
This Letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rates and energy spectra of charged current nu(mu) interactions are compared in two detectors located along the beam axis at distances of 1 and 735 km. With 1.27x10(20) 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 +/- 14 events. The data are consistent with nu(mu) disappearance via oscillations with vertical bar Delta m(32)(2)vertical bar=2.74(-0.26)(+0.44)x10(-3) eV(2) and sin(2)(2 theta(23))> 0.87 (68% C.L.).
- Published
- 2006
48. First Observations of Separated Atmospheric Muon Neutrino and Muon Anti-Neutrino Events in the MINOS Detector
- Author
-
Adamson, P., Alexopoulos, T., Allison, W.W. M., J. Alner, G., Anderson, K., Andreopoulos, C., Andrews, M., Andrews, R., Arroyo, C., Avvakumov, S., S. Ayres, D., Baller, B., Barish, B., A. Barker, M., D. Barnes Jr., P., Barr, G., L. Barrett, W., Beall, Edward, R. Becker, B., Belias, A., Bergfeld, T., H. Bernstein, R., Bhattacharya, D., Bishai, M., Blake, A., Bocean, V., Bock, B., J. Bock, G., Boehm, J., J. Boehnlein, D., Bogert, D., M. Border, P., Bower, C., Boyd, S., Buckley-Geer, E., Byon-Wagner, A., Cabrera, A., D. Chapman, J., R. Chase, T., K. Chernichenko, S., Childress, S., C. Choudhary, B., H. Cobb, J., D. Cossairt, J., Courant, H., Crane, D.A., J. Culling, A., W. Dawson, J., M. Demuth, D., de Santo, A., Dierckxsens, M., V. Diwan, M., Dorman, M., Drake, G., Ducar, R., Durkin, T., R. Erwin, A., O. Escobar, C., Evans, J., D. Fackler, O., Falk Harris, E., J. Feldman, G., Felt, N., H. Fields, T., Ford, R., V. Frohne, M., R. Gallagher, H., Gebhard, M., Godley, A., Gogos, J., C. Goodman, M., Gornushkin, Yu., Gouffon, P., Grashorn, E., Grossman, N., J. Grudzinski, J., Grzelak, K., Guarino, V., Habig, A., Halsall, R., Hanson, J., Harris, D., G. Harris, P., Hartnell, J., P. Hartouni, E., Hatcher, R., Heller, K., Hill, N., Ho, Y., Howcroft, C., Hylen, J., Ignatenko, M., Indurthy, D., M. Irwin, G., James, C., Jenner, L., Jensen, D., Joffe-Minor, T., Kafka, T., J. Kang, H., M. S. Kasahara, S., Kilmer, J., Kim, H., Koizumi, G., Kopp, S., Kordosky, M., J. Koskinen, D., Kostin, M., Krakauer, D.A., Kumaratunga, S., S. Ladran, A., Lang, K., Laughton, C., Lebedev, A., Lee, R., Y. Lee, W., A. Libkind, M., Liu, J., J. Litchfield, P., P. Litchfield, R., P. Longley, N., Lucas, Philippe, Luebke, W., Madani, S., Maher, E., Makeev, V., Mann, W.A., Marchionni, A., D. Marino, A., L. Marshak, M., S. Marshall, J., Mcdonald, J., Mcgowan, A., R. Meier, J., I. Merzon, G., D. Messier, M., G. Michael, D., H. Milburn, R., L. Miller, J., H. Miller, W., R. Mishra, S., S. Miyagawa, P., Moore, C., Morfin, J., Morse, R., Mualem, L., Mufson, S., Murgia, S., J. Murtagh, M., Musser, J., Naples, D., Nelson, C., K. Nelson, J., B. Newman, H., Nezrick, F., J. Nichol, R., C. Nicholls, T., P. Ochoa-Ricoux, J., Oliver, J., P. Oliver, W., A. Onuchin, V., Osiecki, T., Ospanov, R., Paley, J., Paolone, V., Para, A., Patzak, T., Pavlovich, Z., F. Pearce, G., Pearson, N., W. Peck, C., Perry, C., A. Peterson, E., Petyt, D.A., Ping, H., Piteira, R., Pla-Dalmau, A., K. Plunkett, R., E. Price, L., Proga, M., R. Pushka, D., Rahman, D., A. Rameika, R., M. Raufer, T., L. Read, A., Rebel, B., E. Reyna, D., Rosenfeld, C., A. Rubin, H., Ruddick, K., A. Ryabov, V., Saakyan, R., C. Sanchez, M., Saoulidou, N., Schneps, J., V. Schoessow, P., Schreiner, P., Schwienhorst, R., K. Semenov, V., Seun, S.-M., Shanahan, P., D. Shield, P., Smart, W., Smirnitsky, V., Smith, C., N. Smith, P., Sousa, A., Speakman, B., Stamoulis, P., Stefanik, A., Sullivan, P., M. Swan, J., Symes, P.A., Tagg, N., L. Talaga, R., Tetteh-Lartey, E., Thomas, J., Thompson, J., A. Thomson, M., L. Thron, J., Trendler, R., Trevor, J., Trostin, I., A. Tsarev, V., Tzanakos, G., Urheim, J., Vahle, P., Vakili, M., Vaziri, K., Velissaris, C., Verebryusov, V., Viren, B., Wai, L., P. Ward, C., R. Ward, D., Watabe, M., Weber, A., C. Webb, R., Wehmann, A., West, N., White, C., F. White, R., G. Wojcicki, S., M. Wright, D., K. Wu, Q., AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), MINOS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,FOS: Physical sciences ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos oscillate in same manner giving: R_data(numubar/numu)/R_MC(numubar/numu) = 0.96^{+0.38}_{-0.27} (stat.) +- 0.15 (sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for muon neutrinos and muon anti-neutrinos., 17 pages, 16 figures, submitted to Phys. Rev. D
- Published
- 2005
- Full Text
- View/download PDF
49. Reaction-assisted sintering and platelet growth by adiabatic heating in WC–Si cermets
- Author
-
Nanda Kumar, A.K., primary, Watabe, M., additional, and Kurokawa, K., additional
- Published
- 2014
- Full Text
- View/download PDF
50. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer
- Author
-
Pandey, P R, primary, Xing, F, additional, Sharma, S, additional, Watabe, M, additional, Pai, S K, additional, Iiizumi-Gairani, M, additional, Fukuda, K, additional, Hirota, S, additional, Mo, Y-Y, additional, and Watabe, K, additional
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.