1,348 results on '"Wang, Y. G."'
Search Results
2. Imaging of single barium atoms in a second matrix site in solid xenon for barium tagging in a $^{136}$Xe double beta decay experiment
- Author
-
Yvaine, M., Fairbank, D., Soderstrom, J., Taylor, C., Stanley, J., Walton, T., Chambers, C., Iverson, A., Fairbank, W., Kharusi, S. Al, Amy, A., Angelico, E., Anker, A., Arnquist, I. J., Atencio, A., Bane, J., Belov, V., Bernard, E. P., Bhatta, T., Bolotnikov, A., Breslin, J., Breur, P. A., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cesmecioglu, D., Chambers, E., Chana, B., Chernyak, D., Chiu, M., Collister, R., Cvitan, M., Daniels, T., Darroch, L., DeVoe, R., di Vacri, M. L., Dolinski, M. J., Eckert, B., Elbeltagi, M., Elmansali, R., Fatemighomi, N., Foust, B., Fu, Y. S., Gallacher, D., Gallice, N., Giacomini, G., Gillis, W., Gingras, C., Gornea, R., Gratta, G., Hardy, C. A., Hedges, S., Hein, E., Holt, J. D., Hoppe, E. W., Karelin, A., Keblbeck, D., Kotov, I., Kuchenkov, A., Kumar, K. S., Kwiatkowski, A. A., Larson, A., Latif, M. B., Leach, K. G., Lennarz, A., Leonard, D. S., Lewis, H., Li, G., Li, Z., Licciardi, C., Lindsay, R., MacLellan, R., Majidi, S., Malbrunot, C., Masbou, J., McMichael, K., Peregrina, M. Medina, Moe, M., Mong, B., Moore, D. C., Natzke, C. R., Ngwadla, X. E., Ni, K., Nolan, A., Nowicki, S. C., Ondze, J. C. Nzobadila, Odian, A., Orrell, J. L., Ortega, G. S., Overman, C. T., Pagani, L., Smalley, H. Peltz, Perna, A., Pocar, A., Radeka, V., Raguzin, E., Rasiwala, H., Ray, D., Rescia, S., Richardson, G., Ross, R., Rowson, P. C., Saldanha, R., Sangiorgio, S., Schwartz, S., Sekula, S., Si, L., Soma, A. K., Spadoni, F., Stekhanov, V., Sun, X. L., Thibado, S., Tidball, A., Totev, T., Triambak, S., Tsang, T., Tyuka, O. A., van Bruggen, E., Vidal, M., Walent, M., Wamba, K., Wang, H. W., Wang, Q. D., Wang, W., Wang, Y. G., Watts, M., Wehrfritz, M., Wen, L. J., Wichoski, U., Wilde, S., Worcester, M., Xu, H., Yang, L., Yu, M., and Zeldovich, O.
- Subjects
Physics - Atomic Physics ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is $^{136}$Xe, which would double beta decay into $^{136}$Ba. Detecting the single $^{136}$Ba daughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform single atom imaging of Ba atoms in a single-vacancy site of a solid xenon matrix. In this paper, the effort to identify signal from individual barium atoms is extended to Ba atoms in a hexa-vacancy site in the matrix and is achieved despite increased photobleaching in this site. Abrupt fluorescence turn-off of a single Ba atom is also observed. Significant recovery of fluorescence signal lost through photobleaching is demonstrated upon annealing of Ba deposits in the Xe ice. Following annealing, it is observed that Ba atoms in the hexa-vacancy site exhibit antibleaching while Ba atoms in the tetra-vacancy site exhibit bleaching. This may be evidence for a matrix site transfer upon laser excitation. Our findings offer a path of continued research toward tagging of Ba daughters in all significant sites in solid xenon., Comment: 9 pages, 8 figures
- Published
- 2024
3. Supernova Electron-Neutrino Interactions with Xenon in the nEXO Detector
- Author
-
nEXO Collaboration, Hedges, S., Kharusi, S. Al, Angelico, E., Brodsky, J. P., Richardson, G., Wilde, S., Amy, A., Anker, A., Arnquist, I. J., Arsenault, P., Atencio, A., Badhrees, I., Bane, J., Belov, V., Bernard, E. P., Bhatta, T., Bolotnikov, A., Breslin, J., Breur, P. A., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L. Q., Cesmecioglu, D., Chambers, E., Chana, B., Charlebois, S. A., Chernyak, D., Chiu, M., Collister, R., Cvitan, M., Dalmasson, J., Daniels, T., Darroch, L., DeVoe, R., di Vacri, M. L., Ding, Y. Y., Dolinski, M. J., Eckert, B., Elbeltagi, M., Elmansali, R., Fabris, L., Fairbank, W., Farine, J., Fatemighomi, N., Foust, B., Fu, Y. S., Gallacher, D., Gallice, N., Gillis, W., Goeldi, D., Gorham, A., Gornea, R., Gratta, G., Guan, Y. D., Hardy, C. A., Heffner, M., Hein, E., Holt, J. D., Hoppe, E. W., House, A., Hunt, W., Iverson, A., Kachru, P., Karelin, A., Keblbeck, D., Kuchenkov, A., Kumar, K. S., Larson, A., Latif, M. B., Leach, K. G., Lenardo, B. G., Leonard, D. S., Lewis, H., Li, G., Li, Z., Licciardi, C., Lindsay, R., MacLellan, R., Majidi, S., Malbrunot, C., Martel-Dion, P., Masbou, J., McMichael, K., Medina-Peregrina, M., Mong, B., Moore, D. C., Nattress, J., Natzke, C. R., Ngwadla, X. E., Ni, K., Nolan, A., Nowicki, S. C., Ondze, J. C. Nzobadila, Orrell, J. L., Ortega, G. S., Overman, C. T., Pagani, L., Smalley, H. Peltz, Perna, A., Piepke, A., Franco, T. Pinto, Pocar, A., Pratte, J. -F., Rasiwala, H., Ray, D., Raymond, K., Rescia, S., Riot, V., Ross, R., Saldanha, R., Sangiorgio, S., Schwartz, S., Sekula, S., Soderstrom, J., Soma, A. K., Spadoni, F., Sun, X. L., Thibado, S., Tidball, A., Totev, T., Triambak, S., Tsang, R. H. M., Tyuka, O. A., van Bruggen, E., Vidal, M., Viel, S., Walent, M., Wang, Q. D., Wang, W., Wang, Y. G., Watts, M., Wehrfritz, M., Wei, W., Wen, L. J., Wichoski, U., Wu, X. M., Xu, H., Yang, H. B., Yang, L., Yu, M., Yvaine, M., Zeldovich, O., and Zhao, J.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Theory - Abstract
Electron-neutrino charged-current interactions with xenon nuclei were modeled in the nEXO neutrinoless double-beta decay detector (~5-tonne, 90% ${}^{136}$Xe, 10% ${}^{134}$Xe) to evaluate its sensitivity to supernova neutrinos. Predictions for event rates and detectable signatures were modeled using the MARLEY event generator. We find good agreement between MARLEY's predictions and existing theoretical calculations of the inclusive cross sections at supernova neutrino energies. The interactions modeled by MARLEY were simulated within the nEXO simulation framework and were run through an example reconstruction algorithm to determine the detector's efficiency for reconstructing these events. The simulated data, incorporating the detector response, were used to study the ability of nEXO to reconstruct the incident electron-neutrino spectrum and these results were extended to a larger xenon detector of the same isotope enrichment. We estimate that nEXO will be able to observe electron-neutrino interactions with xenon from supernovae as far as 5 to 8 kpc from earth, while the ability to reconstruct incident electron-neutrino spectrum parameters from observed interactions in nEXO is limited to closer supernovae., Comment: 17 pages, 16 figures
- Published
- 2024
4. Reducing the annealing heating rate sensitivity of Fe83.5Si3B10P2Cu1.5 soft magnetic nanocrystalline alloy by adjusting the melt spinning cooling rate
- Author
-
Huang, T. X., Yan, Q., Chen, F. G., Zhou, H. Z., and Wang, Y. G.
- Published
- 2024
- Full Text
- View/download PDF
5. An integrated online radioassay data storage and analytics tool for nEXO
- Author
-
Tsang, R. H. M., Piepke, A., Kharusi, S. Al, Angelico, E., Arnquist, I. J., Atencio, A., Badhrees, I., Bane, J., Belov, V., Bernard, E. P., Bhat, A., Bhatta, T., Bolotnikov, A., Breur, P. A., Brodsky, J. P., Brown, E., Brunner, T., Caden, E., Cao, G. F., Cao, L. Q., Cesmecioglu, D., Chambers, C., Chambers, E., Chana, B., Charlebois, S. A., Chernyak, D., Chiu, M., Cleveland, B., Cohen, J. R., Collister, R., Cvitan, M., Dalmasson, J., Darroch, L., Deslandes, K., DeVoe, R., di Vacri, M. L., Ding, Y. Y., Dolinski, M. J., Echevers, J., Eckert, B., Elbeltagi, M., Elmansali, R., Fabris, L., Fairbank, W., Farine, J., Fu, Y. S., Gallacher, D., Gallina, G., Gautam, P., Giacomini, G., Gillis, W., Gingras, C., Goeldi, D., Gornea, R., Gratta, G., Guan, Y. D., Hardy, C. A., Hedges, S., Heffner, M., Hein, E., Holt, J., Hoppe, E. W., House, A., Hunt, W., Iverson, A., Jamil, A., Jiang, X. S., Karelin, A., Kaufman, L. J., Kotov, I., Krücken, R., Kuchenkov, A., Kumar, K. S., Larson, A., Leach, K. G., Lenardo, B. G., Leonard, D. S., Li, G., Li, S., Li, Z., Licciardi, C., Lindsay, R., MacLellan, R., Mahtab, M., Majidi, S., Malbrunot, C., Martel-Dion, P., Masbou, J., Massacret, N., McMichael, K., Mong, B., Moore, D. C., Murray, K., Nattress, J., Natzke, C. R., Ngwadla, X. E., Ni, K., Nolan, A., Nowicki, S. C., Ondze, J. C. Nzobadila, Orrell, J. L., Ortega, G. S., Overman, C. T., Peltz-Smalley, H., Perna, A., Franco, T. Pinto, Pocar, A., Pratte, J. -F., Radeka, V., Raguzin, E., Rasiwala, H., Ray, D., Rebeiro, B., Rescia, S., Retière, F., Richardson, G., Ringuette, J., Riot, V., Rowson, P. C., Roy, N., Rudolph, L., Saldanha, R., Sangiorgio, S., Schwartz, S., Soderstrom, J., Soma, A. K., Spadoni, F., Stekhanov, V., Sun, X. L., Barakoohi, E. Teimoori, Thibado, S., Tidball, A., Totev, T., Triambak, S., Tsang, T., Tyuka, O. A., Underwood, R., van Bruggen, E., Veeraraghavan, V., Vidal, M., Viel, S., Walent, M., Wamba, K., Wang, Q. D., Wang, W., Wang, Y. G., Watts, M., Wei, W., Wen, L. J., Wichoski, U., Wilde, S., Worcester, M., Wu, S., Wu, X. M., Yang, H., Yang, L., Yvaine, M., Zeldovich, O., Zhao, J., and Ziegler, T.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
Large-scale low-background detectors are increasingly used in rare-event searches as experimental collaborations push for enhanced sensitivity. However, building such detectors, in practice, creates an abundance of radioassay data especially during the conceptual phase of an experiment when hundreds of materials are screened for radiopurity. A tool is needed to manage and make use of the radioassay screening data to quantitatively assess detector design options. We have developed a Materials Database Application for the nEXO experiment to serve this purpose. This paper describes this database, explains how it functions, and discusses how it streamlines the design of the experiment.
- Published
- 2023
6. STCF Conceptual Design Report: Volume 1 -- Physics & Detector
- Author
-
Achasov, M., Ai, X. C., Aliberti, R., An, L. P., An, Q., Bai, X. Z., Bai, Y., Bakina, O., Barnyakov, A., Blinov, V., Bobrovnikov, V., Bodrov, D., Bogomyagkov, A., Bondar, A., Boyko, I., Bu, Z. H., Cai, F. M., Cai, H., Cao, J. J., Cao, Q. H., Cao, Z., Chang, Q., Chao, K. T., Chen, D. Y., Chen, H., Chen, H. X., Chen, J. F., Chen, K., Chen, L. L., Chen, P., Chen, S. L., Chen, S. M., Chen, S., Chen, S. P., Chen, W., Chen, X. F., Chen, X., Chen, Y., Chen, Y. Q., Cheng, H. Y., Cheng, J., Cheng, S., Dai, J. P., Dai, L. Y., Dai, X. C., Dedovich, D., Denig, A., Denisenko, I., Ding, D. Z., Dong, L. Y., Dong, W. H., Druzhinin, V., Du, D. S., Du, Y. J., Du, Z. G., Duan, L. M., Epifanov, D., Fan, Y. L., Fang, S. S., Fang, Z. J., Fedotovich, G., Feng, C. Q., Feng, X., Feng, Y. T., Fu, J. L., Gao, J., Ge, P. S., Geng, C. Q., Geng, L. S., Gilman, A., Gong, L., Gong, T., Gradl, W., Gu, J. L., Escalante, A. G., Gui, L. C., Guo, F. K., Guo, J. C., Guo, J., Guo, Y. P., Guo, Z. H., Guskov, A., Han, K. L., Han, L., Han, M., Hao, X. Q., He, J. B., He, S. Q., He, X. G., He, Y. L., He, Z. B., Heng, Z. X., Hou, B. L., Hou, T. J., Hou, Y. R., Hu, C. Y., Hu, H. M., Hu, K., Hu, R. J., Hu, X. H., Hu, Y. C., Hua, J., Huang, G. S., Huang, J. S., Huang, M., Huang, Q. Y., Huang, W. Q., Huang, X. T., Huang, X. J., Huang, Y. B., Huang, Y. S., Hüsken, N., Ivanov, V., Ji, Q. P., Jia, J. J., Jia, S., Jia, Z. K., Jiang, H. B., Jiang, J., Jiang, S. Z., Jiao, J. B., Jiao, Z., Jing, H. J., Kang, X. L., Kang, X. S., Ke, B. C., Kenzie, M., Khoukaz, A., Koop, I., Kravchenko, E., Kuzmin, A., Lei, Y., Levichev, E., Li, C. H., Li, C., Li, D. Y., Li, F., Li, G., Li, H. B., Li, H., Li, H. N., Li, H. J., Li, H. L., Li, J. M., Li, J., Li, L., Li, L. Y., Li, N., Li, P. R., Li, R. H., Li, S., Li, T., Li, W. J., Li, X. H., Li, X. Q., Li, Y., Li, Y. Y., Li, Z. J., Liang, H., Liang, J. H., Liao, G. R., Liao, L. Z., Liao, Y., Lin, C. X., Lin, X. S., Liu, B. J., Liu, C. W., Liu, D., Liu, F., Liu, G. M., Liu, H. B., Liu, J., Liu, J. J., Liu, J. B., Liu, K., Liu, K. Y., Liu, L., Liu, Q., Liu, S. B., Liu, T., Liu, X., Liu, Y. W., Liu, Y., Liu, Y. L., Liu, Z. Q., Liu, Z. Y., Liu, Z. W., Logashenko, I., Long, Y., Lu, C. G., Lu, N., Lü, Q. F., Lu, Y., Lv, Z., Lukin, P., Luo, F. J., Luo, T., Luo, X. F., Lyu, H. J., Lyu, X. R., Ma, J. P., Ma, P., Ma, Y., Maas, F., Malde, S., Matvienko, D., Meng, Z. X., Mitchell, R., Dias, J. M., Nefediev, A., Nefedov, Y., Olsen, S. L., Ouyang, Q., Pakhlov, P., Pakhlova, G., Pan, X., Pan, Y., Passemar, E., Pei, Y. P., Peng, H. P., Peng, L., Peng, X. Y., Peng, X. J., Peters, K., Pivovarov, S., Pyata, E., Qi, B. B., Qi, Y. Q., Qian, W. B., Qian, Y., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. S., Qiu, T. L., Rademacker, J., Redmer, C. F., Sang, H. Y., Saur, M., Shan, W., Shan, X. Y., Shang, L. L., Shao, M., Shekhtman, L., Shen, C. P., Shen, J. M., Shen, Z. T., Shi, H. C., Shi, X. D., Shwartz, B., Sokolov, A., Song, J. J., Song, W. M., Song, Y., Song, Y. X., Sukharev, A., Sun, J. F., Sun, L., Sun, X. M., Sun, Y. J., Sun, Z. P., Tang, J., Tang, S. S., Tang, Z. B., Tian, C. H., Tian, J. S., Tikhonov, Y., Todyshev, K., Uglov, T., Vorobyev, V., Wan, B. D., Wang, B. L., Wang, B., Wang, D. Y., Wang, G. Y., Wang, G. L., Wang, H. L., Wang, J., Wang, J. H., Wang, J. C., Wang, M. L., Wang, R., Wang, S. B., Wang, W., Wang, W. P., Wang, X. C., Wang, X. D., Wang, X. L., Wang, X. P., Wang, X. F., Wang, Y. D., Wang, Y. P., Wang, Y. Q., Wang, Y. L., Wang, Y. G., Wang, Z. Y., Wang, Z. L., Wang, Z. G., Wei, D. H., Wei, X. L., Wei, X. M., Wen, Q. G., Wen, X. J., Wilkinson, G., Wu, B., Wu, J. J., Wu, L., Wu, P. W., Wu, T. W., Wu, Y. S., Xia, L., Xiang, T., Xiao, C. W., Xiao, D., Xiao, M., Xie, Y. H., Xing, Y., Xing, Z. Z., Xiong, X. N., Xu, F. R., Xu, J., Xu, L. L., Xu, Q. N., Xu, X. C., Xu, X. P., Xu, Y. C., Xu, Y. P., Xu, Y., Xu, Z. Z., Xuan, D. W., Xue, F. F., Yan, L., Yan, M. J., Yan, W. B., Yan, W. C., Yan, X. S., Yang, B. F., Yang, C., Yang, H. J., Yang, H. R., Yang, H. T., Yang, J. F., Yang, S. L., Yang, Y. D., Yang, Y. H., Yang, Y. S., Yang, Y. L., Yang, Z. Y., Yao, D. L., Yin, H., Yin, X. H., Yokozaki, N., You, S. Y., You, Z. Y., Yu, C. X., Yu, F. S., Yu, G. L., Yu, H. L., Yu, J. S., Yu, J. Q., Yuan, L., Yuan, X. B., Yue, Y. F., Zeng, M., Zeng, S., Zhang, A. L., Zhang, B. W., Zhang, G. Y., Zhang, G. Q., Zhang, H. J., Zhang, H. B., Zhang, J. Y., Zhang, J. L., Zhang, J., Zhang, L., Zhang, L. M., Zhang, R., Zhang, S. L., Zhang, T., Zhang, X., Zhang, Y., Zhang, Y. X., Zhang, Y. T., Zhang, Y. F., Zhang, Y. C., Zhang, Y. M., Zhang, Y. L., Zhang, Z. H., Zhang, Z. Y., Zhao, H. Y., Zhao, J., Zhao, L., Zhao, M. G., Zhao, Q., Zhao, R. G., Zhao, R. P., Zhao, Z. G., Zhao, Z. X., Zhemchugov, A., Zheng, B., Zheng, L., Zheng, Q. B., Zheng, R., Zheng, Y. H., Zhong, X. H., Zhou, H. J., Zhou, H. Q., Zhou, H., Zhou, S. H., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, Y. L., Zhou, Y., Zhou, Y. X., Zhou, Z. Y., Zhu, J. Y., Zhu, K., Zhu, R. D., Zhu, R. L., Zhu, S. H., Zhu, Y. C., Zhu, Z. A., Zhukova, V., Zhulanov, V., Zou, B. S., and Zuo, Y. B.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Physics - Instrumentation and Detectors - Abstract
The Super $\tau$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $\tau$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies.
- Published
- 2023
- Full Text
- View/download PDF
7. Optimization of Total Flavonoids Extraction from Coreopsis tinctoria Nutt. by Response Surface Methodology
- Author
-
Liu, X. F., Liu, L., Wang, Y. G., Leng, F. F., Wang, S. V., and Li, Y. C
- Subjects
Coreopsis tinctoria Nutt. ,flavonoid ,reflux extraction ,response surface methodology ,Chemistry ,QD1-999 - Abstract
Response surface methodology (RSM) was applied to predict optimum conditions for extraction of flavonoid from Coreopsis tinctoria Nutt. A central composite design (CCD) was used to monitor the effect of extraction temperature, extraction time, and water-to-material ratio on yield of total flavonoids. The optimal extraction conditions were obtained as water-to-material ratio of 55 ml g−1, extraction temperature of 80 °C and extraction time of 70 minutes. Under these conditions, the average total flavonoids yield, according to the mass of raw material, was 9.0 ± 0.6 %, which corresponds to the predicted value of 8.9 %. Thus, the extraction method was applied successfully to extract total flavonoids from C. tinctoria.
- Published
- 2014
8. Synergetic improvement in energy storage performance and dielectric stability in lead-free 0.75BaTi0.85Zr0.15O3–0.25Sr0.7La0.2TiO3 relaxor ceramic
- Author
-
Jain, Aditya, Kumar, Ajay, Gupta, Neha, Kumar, Kaushal, Goyal, Amit Kumar, and Wang, Y. G.
- Published
- 2024
- Full Text
- View/download PDF
9. Effect of P/B ratio on the thermal stability, soft magnetic properties and magnetostriction properties of Fe80B14−xPxSi5C1 amorphous alloys
- Author
-
Yan, Q., Lu, L. L., Chen, F. G., Jain, Aditya, and Wang, Y. G.
- Published
- 2024
- Full Text
- View/download PDF
10. STCF conceptual design report (Volume 1): Physics & detector
- Author
-
Achasov, M., Ai, X. C., An, L. P., Aliberti, R., An, Q., Bai, X. Z., Bai, Y., Bakina, O., Barnyakov, A., Blinov, V., Bobrovnikov, V., Bodrov, D., Bogomyagkov, A., Bondar, A., Boyko, I., Bu, Z. H., Cai, F. M., Cai, H., Cao, J. J., Cao, Q. H., Cao, X., Cao, Z., Chang, Q., Chao, K. T., Chen, D. Y., Chen, H., Chen, H. X., Chen, J. F., Chen, K., Chen, L. L., Chen, P., Chen, S. L., Chen, S. M., Chen, S., Chen, S. P., Chen, W., Chen, X., Chen, X. F., Chen, X. R., Chen, Y., Chen, Y. Q., Cheng, H. Y., Cheng, J., Cheng, S., Cheng, T. G., Dai, J. P., Dai, L. Y., Dai, X. C., Dedovich, D., Denig, A., Denisenko, I., Dias, J. M., Ding, D. Z., Dong, L. Y., Dong, W. H., Druzhinin, V., Du, D. S., Du, Y. J., Du, Z. G., Duan, L. M., Epifanov, D., Fan, Y. L., Fang, S. S., Fang, Z. J., Fedotovich, G., Feng, C. Q., Feng, X., Feng, Y. T., Fu, J. L., Gao, J., Gao, Y. N., Ge, P. S., Geng, C. Q., Geng, L. S., Gilman, A., Gong, L., Gong, T., Gou, B., Gradl, W., Gu, J. L., Guevara, A., Gui, L. C., Guo, A. Q., Guo, F. K., Guo, J. C., Guo, J., Guo, Y. P., Guo, Z. H., Guskov, A., Han, K. L., Han, L., Han, M., Hao, X. Q., He, J. B., He, S. Q., He, X. G., He, Y. L., He, Z. B., Heng, Z. X., Hou, B. L., Hou, T. J., Hou, Y. R., Hu, C. Y., Hu, H. M., Hu, K., Hu, R. J., Hu, W. H., Hu, X. H., Hu, Y. C., Hua, J., Huang, G. S., Huang, J. S., Huang, M., Huang, Q. Y., Huang, W. Q., Huang, X. T., Huang, X. J., Huang, Y. B., Huang, Y. S., Hüsken, N., Ivanov, V., Ji, Q. P., Jia, J. J., Jia, S., Jia, Z. K., Jiang, H. B., Jiang, J., Jiang, S. Z., Jiao, J. B., Jiao, Z., Jing, H. J., Kang, X. L., Kang, X. S., Ke, B. C., Kenzie, M., Khoukaz, A., Koop, I., Kravchenko, E., Kuzmin, A., Lei, Y., Levichev, E., Li, C. H., Li, C., Li, D. Y., Li, F., Li, G., Li, G., Li, H. B., Li, H., Li, H. N., Li, H. J., Li, H. L., Li, J. M., Li, J., Li, L., Li, L., Li, L. Y., Li, N., Li, P. R., Li, R. H., Li, S., Li, T., Li, W. J., Li, X., Li, X. H., Li, X. Q., Li, X. H., Li, Y., Li, Y. Y., Li, Z. J., Liang, H., Liang, J. H., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y., Lin, C. X., Lin, D. X., Lin, X. S., Liu, B. J., Liu, C. W., Liu, D., Liu, F., Liu, G. M., Liu, H. B., Liu, J., Liu, J. J., Liu, J. B., Liu, K., Liu, K. Y., Liu, K., Liu, L., Liu, Q., Liu, S. B., Liu, T., Liu, X., Liu, Y. W., Liu, Y., Liu, Y. L., Liu, Z. Q., Liu, Z. Y., Liu, Z. W., Logashenko, I., Long, Y., Lu, C. G., Lu, J. X., Lu, N., Lü, Q. F., Lu, Y., Lu, Y., Lu, Z., Lukin, P., Luo, F. J., Luo, T., Luo, X. F., Lyu, H. J., Lyu, X. R., Ma, J. P., Ma, P., Ma, Y., Ma, Y. M., Maas, F., Malde, S., Matvienko, D., Meng, Z. X., Mitchell, R., Nefediev, A., Nefedov, Y., Olsen, S. L., Ouyang, Q., Pakhlov, P., Pakhlova, G., Pan, X., Pan, Y., Passemar, E., Pei, Y. P., Peng, H. P., Peng, L., Peng, X. Y., Peng, X. J., Peters, K., Pivovarov, S., Pyata, E., Qi, B. B., Qi, Y. Q., Qian, W. B., Qian, Y., Qiao, C. F., Qin, J. J., Qin, J. J., Qin, L. Q., Qin, X. S., Qiu, T. L., Rademacker, J., Redmer, C. F., Sang, H. Y., Saur, M., Shan, W., Shan, X. Y., Shang, L. L., Shao, M., Shekhtman, L., Shen, C. P., Shen, J. M., Shen, Z. T., Shi, H. C., Shi, X. D., Shwartz, B., Sokolov, A., Song, J. J., Song, W. M., Song, Y., Song, Y. X., Sukharev, A., Sun, J. F., Sun, L., Sun, X. M., Sun, Y. J., Sun, Z. P., Tang, J., Tang, S. S., Tang, Z. B., Tian, C. H., Tian, J. S., Tian, Y., Tikhonov, Y., Todyshev, K., Uglov, T., Vorobyev, V., Wan, B. D., Wang, B. L., Wang, B., Wang, D. Y., Wang, G. Y., Wang, G. L., Wang, H. L., Wang, J., Wang, J. H., Wang, J. C., Wang, M. L., Wang, R., Wang, R., Wang, S. B., Wang, W., Wang, W. P., Wang, X. C., Wang, X. D., Wang, X. L., Wang, X. L., Wang, X. P., Wang, X. F., Wang, Y. D., Wang, Y. P., Wang, Y. Q., Wang, Y. L., Wang, Y. G., Wang, Z. Y., Wang, Z. Y., Wang, Z. L., Wang, Z. G., Wei, D. H., Wei, X. L., Wei, X. M., Wen, Q. G., Wen, X. J., Wilkinson, G., Wu, B., Wu, J. J., Wu, L., Wu, P., Wu, T. W., Wu, Y. S., Xia, L., Xiang, T., Xiao, C. W., Xiao, D., Xiao, M., Xie, K. P., Xie, Y. H., Xing, Y., Xing, Z. Z., Xiong, X. N., Xu, F. R., Xu, J., Xu, L. L., Xu, Q. N., Xu, X. C., Xu, X. P., Xu, Y. C., Xu, Y. P., Xu, Y., Xu, Z. Z., Xuan, D. W., Xue, F. F., Yan, L., Yan, M. J., Yan, W. B., Yan, W. C., Yan, X. S., Yang, B. F., Yang, C., Yang, H. J., Yang, H. R., Yang, H. T., Yang, J. F., Yang, S. L., Yang, Y. D., Yang, Y. H., Yang, Y. S., Yang, Y. L., Yang, Z. W., Yang, Z. Y., Yao, D. L., Yin, H., Yin, X. H., Yokozaki, N., You, S. Y., You, Z. Y., Yu, C. X., Yu, F. S., Yu, G. L., Yu, H. L., Yu, J. S., Yu, J. Q., Yuan, L., Yuan, X. B., Yuan, Z. Y., Yue, Y. F., Zeng, M., Zeng, S., Zhang, A. L., Zhang, B. W., Zhang, G. Y., Zhang, G. Q., Zhang, H. J., Zhang, H. B., Zhang, J. Y., Zhang, J. L., Zhang, J., Zhang, L., Zhang, L. M., Zhang, Q. A., Zhang, R., Zhang, S. L., Zhang, T., Zhang, X., Zhang, Y., Zhang, Y. J., Zhang, Y. X., Zhang, Y. T., Zhang, Y. F., Zhang, Y. C., Zhang, Y., Zhang, Y., Zhang, Y. M., Zhang, Y. L., Zhang, Z. H., Zhang, Z. Y., Zhang, Z. Y., Zhao, H. Y., Zhao, J., Zhao, L., Zhao, M. G., Zhao, Q., Zhao, R. G., Zhao, R. P., Zhao, Y. X., Zhao, Z. G., Zhao, Z. X., Zhemchugov, A., Zheng, B., Zheng, L., Zheng, Q. B., Zheng, R., Zheng, Y. H., Zhong, X. H., Zhou, H. J., Zhou, H. Q., Zhou, H., Zhou, S. H., Zhou, X., Zhou, X. K., Zhou, X. P., Zhou, X. R., Zhou, Y. L., Zhou, Y., Zhou, Y. X., Zhou, Z. Y., Zhu, J. Y., Zhu, K., Zhu, R. D., Zhu, R. L., Zhu, S. H., Zhu, Y. C., Zhu, Z. A., Zhukova, V., Zhulanov, V., Zou, B. S., and Zuo, Y. B.
- Published
- 2024
- Full Text
- View/download PDF
11. Optimizing Electrical, Magnetic, and Magnetoelectric Characteristics of Ba0.85Sr0.15TiO3–Ni0.75Zn0.25Fe2O4 Core-Shell Ceramic
- Author
-
Jain, Aditya, Kumar, Ajay, Gupta, Neha, Kumar, Kaushal, and Wang, Y. G.
- Published
- 2023
- Full Text
- View/download PDF
12. Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
- Author
-
Bay, Daya, collaborations, JUNO, Abusleme, A., Adam, T., Ahmad, S., Aiello, S., Akram, M., Ali, N., An, F. P., An, G. P., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., de André, J. P. A. M., Babic, A., Balantekin, A. B., Baldini, W., Baldoncini, M., Band, H. R., Barresi, A., Baussan, E., Bellato, M., Bernieri, E., Biare, D., Birkenfeld, T., Bishai, M., Blin, S., Blum, D., Blyth, S., Bordereau, C., Brigatti, A., Brugnera, R., Budano, A., Burgbacher, P., Buscemi, M., Bussino, S., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y. K., Cai, Z. Y., Cammi, A., Campeny, A., Cao, C. Y., Cao, G. F., Cao, J., Caruso, R., Cerna, C., Chakaberia, I., Chang, J. F., Chang, Y., Chen, H. S., Chen, P. A., Chen, P. P., Chen, S. M., Chen, S. J., Chen, X. R., Chen, Y. W., Chen, Y. X., Chen, Y., Chen, Z., Cheng, J., Cheng, Y. P., Cheng, Z. K., Chepurnov, A., Cherwinka, J. J., Chiarello, F., Chiesa, D., Chimenti, P., Chu, M. C., Chukanov, A., Chuvashova, A., Clementi, ., Clerbaux, B., Di Lorenzo, S. Conforti, Corti, D., Costa, S., Corso, F. D., Cummings, J. P., Dalager, O., De La Taille, C., Deng, F. S., Deng, J. W., Deng, Z., Deng, Z. Y., Depnering, W., Diaz, M., Ding, X. F., Ding, Y. Y., Dirgantara, B., Dmitrievsky, S., Diwan, M. V., Dohnal, T., Donchenko, G., Dong, J. M., Dornic, D., Doroshkevich, E., Dove, J., Dracos, M., Druillole, F., Du, S. X., Dusini, S., Dvorak, M., Dwyer, D. A., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D. H., Fan, L., Fang, C., Fang, J., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. C., Feng, Q. C., Fiorentini, G., Ford, R., Formozov, A., Fournier, A., Franke, S., Gallo, J. P., Gan, H. N., Gao, F., Garfagnini, A., Göttel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G. H., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, M., Gromov, V., Gu, M. H., Gu, W. Q., Gu, X. F., Gu, Y., Guan, M. Y., Guardone, N., Gul, M., Guo, C., Guo, J. Y., Guo, L., Guo, W. L., Guo, X. H., Guo, Y. H., Guo, Z., Haacke, M., Hackenburg, R. W., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hans, S., He, M., He, W., Heeger, K. M., Heinz, T., Heng, Y. K., Herrera, R., Higuera, A., Hong, D. J., Hor, Y. K., Hou, S. J., Hsiung, Y. B., Hu, B. Z., Hu, H., Hu, J. R., Hu, J., Hu, S. Y., Hu, T., Hu, Z. J., Huang, C. H., Huang, G. H., Huang, H. X., Huang, Q. H., Huang, W. H., Huang, X. T., Huang, Y. B., Huber, P., Hui, J. Q., Huo, L., Huo, W. J., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Ioannisyan, D., Isocrate, R., Jaffe, D. E., Jen, K. L., Ji, X. L., Ji, X. P., Ji, X. Z., Jia, H. H., Jia, J. J., Jian, S. Y., Jiang, D., Jiang, X. S., Jin, R. Y., Jing, X. P., Johnson, R. A., Jollet, C., Jones, D., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Kettell, S. H., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Kohn, S., Korablev, D., Kouzakov, K., Kramer, M., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachacinski, B., Lachenmaier, T., Langford, T. J., Lee, J., Lee, J. H. C., Lefevre, F., Lei, L., Lei, R., Leitner, R., Leung, J., Li, C., Li, D. M., Li, F., Li, H. T., Li, H. L., Li, J., Li, J. J., Li, J. Q., Li, K. J., Li, M. Z., Li, N., Li, Q. J., Li, R. H., Li, S. C., Li, S. F., Li, S. J., Li, T., Li, W. D., Li, W. G., Li, X. M., Li, X. N., Li, X. L., Li, X. Q., Li, Y., Li, Y. F., Li, Z. B., Li, Z. Y., Liang, H., Liang, J. J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, C. J., Lin, G. L., Lin, S. X., Lin, T., Lin, Y. H., Ling, J. J., Link, J. M., Lippi, I., Littenberg, L., Littlejohn, B. R., Liu, F., Liu, H., Liu, H. B., Liu, H. D., Liu, H. J., Liu, H. T., Liu, J. C., Liu, J. L., Liu, M., Liu, Q., Liu, R. X., Liu, S. Y., Liu, S. B., Liu, S. L., Liu, X. W., Liu, Y., Lokhov, A., Lombardi, P., Loo, K., Lorenz, S., Lu, C., Lu, H. Q., Lu, J. B., Lu, J. G., Lu, S. X., Lu, X. X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luk, K. B., Luo, F. J., Luo, G., Luo, P. W., Luo, S., Luo, W. M., Lyashuk, V., Ma, Q. M., Ma, S., Ma, X. B., Ma, X. Y., Ma, Y. Q., Malyshkin, Y., Mantovani, F., Mao, Y. J., Mari, S. M., Marini, F., Marium, S., Marshall, C., Martellini, C., Martin-Chassard, G., Caicedo, D. A. Martinez, Martini, A., Martino, J., Mayilyan, D., McDonald, K. T., McKeown, R. D., Müller, A., Meng, G., Meng, Y., Meregaglia, A., Meroni, E., Meyhöfer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muralidharan, P., Napolitano, J., Nastasi, M., Naumov, D. V., Naumova, E., Nemchenok, I., Nikolaev, A., Ning, F. P., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Ortica, F., Pan, H. R., Paoloni, A., Park, J., Parkalian, N., Parmeggiano, S., Patton, S., Payupol, T., Pec, V., Pedretti, D., Pei, Y. T., Pelliccia, N., Peng, A. G., Peng, H. P., Peng, J. C., Perrot, F., Petitjean, P. A., Rico, L. F. Pineres, Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, S., Qian, X., Qian, X. H., Qiao, H., Qin, Z. H., Qiu, S. K., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Reveco, C. M., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Rohwer, L., Romani, A., Rosero, R., Roskovec, B., Roth, C., Ruan, X. C., Ruan, X. D., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shahzad, M., Shi, G., Shi, J. Y., Shi, Y. J., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steiner, H., Steinmann, J., Stender, M., Strati, V., Studenikin, A., Sun, G. X., Sun, L. T., Sun, J. L., Sun, S. F., Sun, X. L., Sun, Y. J., Sun, Y. Z., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Troni, G., Trzaska, W., Tse, W. -H., Tull, C. E., Tuve, C., van Waasen, S., Boom, J. Vanden, Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Viren, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. H., Wang, E., Wang, G. L., Wang, J., Wang, K. Y., Wang, L., Wang, M. F., Wang, M., Wang, N. Y., Wang, R. G., Wang, S. G., Wang, W., Wang, W. S., Wang, X., Wang, X. Y., Wang, Y., Wang, Y. F., Wang, Y. G., Wang, Y. M., Wang, Y. Q., Wang, Z., Wang, Z. M., Wang, Z. Y., Watcharangkool, A., Wei, H. Y., Wei, L. H., Wei, W., Wei, Y. D., Wen, L. J., Whisnant, K., White, C. G., Wiebusch, C., Wong, S. C. F., Wong, H. L. H., Wonsak, B., Worcester, E., Wu, C. H., Wu, D. R., Wu, F. L., Wu, Q., Wu, W. J., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y. F., Xia, D. M., Xie, Y. G., Xie, Z. Q., Xing, Z. Z., Xu, D. L., Xu, F. R., Xu, H. K., Xu, J. L., Xu, J., Xu, M. H., Xu, T., Xu, Y., Xue, T., Yan, B. J., Yan, X. B., Yan, Y. P., Yang, A. B., Yang, C. G., Yang, H., Yang, J., Yang, L., Yang, X. Y., Yang, Y. F., Yang, Y. Z., Yao, H. F., Yasin, Z., Ye, J. X., Ye, M., Yegin, U., Yeh, M., Yermia, F., Yi, P. H., You, Z. Y., Young, B. L., Yu, B. X., Yu, C. X., Yu, C. Y., Yu, H. Z., Yu, M., Yu, X. H., Yu, Z. Y., Yuan, C. Z., Yuan, Y., Yuan, Z. X., Yuan, Z. Y., Yue, B. B., Zafar, N., Zambanini, A., Zeng, P., Zeng, S., Zeng, T. X., Zeng, Y. D., Zhan, L., Zhang, C., Zhang, F. Y., Zhang, G. Q., Zhang, H. H., Zhang, H. Q., Zhang, J., Zhang, J. B., Zhang, J. W., Zhang, P., Zhang, Q. M., Zhang, T., Zhang, X. M., Zhang, X. T., Zhang, Y., Zhang, Y. H., Zhang, Y. M., Zhang, Y. P., Zhang, Y. X., Zhang, Y. Y., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, F. Y., Zhao, J., Zhao, R., Zhao, S. J., Zhao, T. C., Zheng, D. Q., Zheng, H., Zheng, M. S., Zheng, Y. H., Zhong, W. R., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K. J., Zhuang, H. L., Zong, L., and Zou, J. H.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB., Comment: 13 pages, 8 figures
- Published
- 2020
13. A New Probe of Gaussianity and Isotropy applied to the CMB Maps
- Author
-
Hamann, J., Gia, Q. T. Le, Sloan, I. H., Wang, Y. G., and Womersley, R. S.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We introduce a new mathematical tool (a direction-dependent probe) to analyse the randomness of purported isotropic Gaussian random fields on the sphere. We apply the probe to assess the full-sky cosmic microwave background (CMB) temperature maps produced by the {\it Planck} collaboration (PR2 2015 and PR3 2018), with special attention to the inpainted maps. To study the randomness of the fields represented by each map we use the autocorrelation of the sequence of probe coefficients (which are just the full-sky Fourier coefficients $a_{\ell,0}$ if the $z$ axis is taken in the probe direction). If the field is {isotropic and Gaussian} then the probe coefficients for a given direction should be realisations of uncorrelated scalar Gaussian random variables. We introduce a particular function on the sphere (called the \emph{AC discrepancy}) that accentuates the departure from Gaussianity and isotropy. We find that for some of the maps, there are many directions for which the departures are significant, especially near the galactic plane. We also study the effect of varying the highest multipole used to calculate the AC discrepancy from the initial value of $1500$ to $2500$. In the case of Commander 2015, the AC discrepancy now exhibits antipodal "blobs" well away from the galactic plane. Finally, we look briefly at the non-inpainted Planck maps, for which the computed AC discrepancy maps have a very different character, with features that are global rather than local. For the particular case of the non-inpainted 2018 \texttt{SEVEM} map (which has visible equatorial pollution), we model with partial success the observed behaviour by an isotropic Gaussian random field added to a non-random needlet-like structure located near the galactic centre., Comment: 26 pages, 23 figures
- Published
- 2019
14. Research on Dense Phase Pneumatic Conveying of the Mixture of Pulverized Coal and Extract Residue of Coal Liquefaction Residue at High Pressure
- Author
-
Fang, X. H., Liu, Z., An, H. Q., Feng, Z. Y., Peng, B. Z., Li, Y., Wang, Y. G., Förstner, Ulrich, Series Editor, Rulkens, Wim H., Series Editor, Salomons, Wim, Series Editor, Lyu, Junfu, editor, and Li, Shuiqing, editor
- Published
- 2022
- Full Text
- View/download PDF
15. Free in-plane bending vibration of flexible L-shaped nanostructures based on the nonlocal beam theory
- Author
-
Wang, Y. G., Ma, W. L., and Li, X. F.
- Published
- 2022
- Full Text
- View/download PDF
16. Artifacts in magnetic spirals retrieved by transport of intensity equation (TIE)
- Author
-
Cui, J., Yao, Y., Shen, X., Wang, Y. G., and Yu, R. C.
- Subjects
Condensed Matter - Materials Science - Abstract
The artifacts in the magnetic structures reconstructed from Lorentz transmission electron microscopy (LTEM) images with TIE method have been analyzed in detail. The processing for the simulated images of Bloch and Neel spirals indicated that the improper parameters in TIE may overestimate the high frequency information and induce some false features in the retrieved images. The specimen tilting will further complicate the analysis of the images because the LTEM image contrast is not the result of the magnetization distribution within the specimen but the integral projection pattern of the magnetic induction filling the entire space including the specimen.
- Published
- 2017
- Full Text
- View/download PDF
17. The origin of atomic displacements in HAADF images of the tilted specimen
- Author
-
Cui, J., Yao, Y., Wang, Y. G., Shen, X., and Yu, R. C.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
The effects of the tilt of the crystallographic orientation with respect to an incident electron probe on high-angle annular dark field (HAADF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) have been investigated with experiments and simulations. A small specimen tilt can lead to unequal deviations of different atom species in the HAADF image and result in further relative displacement between anions and cations. Simulated HAADF images also confirm that the crystal tilt causes an artifact in atom polarization as well. The effect is derived from the scattering ability of different atoms.
- Published
- 2017
18. Central Attention Mechanism for Convolutional Neural Networks.
- Author
-
Geng, Y. X., Wang, L., Wang, Z. Y., and Wang, Y. G.
- Subjects
CONVOLUTIONAL neural networks ,CENTRAL limit theorem ,NETWORK performance ,APPLICATION software ,ACQUISITION of data - Abstract
Model performance has been significantly enhanced by channel attention. The average pooling procedure creates skewness, lowering the performance of the network architecture. In the channel attention approach, average pooling is used to collect feature information to provide representative values. By leveraging the central limit theorem, we hypothesize that the strip-shaped average pooling operation will generate a one-dimensional tensor by considering the spatial position information of the feature map. The resulting tensor, obtained through average pooling, serves as the representative value for the features, mitigating skewness during the process. By incorporating the concept of the central limit theorem into the channel attention operation process, this study introduces a novel attention mechanism known as the "Central Attention Mechanism (CAM)." Instead of directly using average pooling to generate channel representative values, the central attention approach employs star-stripe average pooling to normalize multiple feature representative values into a single representative value. In this way, strip-shaped average pooling can be utilized to collect data and generate a one-dimensional tensor, while star-stripe average pooling can provide feature representative values based on different spatial directions. To generate channel attention for the complementary input features, the activation of the feature representation value is performed for each channel. Our attention approach is flexible and can be seamlessly incorporated into various traditional network structures. Through rigorous testing, we demonstrate the effectiveness of our attention strategy, which can be applied to a wide range of computer vision applications and outperforms previous attention techniques. [ABSTRACT FROM AUTHOR]
- Published
- 2024
19. Large Kernel Disassembling Attention Mechanism for Remote Sensing Object Detection.
- Author
-
Geng, Y. X., Wang, L., and Wang, Y. G.
- Subjects
OBJECT recognition (Computer vision) ,CONVOLUTIONAL neural networks ,COMPUTER vision - Abstract
In recent years, remote sensing object detection has become a research hotspot in computer vision tasks. However, previous approaches for remote sensing object detection often overlook the rich contextual information in images, which is crucial for accurately detecting occluded or interconnected objects using convolutional neural networks. To capture this contextual information, we propose a method called the Large Kernel Disassembling (LKD) Attention Mechanism. LKD breaks down large convolutional kernels to provide a larger receptive field to the convolutional neural networks, enabling them to capture rich contextual information in remote sensing images and enhance their performance. We employ an adaptive channel submodule and a deep convolutional spatial submodule. The adaptive channel submodule helps the network learn relationships between different channels, while the deep convolutional spatial submodule aids in extracting rich spatial features. We evaluate the proposed attention mechanism on the DIOR dataset and compare it with several recent attention mechanisms on the SSDD dataset. Experimental results demonstrate the superiority of LKD in terms of performance over other methods, validating the effectiveness of the Large Kernel Disassembling attention mechanism in remote sensing object detection tasks. [ABSTRACT FROM AUTHOR]
- Published
- 2024
20. Robust Estimation Procedure for Autoregressive Models with Heterogeneity
- Author
-
Callens, A., Wang, Y.-G., Fu, L., and Liquet, B.
- Published
- 2021
- Full Text
- View/download PDF
21. Research on Dense Phase Pneumatic Conveying of the Mixture of Pulverized Coal and Extract Residue of Coal Liquefaction Residue at High Pressure
- Author
-
Fang, X. H., primary, Liu, Z., additional, An, H. Q., additional, Feng, Z. Y., additional, Peng, B. Z., additional, Li, Y., additional, and Wang, Y. G., additional
- Published
- 2021
- Full Text
- View/download PDF
22. Synergetic improvement in energy storage performance and dielectric stability in lead-free 0.75BaTi0.85Zr0.15O3–0.25Sr0.7La0.2TiO3 relaxor ceramic.
- Author
-
Jain, Aditya, Kumar, Ajay, Gupta, Neha, Kumar, Kaushal, Goyal, Amit Kumar, and Wang, Y. G.
- Abstract
In recent years, the demand for energy storage devices has increased due to environmental concerns caused by the excessive use of non-renewable energy sources like coal or petroleum. Capacitors are widely used for energy storage, particularly for electrical energy. This research demonstrates the ultra-high energy storage performance of lead-free 0.75BaTi
0.85 Zr0.15 O3 –0.25Sr0.7 La0.2 TiO3 (BTZ-SLT) ceramics, achieved through microstructure tailoring and polar ordering. The aim of this investigation was to create an energy storage material by enhancing the charge transport characteristic and charge storage properties among the dielectric BTZ and relaxor ferroelectric SLT phase. At a field of 392 kV/cm, the ceramics achieved recoverable energy densities of 7.02 J/cm3 and high energy efficiency of 88.9%. Enhanced energy storage can be ascribed to microstructure modification and a complex grain matrix. The enhancement of dielectric breakdown strength in materials is attributed to the presence of various structural features, encompassing grain boundaries, as well as nanocluster and nanomosaic configurations. These grain boundaries serve as effective barriers, mitigating polar ordering and thus improving the dielectric breakdown strength. Current work presents an efficient approach to utilizing binary BTZ-SLT ceramics for electrical energy storage and provides valuable insight into the underlying mechanisms responsible for the observed energy storage characteristics. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
23. A new method for long-term safety analysis of marine structures
- Author
-
Wang, Y G, primary
- Published
- 2024
- Full Text
- View/download PDF
24. Particle Dissolution and Recrystallization Progress of Al–Mg–Si–Cu Alloy during Solution Treatment
- Author
-
Wang, X. F., Guo, M. X., Wang, H. B., Peng, W. F., Wang, Y. G., Zhang, J. S., and Zhuang, L. Z.
- Published
- 2020
- Full Text
- View/download PDF
25. Optimization of multiferroic properties in BiFeO3–BaTiO3-based ceramics by tuning oxygen octahedral distortion
- Author
-
Li, Y., Zhou, S. D., Zhu, L., Wu, H., Wang, Y. G., and Pan, F. M.
- Published
- 2020
- Full Text
- View/download PDF
26. Large magnetoelectric effect in mechanically mediated structure of TbFe2, Pb(Zr,Ti)O3 and nonmagnetic flakes
- Author
-
Bi, K., Wang, Y. G., Pan, D. A., and Wu, W.
- Subjects
Condensed Matter - Materials Science - Abstract
Magnetoelectric (ME) effect has been studied in a structure of a magnetostrictive TbFe2 alloy, two piezoelectric Pb(Zr,Ti)O3 (PZT) ceramics, and two nonmagnetic flakes. The ME coupling originates from the magnetic-mechanical-electric transform of the magnetostrictive effect in TbFe2 and the piezoelectric effect in PZT by end bonding, instead of interface bonding. Large ME coefficients of 10.5 and 9.9 Vcm-1Oe-1 were obtained at the first planar acoustic and third bending resonance frequencies, which are larger than that of conventional layered TbFe2/PZT composites. The results show that the large ME coupling can be achieved without interface coupling., Comment: 3 pages, 4 figures, 18 conferences
- Published
- 2012
- Full Text
- View/download PDF
27. On Temporal Variations of the Multi-TeV Cosmic Ray Anisotropy using the Tibet III Air Shower Array
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Gou, Q. B., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Jiang, L., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, H. C., Li, J. Y., Liu, C., Lou, Y. -Q., Lu, H., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nagai, A., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Ozawa, S., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhang, Ying, Zhaxisangzhu, and Zhou, X. X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays by Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each in a time span of about one year. The sidereal anisotropy of magnitude about 0.1% appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic cosmic rays remains insensitive to solar activities since the observation period covers more than a half of the 23rd solar cycle., Comment: 18 pages, 2 figures, accepted by The Astrophysical Journal
- Published
- 2010
- Full Text
- View/download PDF
28. Observation of TeV Gamma Rays from the Fermi Bright Galactic Sources with the Tibet Air Shower Array
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Gou, Q. B., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Jiang, L., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, H. C., Li, J. Y., Liu, C., Lou, Y. -Q., Lu, H., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Ozawa, S., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhang, Ying, Zhaxisangzhu, and Zhou, X. X.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Using the Tibet-III air shower array, we search for TeV gamma-rays from 27 potential Galactic sources in the early list of bright sources obtained by the Fermi Large Area Telescope at energies above 100 MeV. Among them, we observe 7 sources instead of the expected 0.61 sources at a significance of 2 sigma or more excess. The chance probability from Poisson statistics would be estimated to be 3.8 x 10^-6. If the excess distribution observed by the Tibet-III array has a density gradient toward the Galactic plane, the expected number of sources may be enhanced in chance association. Then, the chance probability rises slightly, to 1.2 x 10^-5, based on a simple Monte Carlo simulation. These low chance probabilities clearly show that the Fermi bright Galactic sources have statistically significant correlations with TeV gamma-ray excesses. We also find that all 7 sources are associated with pulsars, and 6 of them are coincident with sources detected by the Milagro experiment at a significance of 3 sigma or more at the representative energy of 35 TeV. The significance maps observed by the Tibet-III air shower array around the Fermi sources, which are coincident with the Milagro >=3sigma sources, are consistent with the Milagro observations. This is the first result of the northern sky survey of the Fermi bright Galactic sources in the TeV region., Comment: 17 pages, 2 figures, 1 table, Accepted for publication in ApJ Letters
- Published
- 2009
- Full Text
- View/download PDF
29. Large-scale sidereal anisotropy of multi-TeV galactic cosmic rays and the heliosphere
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Gou, Q. B., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Jiang, L., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, H. C., Li, J. Y., Liu, C., Lou, Y. -Q., Lu, H., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nagai, A., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Ozawa, S., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhang, Ying, Zhaxisangzhu, Zhou, X. X., and Kota, J.
- Subjects
Astrophysics - Galaxy Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We develop a model anisotropy best-fitting to the two-dimensional sky-map of multi-TeV galactic cosmic ray (GCR) intensity observed with the Tibet III air shower (AS) array. By incorporating a pair of intensity excesses in the hydrogen deflection plane (HDP) suggested by Gurnett et al., together with the uni-directional and bi-directional flows for reproducing the observed global feature, this model successfully reproduces the observed sky-map including the "skewed" feature of the excess intensity from the heliotail direction, whose physical origin has long remained unknown. These additional excesses are modeled by a pair of the northern and southern Gaussian distributions, each placed ~50 degree away from the heliotail direction. The amplitude of the southern excess is as large as ~0.2 %, more than twice the amplitude of the northern excess. This implies that the Tibet AS experiment discovered for the first time a clear evidence of the significant modulation of GCR intensity in the heliotail and the asymmetric heliosphere., Comment: 4 pages, 1 figure, 31st International Cosmic Ray Conference (Lodz, Poland), 2009
- Published
- 2009
30. STCF conceptual design report (Volume 1): Physics & detector
- Author
-
Achasov, M., primary, Ai, X. C., additional, An, L. P., additional, Aliberti, R., additional, An, Q., additional, Bai, X. Z., additional, Bai, Y., additional, Bakina, O., additional, Barnyakov, A., additional, Blinov, V., additional, Bobrovnikov, V., additional, Bodrov, D., additional, Bogomyagkov, A., additional, Bondar, A., additional, Boyko, I., additional, Bu, Z. H., additional, Cai, F. M., additional, Cai, H., additional, Cao, J. J., additional, Cao, Q. H., additional, Cao, X., additional, Cao, Z., additional, Chang, Q., additional, Chao, K. T., additional, Chen, D. Y., additional, Chen, H., additional, Chen, H. X., additional, Chen, J. F., additional, Chen, K., additional, Chen, L. L., additional, Chen, P., additional, Chen, S. L., additional, Chen, S. M., additional, Chen, S., additional, Chen, S. P., additional, Chen, W., additional, Chen, X., additional, Chen, X. F., additional, Chen, X. R., additional, Chen, Y., additional, Chen, Y. Q., additional, Cheng, H. Y., additional, Cheng, J., additional, Cheng, S., additional, Cheng, T. G., additional, Dai, J. P., additional, Dai, L. Y., additional, Dai, X. C., additional, Dedovich, D., additional, Denig, A., additional, Denisenko, I., additional, Dias, J. M., additional, Ding, D. Z., additional, Dong, L. Y., additional, Dong, W. H., additional, Druzhinin, V., additional, Du, D. S., additional, Du, Y. J., additional, Du, Z. G., additional, Duan, L. M., additional, Epifanov, D., additional, Fan, Y. L., additional, Fang, S. S., additional, Fang, Z. J., additional, Fedotovich, G., additional, Feng, C. Q., additional, Feng, X., additional, Feng, Y. T., additional, Fu, J. L., additional, Gao, J., additional, Gao, Y. N., additional, Ge, P. S., additional, Geng, C. Q., additional, Geng, L. S., additional, Gilman, A., additional, Gong, L., additional, Gong, T., additional, Gou, B., additional, Gradl, W., additional, Gu, J. L., additional, Guevara, A., additional, Gui, L. C., additional, Guo, A. Q., additional, Guo, F. K., additional, Guo, J. C., additional, Guo, J., additional, Guo, Y. P., additional, Guo, Z. H., additional, Guskov, A., additional, Han, K. L., additional, Han, L., additional, Han, M., additional, Hao, X. Q., additional, He, J. B., additional, He, S. Q., additional, He, X. G., additional, He, Y. L., additional, He, Z. B., additional, Heng, Z. X., additional, Hou, B. L., additional, Hou, T. J., additional, Hou, Y. R., additional, Hu, C. Y., additional, Hu, H. M., additional, Hu, K., additional, Hu, R. J., additional, Hu, W. H., additional, Hu, X. H., additional, Hu, Y. C., additional, Hua, J., additional, Huang, G. S., additional, Huang, J. S., additional, Huang, M., additional, Huang, Q. Y., additional, Huang, W. Q., additional, Huang, X. T., additional, Huang, X. J., additional, Huang, Y. B., additional, Huang, Y. S., additional, Hüsken, N., additional, Ivanov, V., additional, Ji, Q. P., additional, Jia, J. J., additional, Jia, S., additional, Jia, Z. K., additional, Jiang, H. B., additional, Jiang, J., additional, Jiang, S. Z., additional, Jiao, J. B., additional, Jiao, Z., additional, Jing, H. J., additional, Kang, X. L., additional, Kang, X. S., additional, Ke, B. C., additional, Kenzie, M., additional, Khoukaz, A., additional, Koop, I., additional, Kravchenko, E., additional, Kuzmin, A., additional, Lei, Y., additional, Levichev, E., additional, Li, C. H., additional, Li, C., additional, Li, D. Y., additional, Li, F., additional, Li, G., additional, Li, H. B., additional, Li, H., additional, Li, H. N., additional, Li, H. J., additional, Li, H. L., additional, Li, J. M., additional, Li, J., additional, Li, L., additional, Li, L. Y., additional, Li, N., additional, Li, P. R., additional, Li, R. H., additional, Li, S., additional, Li, T., additional, Li, W. J., additional, Li, X., additional, Li, X. H., additional, Li, X. Q., additional, Li, Y., additional, Li, Y. Y., additional, Li, Z. J., additional, Liang, H., additional, Liang, J. H., additional, Liang, Y. T., additional, Liao, G. R., additional, Liao, L. Z., additional, Liao, Y., additional, Lin, C. X., additional, Lin, D. X., additional, Lin, X. S., additional, Liu, B. J., additional, Liu, C. W., additional, Liu, D., additional, Liu, F., additional, Liu, G. M., additional, Liu, H. B., additional, Liu, J., additional, Liu, J. J., additional, Liu, J. B., additional, Liu, K., additional, Liu, K. Y., additional, Liu, L., additional, Liu, Q., additional, Liu, S. B., additional, Liu, T., additional, Liu, X., additional, Liu, Y. W., additional, Liu, Y., additional, Liu, Y. L., additional, Liu, Z. Q., additional, Liu, Z. Y., additional, Liu, Z. W., additional, Logashenko, I., additional, Long, Y., additional, Lu, C. G., additional, Lu, J. X., additional, Lu, N., additional, Lü, Q. F., additional, Lu, Y., additional, Lu, Z., additional, Lukin, P., additional, Luo, F. J., additional, Luo, T., additional, Luo, X. F., additional, Lyu, H. J., additional, Lyu, X. R., additional, Ma, J. P., additional, Ma, P., additional, Ma, Y., additional, Ma, Y. M., additional, Maas, F., additional, Malde, S., additional, Matvienko, D., additional, Meng, Z. X., additional, Mitchell, R., additional, Nefediev, A., additional, Nefedov, Y., additional, Olsen, S. L., additional, Ouyang, Q., additional, Pakhlov, P., additional, Pakhlova, G., additional, Pan, X., additional, Pan, Y., additional, Passemar, E., additional, Pei, Y. P., additional, Peng, H. P., additional, Peng, L., additional, Peng, X. Y., additional, Peng, X. J., additional, Peters, K., additional, Pivovarov, S., additional, Pyata, E., additional, Qi, B. B., additional, Qi, Y. Q., additional, Qian, W. B., additional, Qian, Y., additional, Qiao, C. F., additional, Qin, J. J., additional, Qin, L. Q., additional, Qin, X. S., additional, Qiu, T. L., additional, Rademacker, J., additional, Redmer, C. F., additional, Sang, H. Y., additional, Saur, M., additional, Shan, W., additional, Shan, X. Y., additional, Shang, L. L., additional, Shao, M., additional, Shekhtman, L., additional, Shen, C. P., additional, Shen, J. M., additional, Shen, Z. T., additional, Shi, H. C., additional, Shi, X. D., additional, Shwartz, B., additional, Sokolov, A., additional, Song, J. J., additional, Song, W. M., additional, Song, Y., additional, Song, Y. X., additional, Sukharev, A., additional, Sun, J. F., additional, Sun, L., additional, Sun, X. M., additional, Sun, Y. J., additional, Sun, Z. P., additional, Tang, J., additional, Tang, S. S., additional, Tang, Z. B., additional, Tian, C. H., additional, Tian, J. S., additional, Tian, Y., additional, Tikhonov, Y., additional, Todyshev, K., additional, Uglov, T., additional, Vorobyev, V., additional, Wan, B. D., additional, Wang, B. L., additional, Wang, B., additional, Wang, D. Y., additional, Wang, G. Y., additional, Wang, G. L., additional, Wang, H. L., additional, Wang, J., additional, Wang, J. H., additional, Wang, J. C., additional, Wang, M. L., additional, Wang, R., additional, Wang, S. B., additional, Wang, W., additional, Wang, W. P., additional, Wang, X. C., additional, Wang, X. D., additional, Wang, X. L., additional, Wang, X. P., additional, Wang, X. F., additional, Wang, Y. D., additional, Wang, Y. P., additional, Wang, Y. Q., additional, Wang, Y. L., additional, Wang, Y. G., additional, Wang, Z. Y., additional, Wang, Z. L., additional, Wang, Z. G., additional, Wei, D. H., additional, Wei, X. L., additional, Wei, X. M., additional, Wen, Q. G., additional, Wen, X. J., additional, Wilkinson, G., additional, Wu, B., additional, Wu, J. J., additional, Wu, L., additional, Wu, P., additional, Wu, T. W., additional, Wu, Y. S., additional, Xia, L., additional, Xiang, T., additional, Xiao, C. W., additional, Xiao, D., additional, Xiao, M., additional, Xie, K. P., additional, Xie, Y. H., additional, Xing, Y., additional, Xing, Z. Z., additional, Xiong, X. N., additional, Xu, F. R., additional, Xu, J., additional, Xu, L. L., additional, Xu, Q. N., additional, Xu, X. C., additional, Xu, X. P., additional, Xu, Y. C., additional, Xu, Y. P., additional, Xu, Y., additional, Xu, Z. Z., additional, Xuan, D. W., additional, Xue, F. F., additional, Yan, L., additional, Yan, M. J., additional, Yan, W. B., additional, Yan, W. C., additional, Yan, X. S., additional, Yang, B. F., additional, Yang, C., additional, Yang, H. J., additional, Yang, H. R., additional, Yang, H. T., additional, Yang, J. F., additional, Yang, S. L., additional, Yang, Y. D., additional, Yang, Y. H., additional, Yang, Y. S., additional, Yang, Y. L., additional, Yang, Z. W., additional, Yang, Z. Y., additional, Yao, D. L., additional, Yin, H., additional, Yin, X. H., additional, Yokozaki, N., additional, You, S. Y., additional, You, Z. Y., additional, Yu, C. X., additional, Yu, F. S., additional, Yu, G. L., additional, Yu, H. L., additional, Yu, J. S., additional, Yu, J. Q., additional, Yuan, L., additional, Yuan, X. B., additional, Yuan, Z. Y., additional, Yue, Y. F., additional, Zeng, M., additional, Zeng, S., additional, Zhang, A. L., additional, Zhang, B. W., additional, Zhang, G. Y., additional, Zhang, G. Q., additional, Zhang, H. J., additional, Zhang, H. B., additional, Zhang, J. Y., additional, Zhang, J. L., additional, Zhang, J., additional, Zhang, L., additional, Zhang, L. M., additional, Zhang, Q. A., additional, Zhang, R., additional, Zhang, S. L., additional, Zhang, T., additional, Zhang, X., additional, Zhang, Y., additional, Zhang, Y. J., additional, Zhang, Y. X., additional, Zhang, Y. T., additional, Zhang, Y. F., additional, Zhang, Y. C., additional, Zhang, Y. M., additional, Zhang, Y. L., additional, Zhang, Z. H., additional, Zhang, Z. Y., additional, Zhao, H. Y., additional, Zhao, J., additional, Zhao, L., additional, Zhao, M. G., additional, Zhao, Q., additional, Zhao, R. G., additional, Zhao, R. P., additional, Zhao, Y. X., additional, Zhao, Z. G., additional, Zhao, Z. X., additional, Zhemchugov, A., additional, Zheng, B., additional, Zheng, L., additional, Zheng, Q. B., additional, Zheng, R., additional, Zheng, Y. H., additional, Zhong, X. H., additional, Zhou, H. J., additional, Zhou, H. Q., additional, Zhou, H., additional, Zhou, S. H., additional, Zhou, X., additional, Zhou, X. K., additional, Zhou, X. P., additional, Zhou, X. R., additional, Zhou, Y. L., additional, Zhou, Y., additional, Zhou, Y. X., additional, Zhou, Z. Y., additional, Zhu, J. Y., additional, Zhu, K., additional, Zhu, R. D., additional, Zhu, R. L., additional, Zhu, S. H., additional, Zhu, Y. C., additional, Zhu, Z. A., additional, Zhukova, V., additional, Zhulanov, V., additional, Zou, B. S., additional, and Zuo, Y. B., additional
- Published
- 2023
- Full Text
- View/download PDF
31. Treatment of ischemic heart failure through ultrasound-targeted microbubble destruction and it's mechanism
- Author
-
Wu, J U E F E I, primary, Cai, Q Y, additional, Li, Q I N, additional, Li, S H A S H A, additional, Li, H A O Q I, additional, Chen, Y U A N Q I, additional, and Wang, Y G, additional
- Published
- 2023
- Full Text
- View/download PDF
32. An Updated Search of Steady TeV $\gamma-$Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array
- Author
-
Wang, Y., Bi, X. J., Cui, S. W., Ding, L. K., Danzengluobu, Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Guo, H. W., He, H. H., He, M., Hu, Haibing, Hu, H. B., Huang, Q., Jia, H. Y., Labaciren, Le, G. M., Li, A. F., Li, J. Y., Lou, Y. -Q., Lu, H., Lu, S. L., Meng, X. R., Mu, J., Ren, J. R., Tan, Y. H., Wang, B., Wang, H., Wang, Y. G., Wu, H. R., Xue, L., Yang, X. C., Ye, Z. H., Yu, G. C., Yuan, A. F., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhaxisangzhu, Zhou, X. X., and Yuan, Q.
- Subjects
Astrophysics - Abstract
Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV $\gamma-$ray point sources has now been updated by a factor of 2.8 improved statistics. From $0.0^{\circ}$ to $60.0^{\circ}$ in declination (Dec) range, no new TeV $\gamma-$ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV $\gamma-$ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits., Comment: This paper has been accepted by hepnp
- Published
- 2008
- Full Text
- View/download PDF
33. New estimation of the spectral index of high-energy cosmic rays as determined by the Compton-Getting anisotropy
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, J. Y., Lou, Y. -Q., Lu, H., Lu, S. L., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nagai, A., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Onuma, H., Ouchi, T., Ozawa, S., Ren, J. R., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, X., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhaxisangzhu, and Zhou, X. X.
- Subjects
Astrophysics - Abstract
The amplitude of the Compton-Getting (CG) anisotropy contains the power-law index of the cosmic-ray energy spectrum. Based on this relation and using the Tibet air-shower array data, we measure the cosmic-ray spectral index to be $-3.03 \pm 0.55_{stat} \pm < 0.62_{syst}$ between 6 TeV and 40 TeV, consistent with $-$2.7 from direct energy spectrum measurements. Potentially, this CG anisotropy analysis can be utilized to confirm the astrophysical origin of the ``knee'' against models for non-standard hadronic interactions in the atmosphere., Comment: accepted to ApJL
- Published
- 2007
- Full Text
- View/download PDF
34. Future plan for observation of cosmic gamma rays in the 100 TeV energy region with the Tibet air shower array : simulation and sensitivity
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, J. Y., Lou, Y. -Q., Lu, H., Lu, S. L., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nagai, A., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Onuma, H., Ouchi, T., Ozawa, S., Ren, J. R., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, X., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhaxisangzhu, and Zhou, X. X.
- Subjects
Astrophysics - Abstract
The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We have a plan to add a large muon detector array to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV energy region by discriminating them from cosmic-ray hadrons. We have deduced the attainable sensitivity of the muon detector array using our Monte Carlo simulation. We report here on the detailed procedure of our Monte Carlo simulation., Comment: 4 pages, 5 figures, 30th International Cosmic Ray Conference
- Published
- 2007
35. Future plan for observation of cosmic gamma rays in the 100 TeV energy region with the Tibet air shower array : physics goal and overview
- Author
-
Amenomori, M., Bi, X. J., Chen, D., Cui, S. W., Danzengluobu, Ding, L. K., Ding, X. H., Fan, C., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, X. Y., Geng, Q. X., Guo, H. W., He, H. H., He, M., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Huang, Q., Jia, H. Y., Kajino, F., Kasahara, K., Katayose, Y., Kato, C., Kawata, K., Labaciren, Le, G. M., Li, A. F., Li, J. Y., Lou, Y. -Q., Lu, H., Lu, S. L., Meng, X. R., Mizutani, K., Mu, J., Munakata, K., Nagai, A., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohta, I., Onuma, H., Ouchi, T., Ozawa, S., Ren, J. R., Saito, T., Saito, T. Y., Sakata, M., Sako, T. K., Shibata, M., Shiomi, A., Shirai, T., Sugimoto, H., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, B., Wang, H., Wang, X., Wang, Y., Wang, Y. G., Wu, H. R., Xue, L., Yamamoto, Y., Yan, C. T., Yang, X. C., Yasue, S., Ye, Z. H., Yu, G. C., Yuan, A. F., Yuda, T., Zhang, H. M., Zhang, J. L., Zhang, N. J., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhaxisangzhu, and Zhou, X. X.
- Subjects
Astrophysics - Abstract
The Tibet air shower array, which has an effective area of 37,000 square meters and is located at 4300 m in altitude, has been observing air showers induced by cosmic rays with energies above a few TeV. We are planning to add a large muon detector array to it for the purpose of increasing its sensitivity to cosmic gamma rays in the 100 TeV (10 - 1000 TeV) energy region by discriminating them from cosmic-ray hadrons. We report on the possibility of detection of gamma rays in the 100 TeV energy region in our field of view, based on the improved sensitivity of our air shower array deduced from the full Monte Carlo simulation., Comment: 4 pages, 3 figures, 30th International Cosmic Ray Conference
- Published
- 2007
36. Systematic errors in the determination of Hubble constant due to the asphericity and non-isothermality of clusters of galaxies
- Author
-
Wang, Y. -G. and Fan, Z. -H.
- Subjects
Astrophysics - Abstract
Joint analyses on X-ray and Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies can give rise to an estimate on the angular diameter distance to the cluster. With the redshift information of the cluster, the Hubble constant $H_0$ can then be derived. Furthermore, such measurements on a sample of clusters with a range of redshift can potentially be used to discriminate different cosmological models. In this paper, we present statistical studies on the systematic errors in the determination of $H_0$ due to the triaxiality and non-isothermality of clusters of galaxies. Different from many other studies that assume artificially a specific distribution for the intracluster gas, we start from the triaxial model of dark matter halos obtained from numerical simulations. The distribution of the intracluster gas is then derived under the assumption of the hydrodynamic equilibrium. For the equation of state of the intracluster gas, both the isothermal and the polytropic cases are investigated. We run Monte Carlo simulations to generate samples of clusters according to the distributions of their masses, axial ratios, concentration parameters, as well as line-of-sight directions. To mimic observations, the estimation of the Hubble constant is done by fitting X-ray and SZ profiles of a triaxial cluster with the isothermal and spherical $\beta$-model. We find that for a sample of clusters with $M=10^{14}h^{-1}\hbox{M}_{\odot}$ and $z=0.1$, the value of the estimated $H_0$ is positively biased with $H_0^{peak}(estimated)\approx 1.05H_0(true)$ and $H_0^{ave}(estimated)\approx 1.05H_0(true)$ for the isothermal case. For the polytropic case with $\gamma=1.15$, the bias is rather large with $H_0^{peak}(estimated)\approx 1.35H_0(true)$ and $H_0^{ave}(estimated)\approx 3H_0(true)$. (abridged), Comment: 33 pages, 14 figures. Accepted for publication in ApJ
- Published
- 2006
- Full Text
- View/download PDF
37. Dynamic response of pipelines with various burial depth due to underwater explosion
- Author
-
Wang, Y.-G., Liao, C.C., Wang, J.-H., and Jeng, D.-S.
- Published
- 2018
- Full Text
- View/download PDF
38. Numerical study for dynamic response of marine sediments subjected to underwater explosion
- Author
-
Wang, Y.-G., Liao, C.C., Wang, J.-H., and Wang, W.
- Published
- 2018
- Full Text
- View/download PDF
39. The distribution of two-dimensional eccentricity of Sunyaev-Zeldovich Effect and X-ray surface brightness profiles
- Author
-
Wang, Y. -G. and Fan, Z. -H.
- Subjects
Astrophysics - Abstract
With the triaxial density profile of dark matter halos and the corresponding equilibrium gas distribution, we derive two-dimensional Sunyaev-Zeldovich (SZ) effect and X-ray surface brightness profiles for clusters of galaxies. It is found that the contour map of these observables can be well approximated by a series of concentric ellipses with scale-dependent eccentricities. The statistical distribution of their eccentricities (or equivalently axial ratios) is analyzed by taking into account the orientation of clusters with respect to the line of sight and the distribution of the axial ratios and the concentration parameters of dark matter halos. For clusters of mass $10^{13}h^{-1}{M}_{\odot}$ at redshift $z=0$, the axial ratio is peaked at $\eta \sim 0.9$ for both SZ and X-ray profiles. For larger clusters, the deviation from circular distributions is more apparent, with $\eta$ peaked at $\eta \sim 0.85$ for $M=10^{15}h^{-1}{M}_{\odot}$. To be more close to observations, we further study the axial-ratio distribution for mass-limited cluster samples with the number distribution of clusters at different redshifts described by a modified Press-Schechter model. For a mass limit of value $M_{lim}=10^{14}h^{-1}{M}_{\odot}$, the average axial ratio is $<\eta > \sim 0.84$ with a tail extended to $\eta \sim 0.6$. With fast advance of high quality imaging observations of both SZ effect and X-ray emissions, our analyses provide a useful way to probe cluster halo profiles and therefore to test theoretical halo-formation models., Comment: 28 pages, 6 figures. Accepted for publication in the Astrophysical Journal
- Published
- 2004
- Full Text
- View/download PDF
40. Off-axis electron holography and microstructure of Ba0.5Sr0.5TiO3 thin film grown on LaAlO3
- Author
-
Tian, H. F., Yu, H. C., Zhu, X. H., Wang, Y. G., Zheng, D. N., Yang, H. X., and Li, J. Q.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons - Abstract
Epitaxial Ba0.5Sr0.5TiO3 thin films grown on the (001) LaAlO3 substrates with the ferroelectric transition of about 250K have been investigated by TEM and off-axis electron holography. Cross-sectional TEM observations show that the 350nm-thick Ba0.5Sr0.5TiO3 film has a sharp interface with notable misfit dislocations. Off-axis electron holographic measurements reveal that, at low temperatures, the ferroelectric polarization results in systematic accumulations of negative charges on the interface and positive charges on the film surface, and, at room temperature, certain charges could only accumulate at the interfacial dislocations and other defective areas., Comment: 14 pages, 4figures, submitted to APL
- Published
- 2004
- Full Text
- View/download PDF
41. Long-term safety and maintenance of efficacy of sodium oxybate in the treatment of narcolepsy with cataplexy in pediatric patients
- Author
-
Lecendreux, M., Plazzi, G., Dauvilliers, Y., Rosen, C. L., Ruoff, C., Black, J., Parvataneni, R., Guinta, D., Wang, Y. G., and Mignot, E.
- Subjects
Pulmonary and Respiratory Medicine ,Adult ,child ,Adolescent ,Polysomnography ,adolescent ,sleepiness ,Child ,Double-Blind Method ,Humans ,Treatment Outcome ,Cataplexy ,Narcolepsy ,Sodium Oxybate ,Neurology ,Neurology (clinical) - Abstract
Evaluate long-term efficacy and safety of sodium oxybate (SXB) in children and adolescents (aged 7-16 years) with narcolepsy with cataplexy.A double-blind randomized withdrawal study was conducted. Prior to randomization, SXB-naive participants were titrated to an efficacious and tolerable dose of SXB; participants taking SXB entered on their established dose. Following a 2-week stable-dose period and 2-week, double-blind, randomized withdrawal period, participants entered an open-label period (OLP; ≤ 47 weeks). Efficacy measures during the OLP included number of weekly cataplexy attacks, cataplexy-free days, and Epworth Sleepiness Scale for Children and Adolescents (ESS-CHAD). Safety outcomes included treatment-emergent adverse events; assessments of depression, anxiety, and suicidality; and polysomnography.Of 106 enrolled participants, 95 entered and 85 completed the OLP. In SXB-naive participants and participants previously taking SXB, efficacy of SXB established prior to the double-blind, randomized withdrawal period was maintained throughout the OLP for number of weekly cataplexy attacks (median [quartile 1, quartile 3] change from the stable-dose period to end of the OLP: 0.0 [-2.5, 4.9] and 0.0 [-3.4, 2.6], respectively) and ESS-CHAD scores (0.0 [-3.0, 2.5] and 1.0 [-3.0, 3.0], respectively). The median (quartile 1, quartile 3) number of cataplexy-free days per week was 2.3 (0.0, 6.0) in OLP week 1 and 3.8 (0.5, 5.5) in week 48. Treatment-emergent adverse events (≥ 5%) were enuresis, nausea, vomiting, headache, decreased weight, decreased appetite, nasopharyngitis, upper respiratory tract infection, and dizziness.SXB demonstrated long-term maintenance of efficacy in pediatric narcolepsy with cataplexy, with a safety profile consistent with that observed in adults.Registry: ClinicalTrials.gov; Name: A Multicenter Study of the Efficacy and Safety of Xyrem with an Open-Label Pharmacokinetic Evaluation and Safety Extension in Pediatric Subjects with Narcolepsy with Cataplexy; URL: https://clinicaltrials.gov/ct2/show/NCT02221869; Identifier: NCT02221869.Lecendreux M, Plazzi G, Dauvilliers Y, et al. Long-term safety and maintenance of efficacy of sodium oxybate in the treatment of narcolepsy with cataplexy in pediatric patients.
- Published
- 2023
42. Structural evolution and its effect on multiferroic properties in magnetoelectric 0.67Sm0.12Bi0.88FeO3–0.33BaTiO3 ceramics by tuning the cooling rate
- Author
-
Li, Y., Wang, Y. G., Zhou, S. D., and Wu, H.
- Published
- 2019
- Full Text
- View/download PDF
43. Quantum interference effect on the density of states in disordered d-wave superconductors
- Author
-
Yang, Y. H., Wang, Y. G., Liu, M., and Xing, D. Y.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
The quantum interference effect on the quasiparticle density of states (DOS) is studied with the diagrammatic technique in two-dimensional d-wave superconductors with dilute nonmagnetic impurities both near the Born and near the unitary limits. We derive in details the expressions of the Goldstone modes (cooperon and diffuson) for quasiparticle diffusion. The DOS for generic Fermi surfaces is shown to be subject to a quantum interference correction of logarithmic suppression, but with various renormalization factors for the Born and unitary limits. Upon approaching the combined limit of unitarity and nested Fermi surface, the DOS correction is found to become a $\delta$-function of the energy, which can be used to account for the resonant peak found by the numerical studies., Comment: 23 pages, 2 figures
- Published
- 2002
44. Unitary limit and quantum interference effect in disordered two-dimensional crystals with nearly half-filled bands
- Author
-
Yang, Y. H., Xing, D. Y., Wang, Y. G., and Liu, M.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
Based on the self-consistent $T$-matrix approximation, the quantum interference (QI) effect is studied with the diagrammatic technique in weakly-disordered two-dimensional crystals with nearly half-filled bands. In addition to the usual 0-mode cooperon and diffuson, there exist $\pi$-mode cooperon and diffuson in the unitary limit due to the particle-hole symmetry. The diffusive $\pi$-modes are gapped by the deviation from the exactly-nested Fermi surface. The conductivity diagrams with the gapped $\pi$-mode cooperon or diffuson are found to give rise to unconventional features of the QI effect. Besides the inelastic scattering, the thermal fluctuation is shown to be also an important dephasing mechanism in the QI processes related with the diffusive $\pi$-modes. In the proximity of the nesting case, a power-law anti-localization effect appears due to the $\pi$-mode diffuson. For large deviation from the nested Fermi surface, this anti-localization effect is suppressed, and the conductivity remains to have the usual logarithmic weak-localization correction contributed by the 0-mode cooperon. As a result, the dc conductivity in the unitary limit becomes a non-monotonic function of the temperature or the sample size, which is quite different from the prediction of the usual weak-localization theory., Comment: 21 pages, 4 figures
- Published
- 2002
- Full Text
- View/download PDF
45. Quasiparticle Delocalization Induced by Novel Quantum Interference in Disordered d-Wave Superconductors
- Author
-
Yang, Y. H., Xing, D. Y., Liu, M., and Wang, Y. G.
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
The diagrammatic approach is applied to study quasiparticle transport properties in two-dimensional d-wave superconductors with dilute nonmagnetic impurities both in Born and in unitary limits. It is found that a novel quantum interference process gives rise to a weak-antilocalization correction to the spin conductivity, indicating the existence of extended low-energy quasiparticle states. With comimg close to unitarity and the nesting, this correction is suppressed and eventually vanishes due to the global particle-hole symmetry., Comment: 8 pages, 2 figures
- Published
- 2002
- Full Text
- View/download PDF
46. Simultaneously imaging of dielectric properties and topography in a PbTiO_3 crystal by near-field scanning microwave microscopy
- Author
-
Wang, Y. G., Reeves, M. E., and Rachford, F. J.
- Subjects
Condensed Matter - Materials Science - Abstract
We use a near-field scanning microwave microscope to simultaneously image the dielectric constant, loss tangent, and topography in a PbTiO_3 crystal. By this method, we study the effects of the local dielectric constant and loss tangent in the geometry of periodic domains on the measured resonant frequency, and quality factor. We also carry out theoretical calculations and the results agree well with the experimental data and reveal the anisotropic nature of dielectric constant.
- Published
- 2000
- Full Text
- View/download PDF
47. Stability of the Prandtl Boundary Layers
- Author
-
Wang, Y.-G., Qian, Tao, editor, and Rodino, Luigi G., editor
- Published
- 2016
- Full Text
- View/download PDF
48. TEM Studies on RMnO3 Multiferroic Materials
- Author
-
Zhang, Q. H., Wang, L. J., Wei, X. K., Guo, S. D., Ge, B. H., Chen, P., Gu, L., Hirata, A., Chen, M. W., Jin, C. Q., Liu, B. G., Yao, Y., Wang, Y. G., Duan, X. F., Yu, R. C., and Marquis, Fernand, editor
- Published
- 2016
- Full Text
- View/download PDF
49. Effect of P/B ratio on the thermal stability, soft magnetic properties and magnetostriction properties of Fe80B14−xPxSi5C1 amorphous alloys.
- Author
-
Yan, Q., Lu, L. L., Chen, F. G., Jain, Aditya, and Wang, Y. G.
- Abstract
This work emphases on the effect of P/B ratio in Fe
80 B14−x Px Si5 C1 (x = 0, 1, 2, & 3 at%) amorphous alloys on the thermal stability, soft magnetic characteristics, and magnetostriction properties. The addition of P in Fe80 B14−x Px Si5 C1 (x = 0, 1, 2, & 3 at%) amorphous alloys has a significant positive influence on the GFA. The addition of P element enhances the resistance to crystallization of amorphous alloys and broaden the optimal annealing temperatures range. The coercivity (Hc ) of the Fe80 B14−x Px Si5 C1 (x = 0, 1, 2, & 3 at%) amorphous alloys is reduced from 15.6 to 9.03 A/m. The Fe80 Si5 B12 C1 P2 amorphous alloy exhibits excellent soft magnetic characteristics at the annealing temperature of 613 K for 3 min, with a Bs of 1.59 T and Hc of 3.8 A/m. Mössbauer spectroscopy have been used to investigate the origin of the variations in the Bs and Hc of the amorphous alloy after annealing. The saturation magnetostriction coefficient (λs ) of Fe80 B14−x Px Si5 C1 (x = 0, 1, 2, & 3 at%) amorphous alloy decreases after P element doping and annealing treatment, which can be used to explain the change of Hc . [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
50. A new method for long-term safety analysis of marine structures.
- Author
-
Wang, Y. G.
- Subjects
OFFSHORE structures ,PROBABILITY density function ,OCEAN waves ,EXTREME value theory - Abstract
This paper proposes to utilise a new adaptive kernel density estimation (KDE) method based on a linear diffusion process for fitting the significant wave height data in order to calculate the sea state parameter distribution tails more accurately, particularly the higher, more extreme values. The accuracy of the proposed method has been demonstrated based on fittings to two measured ocean wave datasets. This proposed method has subsequently been utilised for deriving accurate 50-year and 500-year environmental contour lines. The advantages of using a more reliable contour line derived from using the proposed new method for long-term safety analysis of marine structures have been substantiated. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.