1. M\textbf{\textit{O}}enes family materials with Dirac nodal loop, strong light-harvesting ability, long carrier lifetime and conduction-band valley spin splitting
- Author
-
Yan, Luo, Liu, Junchi, Ding, Yu-Feng, Wu, Jiafang, Wang, Bao-Tian, and Zhou, Liujiang
- Subjects
Condensed Matter - Materials Science ,Physics - Computational Physics - Abstract
M\textbf{\textit{O}}enes, as emerging MXenes-like materials, also have wide structural spaces and various chemical and physical properties. Using first-principles and high-throughput calculations, we have built an online library (\url{https://moenes.online}) for M\textbf{\textit{O}}enes family materials from basic summaries, mechanical, phonon and electron aspects, based on their structural diversities from 2 stoichiometric ratios, 11 early-transition metals, 4 typical functional groups and 4 oxygen group elements. Compared to MXenes, the main advantage of M\textbf{\textit{O}}enes at present is that we have discovered 14 direct semiconductors, which greatly increases the number of direct semiconductors and the range of band gap values in the MXenes family. Among them, 1T-Ti$_{2}$\textit{\textbf{O}}F$_{2}$ (\textbf{\textit{O}}=O, S, Se) reveal tunable semiconducting features and strong light-harvesting ability ranging from the ultraviolet to the near-infrared region. Besides, 2H- and 1T-Y$_{2}$TeO$_{2}$ have a long carrier lifetime of 2.38 and 1.24 ns, originating from their spatially distinguished VBM and CBM states and long dephasing times. In addition, 2H-Zr$_{2}$O(O)$_{2}$ shows spin-valley coupling phenomena, and the valley spin splitting is apparent and robust in its conduction band ($\sim$85 meV). Therefore, M\textbf{\textit{O}}enes have a wealth of physical properties, not limited to those reported here, and future studies of these emerging M\textbf{\textit{O}}enes are appealing.
- Published
- 2024