1. Crater-shaped Enrichment of $\mathrm{V}_\mathrm{Si}$ Color Centers in $4H$-SiC using Single-Pulse Near-Infrared Femtosecond Laser Processing
- Author
-
Yan, Mengzhi, Zhao, Junlei, Song, Ying, Dong, Bing, Duan, Yifei, Wang, Jianshi, Sun, Qingqing, and Xu, Zongwei
- Subjects
Physics - Optics - Abstract
Currently, Si vacancy ($\mathrm{V}_\mathrm{Si}$) color centers in SiC are of significant interest due to their potential applications in quantum sensing and quantum communication. Meanwhile, the qualities of laser-induced color centers are well guaranteed. Femtosecond laser processing suffices for increasing the yield of $\mathrm{V}_\mathrm{Si}$ color centers in bulk materials and forms crater-shaped enriched regions on the surface. However, there is a notable absence of existing simulation methods to explain the mechanisms behind laser-assisted $\mathrm{V}_\mathrm{Si}$ color center generation. In this work, we design a three-dimensional molecular dynamics (3D-MD) model using an integral hemi-ellipsoidal shell mathematical model to simulate the interaction of Gaussian laser beams with bulk materials. Furthermore, we calculate the transmittance, absorption coefficient, refractive index, and reflectivity of $4H$-SiC. Then, the absorptance of a 1030 nm laser in 350 {\mu}m-thick $4H$-SiC material is abtained to simulate the energy loss during the actual processing. Finally, the study analyzes the movement trajectories of $\mathrm{V}_\mathrm{Si}$ color centers and explains the source of $\mathrm{V}_\mathrm{Si}$ on the surface. This analysis explains the reasons for the enrichment of color centers in the crater-shaped regions formed after laser deposition. Our work provides an effective 3D-MD modeling approach to study the processing mechanisms of laser interaction with semiconductor materials, offering insights into efficient $\mathrm{V}_\mathrm{Si}$ color center creation processes., Comment: 7 pages, 5 figures
- Published
- 2024