1. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody, is effective against tumors poorly responsive to conventional immunotherapy.
- Author
-
Chand D, Savitsky DA, Krishnan S, Mednick G, Delepine C, Garcia-Broncano P, Soh KT, Wu W, Wilkens MK, Udartseva O, Vincent S, Joshi B, Keith JG, Manrique M, Marques M, Tanne A, Levey DL, Han H, Ng S, Ridpath J, Huber O, Morin B, Galand C, Bourdelais S, Gombos RB, Ward R, Qin Y, Waight JD, Costa MR, Sebastian-Yague A, Rudqvist NP, Pupecka-Swider M, Venkatraman V, Slee A, Patel JM, Grossman JE, Wilson NS, Von Hoff DD, Stebbing J, Curiel TJ, Buell JS, O'Day SJ, and Stein RB
- Abstract
Conventional immune checkpoint inhibitors (ICI) targeting CTLA-4 elicit durable survival, but primarily in patients with immune-inflamed tumors. Although the mechanisms underlying response to anti-CTLA-4 remain poorly understood, Fc-gamma receptor (FcγR) IIIA co-engagement appears critical for activity, potentially explaining the modest clinical benefits of approved anti-CTLA-4 antibodies. We demonstrate that anti-CTLA-4 engineered for enhanced FcγR affinity leverages FcγR-dependent mechanisms to potentiate T cell responsiveness, reduce intratumoral Tregs, and enhance antigen presenting cell activation. Fc-enhanced anti-CTLA-4 promoted superior efficacy in mouse models and remodeled innate and adaptive immunity versus conventional anti-CTLA-4. These findings extend to patients treated with botensilimab, an Fc-enhanced anti-CTLA-4 antibody, with clinical activity across multiple poorly immunogenic and ICI treatment-refractory cancers. Efficacy was independent of tumor neoantigen burden or FcγRIIIA genotype. However, FcγRIIA and FcγRIIIA expression emerged as potential response biomarkers. These data highlight the therapeutic potential of Fc-enhanced anti-CTLA-4 antibodies in cancers unresponsive to conventional ICI therapy.
- Published
- 2024
- Full Text
- View/download PDF