1. Exploring the Zero-Shot Capabilities of LLMs Handling Multiple Problems at once
- Author
-
Wang, Zhengxiang, Kodner, Jordan, and Rambow, Owen
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Recent studies have proposed placing multiple problems in a single prompt to improve input token utilization for a more efficient LLM inference. We call this MPP, in contrast to conventional SPP that prompts an LLM with a single problem at a time. While MPP has been shown to work comparably well or even better than SPP under few-shot settings, its zero-shot performance is underexplored, which better reveals the innate multiple problem handling capabilities of LLMs. To address that, we study the zero-shot MPP performance of various LLMs on 6 classification and 12 reasoning benchmarks and confirm that LLMs are competent zero-shot multi-problem solvers. We also examine the conditions of effectiveness of zero-shot MPP and explore several model-level factors that may enable MPP. We observe that LLMs consistently perform worse with selecting indices of texts of a given class label and with multiple mixed-source reasoning problems, indicating a lack of true understanding. We also find that instruction tuning is an important factor than enhances MPP., Comment: 26 pages, 11 figures, 16 tables
- Published
- 2024