1. Integrability of Nonabelian Differential-Difference Equations: the Symmetry Approach
- Author
-
Novikov, Vladimir and Wang, Jing Ping
- Subjects
Nonlinear Sciences - Exactly Solvable and Integrable Systems - Abstract
We propose a novel approach to tackle integrability problem for evolutionary differential-difference equations (D$\Delta$Es) on free associative algebras, also referred to as nonabelian D$\Delta$Es. This approach enables us to derive necessary integrability conditions, determine the integrability of a given equation, and make progress in the classification of integrable nonabelian D$\Delta$Es. This work involves establishing symbolic representations for the nonabelian difference algebra, difference operators, and formal series, as well as introducing a novel quasi-local extension for the algebra of formal series within the context of symbolic representations. Applying this formalism, we solve the classification problem of integrable skew-symmetric quasi-linear nonabelian equations of orders $(-1,1)$, $(-2,2)$, and $(-3,3)$, consequently revealing some new equations in the process.
- Published
- 2024