61 results on '"Wahlang B"'
Search Results
2. Corrigendum to ‘Role of cAMP and phosphodiesterase signaling in liver health and disease’ [Cell. Signal. 49 (2018)105–115]
- Author
-
Wahlang, B., primary, McClain, C., additional, Barve, S., additional, and Gobejishvili, L., additional
- Published
- 2019
- Full Text
- View/download PDF
3. Contribution of Formulation and Excipients Towards Enhanced Permeation of Curcumin
- Author
-
Wahlang, B., additional, Kabra, D., additional, Pawar, Y., additional, Tikoo, K., additional, and Bansal, A., additional
- Published
- 2012
- Full Text
- View/download PDF
4. Low dose exposure to dioxins alters hepatic energy metabolism and steatotic liver disease development in a sex-specific manner.
- Author
-
Bolatimi OE, Hua Y, Ekuban FA, Gripshover TC, Ekuban A, Luulay B, Watson WH, Hardesty JE, and Wahlang B
- Abstract
"Dioxins" are persistent organic pollutants (POPs) that are continuously present in the environment at appreciable levels and have been associated with increased risk of steatotic liver disease (SLD). However, current understanding of the role of sex and effects of mixtures of dioxins in SLD development is limited. Additionally, there exists debates on the levels of dioxins required to be considered dangerous as emphasis has shifted from high level exposure events to the steady state of lower-level exposures. We therefore investigated sex-dependent effects of low-level exposures to a mixture of dioxins: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-Pentachlorodibenzofuran (PeCDF) and Polychlorinated biphenyl 126 (PCB126), in the context of SLD and associated metabolic dysfunction. Male and female C57BL/6J mice were fed a low-fat diet and weekly administered either vehicle control or TCDD (10 ng/kg), PeCDF (80 ng/kg) and PCB 126 (140 ng/kg) over a two-week period. Female mice generally demonstrated higher hepatic fat content compared to males. However, exposure to dioxins further elevated hepatic cholesterol levels in females, and this was accompanied by increased lipogenic gene expression (Acaca, Fasn) in the liver. In contrast, exposed males but not females displayed higher white adipose tissue weights. Furthermore, TCDD + PeCDF + PCB126 activated the AHR (hepatic Cyp1a1, Cyp1a2 induction); with Cyp1a1 induction observed only in exposed females. Notably, gene expression of hepatic albumin (Alb) was also reduced only in exposed females. Overall, exposure to the low dose dioxin mixture compromised hepatic homeostasis via metabolic perturbations, and hepatic dysregulation was more accelerated in female livers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Multiomics Analysis of PCB126's Effect on a Mouse Chronic-Binge Alcohol Feeding Model.
- Author
-
Gripshover TC, Wahlang B, Head KZ, Luo J, Bolatimi OE, Smith ML, Rouchka EC, Chariker JH, Xu J, Cai L, Cummins TD, Merchant ML, Zheng H, Kong M, and Cave MC
- Subjects
- Male, Mice, Animals, Multiomics, Mice, Inbred C57BL, Ethanol toxicity, Ethanol metabolism, Liver metabolism, Zinc metabolism, Tyrosine metabolism, Polychlorinated Biphenyls toxicity, Polychlorinated Biphenyls metabolism, Fatty Liver, Liver Diseases, Alcoholic etiology, Liver Diseases, Alcoholic metabolism, Liver Diseases, Alcoholic pathology, Environmental Pollutants toxicity, Environmental Pollutants metabolism
- Abstract
Background: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD)., Objective: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses., Methods: Briefly, male C57BL/6J mice were exposed to 0.2 mg / kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification., Results: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in > 4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice., Discussion: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.
- Published
- 2024
- Full Text
- View/download PDF
6. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease.
- Author
-
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, and Klinge CM
- Subjects
- Animals, Male, Aroclors toxicity, Mice, Disease Models, Animal, RNA Splicing Factors genetics, RNA Splicing Factors metabolism, Environmental Pollutants toxicity, Polychlorinated Biphenyls toxicity, Alternative Splicing drug effects, Mice, Inbred C57BL, Diet, High-Fat adverse effects, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease genetics, Non-alcoholic Fatty Liver Disease metabolism, Liver metabolism, Liver drug effects, Liver pathology
- Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Sex-specific effects of acute chlordane exposure in the context of steatotic liver disease, energy metabolism and endocrine disruption.
- Author
-
Luo J, Watson WH, Gripshover TC, Qaissi Z, and Wahlang B
- Subjects
- Male, Female, Mice, Animals, Chlordan toxicity, Chlordan metabolism, Mice, Inbred C57BL, Liver, Hazardous Substances, Lipids, Energy Metabolism, Hydrocarbons, Chlorinated, Fatty Liver chemically induced, Fatty Liver metabolism
- Abstract
Chlordane is an organochlorine pesticide (OCP) that is environmentally persistent. Although exposures to OCPs including chlordane have been associated with elevated liver enzymes, current knowledge on OCPs' contribution to toxicant-associated steatotic liver disease (TASLD) and underlying sex-specific metabolic/endocrine disruption are still widely limited. Therefore, the objective of this study was to investigate the sex-dependent effects of chlordane in the context of TASLD. Age-matched male and female C57BL/6 mice were exposed to chlordane (20 mg/kg, one-time oral gavage) for two weeks. Female mice generally exhibited lower bodyfat content but more steatosis and hepatic lipid levels, consistent with increased hepatic mRNA levels of genes involved in lipid synthesis and uptake. Surprisingly, chlordane-exposed females demonstrated lower hepatic cholesterol levels. With regards to metabolic disruption, chlordane exposure decreased expression of genes involved in glycogen and glucose metabolism (Pklr, Gck), while chlordane-exposed females also exhibited decreased gene expression of HNF4A, an important regulator of liver identity and function. In terms of endocrine endpoints, chlordane augmented plasma testosterone levels in males. Furthermore, chlordane activated hepatic xenobiotic receptors, including the constitutive androstane receptor, in a sex-dependent manner. Overall, chlordane exposure led to altered hepatic energy metabolism, and potential chlordane-sex interactions regulated metabolic/endocrine disruption and receptor activation outcomes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
8. Investigating the Acute Metabolic Effects of the N-Methyl Carbamate Insecticide, Methomyl, on Mouse Liver.
- Author
-
Groswald AM, Gripshover TC, Watson WH, Wahlang B, Luo J, Jophlin LL, and Cave MC
- Abstract
Many pesticides have been identified as endocrine and metabolism-disrupting chemicals with hepatotoxic effects. However, data are limited for insecticides in the n-methyl carbamate class, including methomyl. Here, we investigate the liver and systemic metabolic effects of methomyl in a mouse model. We hypothesize that methomyl exposure will disrupt xenobiotic and intermediary metabolism and promote hepatic steatosis in mice. Male C57BL/6 mice were exposed daily to 0-5 mg/kg methomyl for 18 days. Mice were fed water and regular chow diet ad libitum. Metabolic phenotyping was performed, and tissue samples were collected. Effects were generally greatest at the highest methomyl dose, which induced Cyp1a2 . Methomyl decreased whole body weight while the liver:body weight and testes:body weight ratios were increased. Hepatic steatosis increased while plasma LDL decreased. Fasting blood glucose and the glucose tolerance test area under the curve decreased along with hepatic glycogen stores. Methomyl, however, did not increase liver oxidative stress or injury. Collectively, these data demonstrate that methomyl disrupts hepatic xenobiotic and intermediary metabolism while increasing the testes:body weight ratio, suggesting that it may be an endocrine disrupting chemical. Besides methomyl's known action in cholinesterase inhibition, it may be involved in aryl hydrocarbon receptor activation. The potential impact of n-methyl carbamate insecticides on metabolic health and diseases, including toxicant-associated steatotic liver disease (TASLD), warrants further investigation.
- Published
- 2023
- Full Text
- View/download PDF
9. RISING STARS: Sex differences in toxicant-associated fatty liver disease.
- Author
-
Wahlang B
- Subjects
- Female, Humans, Male, Sex Characteristics, Models, Theoretical, Non-alcoholic Fatty Liver Disease, Environmental Pollutants toxicity
- Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
- Published
- 2023
- Full Text
- View/download PDF
10. Disruption of the mouse liver epitranscriptome by long-term aroclor 1260 exposure.
- Author
-
Piell KM, Petri BJ, Head KZ, Wahlang B, Xu R, Zhang X, Pan J, Rai SN, de Silva K, Chariker JH, Rouchka EC, Tan M, Li Y, Cave MC, and Klinge CM
- Subjects
- Male, Animals, Mice, Liver metabolism, Diet, High-Fat, RNA, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease metabolism, Polychlorinated Biphenyls metabolism
- Abstract
Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Western diet unmasks transient low-level vinyl chloride-induced tumorigenesis; potential role of the (epi-)transcriptome.
- Author
-
Liu S, He L, Bannister OB, Li J, Schnegelberger RD, Vanderpuye CM, Althouse AD, Schopfer FJ, Wahlang B, Cave MC, Monga SP, Zhang X, Arteel GE, and Beier JI
- Subjects
- Mice, Animals, Transcriptome, Diet, Western, Liver metabolism, Carcinogenesis metabolism, Cell Transformation, Neoplastic metabolism, Vinyl Chloride toxicity, Vinyl Chloride metabolism, Carcinoma, Hepatocellular pathology, Liver Neoplasms chemically induced, Liver Neoplasms genetics, Liver Neoplasms metabolism, Non-alcoholic Fatty Liver Disease metabolism
- Abstract
Background & Aims: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer., Methods: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week., Results: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer., Conclusions: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Juliane Beier reports financial support was provided by National Institutes of Health., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. Associations between residential volatile organic compound exposures and liver injury markers: The role of biological sex and race.
- Author
-
Wahlang B, Gao H, Rai SN, Keith RJ, McClain CJ, Srivastava S, Cave MC, and Bhatnagar A
- Subjects
- Male, Humans, Female, Liver chemistry, Biomarkers urine, Acrylamides, Styrenes, Volatile Organic Compounds analysis, Air Pollutants analysis
- Abstract
While occupational exposures to volatile organic compounds (VOCs) have been linked to steatohepatitis and liver cancer in industrial workers, recent findings have also positively correlated low-dose, residential VOC exposures with liver injury markers. VOC sources are numerous; factors including biological make up (sex), socio-cultural constructs (gender, race) and lifestyle (smoking) can influence both VOC exposure levels and disease outcomes. Therefore, the current study's objective is to investigate how sex and race influence associations between residential VOC exposures and liver injury markers particularly in smokers vs. nonsmokers. Subjects (n = 663) were recruited from residential neighborhoods; informed consent was obtained. Exposure biomarkers included 16 urinary VOC metabolites. Serological disease biomarkers included liver enzymes, direct bilirubin, and hepatocyte death markers (cytokeratin K18). Pearson correlations and generalized linear models were conducted. Models were adjusted for common liver-related confounders and interaction terms. The study population constituted approximately 60% females (n = 401) and 40% males (n = 262), and a higher percent of males were smokers and/or frequent drinkers. Both sexes had a higher percent of White (75% females, 82% males) vs. Black individuals. Positive associations were identified for metabolites of acrolein, acrylamide, acrylonitrile, butadiene, crotonaldehyde, and styrene with alkaline phosphatase (ALP), a biomarker for cholestatic injury; and for the benzene metabolite with bilirubin; only in females. These associations were retained in female smokers. Similar associations were also observed between these metabolites and ALP only in White individuals (n = 514). In Black individuals (n = 114), the styrene metabolite was positively associated with aspartate transaminase. Interaction models indicated that positive associations for acrylamide/crotonaldehyde metabolites with ALP in females were dose-dependent. Most VOC associations with K18 markers were negative in this residential population. Overall, the findings demonstrated that biological sex, race, and smoking status influence VOC effects on liver injury and underscored the role of biological-social-lifestyle factor(s) interactions when addressing air pollution-related health disparities., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
13. Investigating the effects of long-term Aroclor 1260 exposure on fatty liver disease in a diet-induced obesity mouse model.
- Author
-
Head KZ, Bolatimi OE, Gripshover TC, Tan M, Li Y, Audam TN, Jones SP, Klinge CM, Cave MC, and Wahlang B
- Abstract
Introduction: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD., Methods: Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period., Results: Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time., Discussion: Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted., Competing Interests: Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
14. Polychlorinated biphenyls alter hepatic m6A mRNA methylation in a mouse model of environmental liver disease.
- Author
-
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Cave MC, and Klinge CM
- Subjects
- Male, Mice, Humans, Animals, Methylation, Liver metabolism, Mice, Inbred C57BL, Disease Models, Animal, RNA, Messenger genetics, RNA, Messenger metabolism, Polychlorinated Biphenyls toxicity, Polychlorinated Biphenyls metabolism, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease genetics
- Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
15. The environmental pollutant, polychlorinated biphenyl 126, alters liver function in a rodent model of alcohol-associated liver disease.
- Author
-
Gripshover TC, Wahlang B, Head KZ, Young JL, Luo J, Mustafa MT, Kirpich IA, and Cave MC
- Subjects
- Humans, Male, Mice, Animals, Rodentia, Mice, Inbred C57BL, Liver metabolism, Diet, High-Fat, Ethanol pharmacology, Lipids pharmacology, Polychlorinated Biphenyls metabolism, Polychlorinated Biphenyls pharmacology, Environmental Pollutants metabolism, Environmental Pollutants pharmacology, Non-alcoholic Fatty Liver Disease metabolism, Liver Diseases, Alcoholic metabolism, Malnutrition metabolism, Malnutrition pathology
- Abstract
Background: The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology., Methods: Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model., Results: Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively., Conclusions: Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD., (© 2022 Research Society on Alcohol.)
- Published
- 2023
- Full Text
- View/download PDF
16. Multiomics analysis of the impact of polychlorinated biphenyls on environmental liver disease in a mouse model.
- Author
-
Petri BJ, Piell KM, Wahlang B, Head KZ, Andreeva K, Rouchka EC, Pan J, Rai SN, Cave MC, and Klinge CM
- Subjects
- Animals, Disease Models, Animal, Humans, Liver metabolism, Male, Mice, RNA, Messenger metabolism, MicroRNAs genetics, MicroRNAs metabolism, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease genetics, Non-alcoholic Fatty Liver Disease metabolism, Polychlorinated Biphenyls metabolism, Polychlorinated Biphenyls toxicity
- Abstract
Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified "positive regulation of Wnt/β-catenin signaling" and "role of miRNAs in cell migration, survival, and angiogenesis" for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192-5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
17. Effect of vinyl chloride exposure on cardiometabolic toxicity.
- Author
-
Zelko IN, Taylor BS, Das TP, Watson WH, Sithu ID, Wahlang B, Malovichko MV, Cave MC, and Srivastava S
- Subjects
- Animals, Diet, High-Fat, Liver, Male, Mice, Mice, Inbred C57BL, Cardiovascular Diseases, Vinyl Chloride toxicity
- Abstract
Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice., (© 2021 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
18. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey.
- Author
-
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, and Chorley BN
- Subjects
- Cross-Sectional Studies, Humans, Public Health, Circulating MicroRNA, Liver Diseases, MicroRNAs, Polychlorinated Biphenyls toxicity
- Abstract
Background: Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress., Objectives: We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort., Methods: Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed., Results: The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks., Discussion: These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.
- Published
- 2022
- Full Text
- View/download PDF
19. Associations Between Residential Exposure to Volatile Organic Compounds and Liver Injury Markers.
- Author
-
Wahlang B, Gripshover TC, Gao H, Krivokhizhina T, Keith RJ, Sithu ID, Rai SN, Bhatnagar A, McClain CJ, Srivastava S, and Cave MC
- Subjects
- Biomarkers urine, Cross-Sectional Studies, Environmental Exposure adverse effects, Female, Humans, Liver metabolism, Male, Volatile Organic Compounds metabolism
- Abstract
Occupational exposures to volatile organic compounds (VOCs) have been associated with numerous health complications including steatohepatitis and liver cancer. However, the potential impact of environmental/residential VOC exposures on liver health and function is largely unknown. To address this knowledge gap, the objective of this cross-sectional study is to investigate associations between VOCs and liver injury biomarkers in community residents. Subjects were recruited from six Louisville neighborhoods, and informed consent was obtained. Exposure biomarkers included 16 creatinine-adjusted urinary metabolites corresponding to 12 parent VOCs. Serological disease biomarkers measured included cytokertain-18 (K18 M65 and M30), liver enzymes, and direct bilirubin. Associations between exposure and disease biomarkers were assessed using generalized linear models. Smoking status was confirmed through urinary cotinine levels. The population comprised of approximately 60% females and 40% males; White persons accounted 78% of the population; with more nonsmokers (n = 413) than smokers (n = 250). When compared with nonsmokers, males (45%) and Black persons (26%) were more likely to be smokers. In the overall population, metabolites of acrolein, acrylonitrile, acrylamide, 1,3-butadiene, crotonaldehyde, styrene, and xylene were positively associated with alkaline phosphatase. These associations persisted in smokers, with the exception of crotonaldehyde, and addition of N,N-dimethylformamide and propylene oxide metabolites. Although no positive associations were observed for K18 M30, the benzene metabolite was positively associated with bilirubin, irrespective of smoking status. Taken together, the results demonstrated that selected VOCs were positively associated with liver injury biomarkers. These findings will enable better risk assessment and identification of populations vulnerable to liver disease., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
20. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver.
- Author
-
Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, Merchant ML, Rai SN, Prough RA, and Cave MC
- Abstract
Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr
-/- mice (Taconic) were fed a control diet and exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets ( Cyp1a1 and Cyp1a2 ) in WT but not Ahr-/- . Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr-/- . The liver proteome was impacted more so by Ahr-/- genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr -dependent. Ahr principally regulated liver metabolism ( e . g ., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response ( e . g ., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease., (© 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.)- Published
- 2021
- Full Text
- View/download PDF
21. Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver.
- Author
-
Klinge CM, Piell KM, Petri BJ, He L, Zhang X, Pan J, Rai SN, Andreeva K, Rouchka EC, Wahlang B, Beier JI, and Cave MC
- Abstract
Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation., (© The Author(s) 2021. Published by Oxford University Press.)
- Published
- 2021
- Full Text
- View/download PDF
22. Polychlorinated biphenyls altered gut microbiome in CAR and PXR knockout mice exhibiting toxicant-associated steatohepatitis.
- Author
-
Wahlang B, Alexander NC 2nd, Li X, Rouchka EC, Kirpich IA, and Cave MC
- Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD). Previously, we demonstrated that the PCB mixture, Aroclor1260, exacerbated NAFLD, reflective of toxicant-associated steatohepatitis, in diet-induced obese mice, in part through pregnane-xenobiotic receptor (PXR) and constitutive androstane receptor (CAR) activation. Recent studies have also reported PCB-induced changes in the gut microbiome that consequently impact NAFLD. Therefore, the objective of this study is to examine PCB effects on the gut-liver axis and characterize the role of CAR and PXR in microbiome alterations. C57Bl/6 (wildtype, WT), CAR and PXR knockout mice were fed a high fat diet and exposed to Aroclor1260 (20 mg/kg, oral gavage, 12 weeks). Metagenomics analysis of cecal samples revealed that CAR and/or PXR ablation increased bacterial alpha diversity regardless of exposure status. CAR and PXR ablation also increased bacterial composition (beta diversity) versus WT; Aroclor1260 altered beta diversity only in WT and CAR knockouts. Distinct changes in bacterial abundance at different taxonomic levels were observed between WT and knockout groups; however Aroclor1260 had modest effects on bacterial abundance within each genotype. Notably, both knockout groups displayed increased Actinobacteria and Verrucomicrobia abundance. In spite of improved bacterial diversity, the knockout groups however failed to show protection from PCB-induced hepato- and intestinal- toxicity including decreased mRNA levels of ileal permeability markers (occludin, claudin3). In summary, CAR and PXR ablation significantly altered gut microbiome in diet-induced obesity while Aroclor1260 compromised intestinal integrity in knockout mice, implicating interactions between PCBs and CAR, PXR on the gut-liver axis., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
23. Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis.
- Author
-
Hardesty JE, Wahlang B, Prough RA, Head KZ, Wilkey D, Merchant M, Shi H, Jin J, and Cave MC
- Subjects
- Animals, Epidermal Growth Factor, Liver, Male, Mice, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease drug therapy, Polychlorinated Biphenyls toxicity
- Abstract
Background: Polychlorinated biphenyls (PCBs) are signaling disrupting chemicals that exacerbate nonalcoholic steatohepatitis (NASH) in mice. They are epidermal growth factor receptor (EGFR) inhibitors that enhance hepatic inflammation and fibrosis in mice., Objectives: This study tested the hypothesis that epidermal growth factor (EGF) administration can attenuate PCB-related NASH by increasing hepatic EGFR signaling in a mouse model., Methods: C57BL/6 male mice were fed a 42% milk fat diet and exposed to Aroclor 1260 ( 20 mg / kg ) or vehicle for 12 wk. EGF ( 0.2 μ g / g ) or vehicle were administered daily for 10 d starting at study week 10. Liver and metabolic phenotyping were performed. The EGF dose was selected based on results of an acute dose-finding study (30 min treatment of EGF at 0.2, 0.02, 0.002 μ g / g of via intraperitoneal injection). Hepatic phosphoproteomic analysis was performed using liver tissue from this acute study to understand EGFR's role in liver physiology., Results: Markers of EGFR signaling were higher in EGF-treated mice. EGF + PCB -exposed mice had lower hepatic free fatty acids, inflammation, and fibrosis relative to PCB-only exposed mice. EGF-treated mice had higher plasma lipids, with no improvement in hepatic steatosis, and an association with higher LXR target gene expression and de novo lipogenesis. EGF-treated mice showed more severe hyperglycemia associated with lower adiponectin levels and insulin sensitivity. EGF-treated mice had higher hepatic HNF 4 α , NRF2, and AhR target gene expression but lower constitutive androstane receptor and farnesoid X receptor target gene expression. The hepatic EGF-sensitive phosphoproteome demonstrated a role for EGFR signaling in liver homeostasis., Discussion: These results validated EGFR inhibition as a causal mode of action for PCB-related hepatic inflammation and fibrosis in a mouse model of NASH. However, observed adverse effects may limit the clinical translation of EGF therapy. More data are required to better understand EGFR's underinvestigated roles in liver and environmental health. https://doi.org/10.1289/EHP8222.
- Published
- 2021
- Full Text
- View/download PDF
24. Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice.
- Author
-
Deng P, Wang C, Wahlang B, Sexton T, Morris AJ, and Hennig B
- Subjects
- Animals, Environmental Pollutants adverse effects, Fibrosis chemically induced, Fibrosis metabolism, Liver drug effects, Liver metabolism, Male, Mice, Mice, Inbred C57BL, Risk, Thrombosis chemically induced, Thrombosis metabolism, Alkanesulfonic Acids adverse effects, Biomarkers metabolism, Cardiovascular Diseases chemically induced, Cardiovascular Diseases metabolism, Chemical and Drug Induced Liver Injury etiology, Chemical and Drug Induced Liver Injury metabolism, Fluorocarbons adverse effects, Polychlorinated Biphenyls adverse effects
- Abstract
Polychlorinated biphenyl (PCB)126 and perfluorooctane sulfonic acid (PFOS) are halogenated organic pollutants of high concern. Exposure to these chemicals is ubiquitous, and can lead to potential synergistic adverse effects in individuals exposed to both classes of chemicals. The present study was designed to identify interactions between PCB126 and PFOS that might promote acute changes in inflammatory pathways associated with cardiovascular disease and liver injury. Male C57BL/6 mice were exposed to vehicle, PCB126, PFOS, or a mixture of both pollutants. Plasma and liver samples were collected at 48 h after exposure. Changes in the expression of hepatic genes involved in oxidative stress, inflammation, and atherosclerosis were investigated. Plasma and liver samples was analyzed using untargeted lipidomic method. Hepatic mRNA levels for Nqo1, Icam1, and PAI1 were significantly increased in the mixture-exposed mice. Plasma levels of PAI1, a marker of fibrosis and thrombosis, were also significantly elevated in the mixture-exposed group. Liver injury was observed only in the mixture-exposed mice. Lipidomic analysis revealed that co-exposure to the mixture enhanced hepatic lipid accumulation and elevated oxidized phospholipids levels. In summary, this study shows that acute co-exposure to PCB126 and PFOS in mice results in liver injury and increased cardiovascular disease risk., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
25. Dioxin-like and non-dioxin-like PCBs differentially regulate the hepatic proteome and modify diet-induced nonalcoholic fatty liver disease severity.
- Author
-
Jin J, Wahlang B, Shi H, Hardesty JE, Falkner KC, Head KZ, Srivastava S, Merchant ML, Rai SN, Cave MC, and Prough RA
- Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with metabolic disruption and non-alcoholic fatty liver disease (NAFLD). Based on their ability to activate the aryl hydrocarbon receptor (AhR), PCBs are subdivided into two classes: dioxin-like (DL) and non-dioxin-like (NDL) PCBs. Previously, we demonstrated that NDL PCBs compromised the liver to promote more severe diet-induced NAFLD. Here, the hepatic effects and potential mechanisms (by untargeted liver proteomics) of DL PCBs, NDL PCBs or co-exposure to both in diet-induced NAFLD are investigated. Male C57Bl/6 mice were fed a 42% fat diet and exposed to vehicle control; Aroclor1260 (20 mg/kg, NDL PCB mixture); PCB126 (20 μg/kg, DL PCB congener); or a mixture of Aroclor1260 (20 mg/kg)+PCB126 (20 μg/kg) for 12 weeks. Each exposure was associated with a distinct hepatic proteome. Phenotypic and proteomic analyses revealed increased hepatic inflammation and phosphoprotein signaling disruption by Aroclor1260. PCB126 decreased hepatic inflammation and fibrosis at the molecular level; while altering cytoskeletal remodeling, metal homeostasis, and intermediary/xenobiotic metabolism. PCB126 attenuated Aroclor1260-induced hepatic inflammation but increased hepatic free fatty acids in the co-exposure group. Aroclor1260+PCB126 exposure was strongly associated with multiple epigenetic processes, and these could potentially explain the observed non-additive effects of the exposures on the hepatic proteome. Taken together, the results demonstrated that PCB exposures differentially regulated the hepatic proteome and the histologic severity of diet-induced NAFLD. Future research is warranted to determine the AhR-dependence of the observed effects including metal homeostasis and the epigenetic regulation of gene expression., Competing Interests: Conflict of Interest. The authors declare that they have no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
26. Blood BTEXS and heavy metal levels are associated with liver injury and systemic inflammation in Gulf states residents.
- Author
-
Werder EJ, Beier JI, Sandler DP, Falkner KC, Gripshover T, Wahlang B, Engel LS, and Cave MC
- Subjects
- Adipokines blood, Adult, Alanine Transaminase blood, Alkaline Phosphatase blood, Aspartate Aminotransferases blood, Benzene toxicity, Benzene Derivatives toxicity, Bilirubin blood, Biomarkers blood, Cotinine blood, Cotinine toxicity, Cross-Sectional Studies, Cytokines blood, Environmental Exposure adverse effects, Environmental Monitoring, Humans, Inflammation, Keratin-18 blood, Liver metabolism, Liver Diseases etiology, Male, Metals, Heavy toxicity, Middle Aged, Styrene toxicity, Toluene toxicity, Volatile Organic Compounds blood, Xylenes toxicity, Benzene metabolism, Benzene Derivatives blood, Liver diagnostic imaging, Liver Diseases blood, Metals, Heavy blood, Styrene blood, Toluene blood, Xylenes blood
- Abstract
Introduction: Exposures to volatile organic compounds and metals have previously been associated with liver diseases including steatohepatitis, although more data are needed. Benzene, toluene, ethylbenzene, xylenes, styrene (BTEXS) and metals were measured in blood samples collected between May 2012-July 2013 from volunteers participating in home visits for the Gulf Long-term Follow-up (GuLF) Study. This cross-sectional analysis evaluates associations of exposure biomarkers with serum liver injury and adipocytokine biomarkers in a sample of 214 men., Methods: Adult nonsmoking men without a history of liver disease or heavy alcohol consumption were included. The serologic disease biomarkers evaluated were the hepatocellular injury biomarker, cytokeratin 18 [whole (CK18 M65) and caspase-cleaved fragment (CK18 M30)]; and adipocytokines. Confounder-adjusted beta coefficients were determined using linear regression models for the overall sample (primary endpoints) and for obesity-classified sub-groups (secondary endpoints). A product interaction term between the exposure of interest and a dichotomized indicator of obesity was included to determine the disease modifying effects of obesity on the biomarker associations., Results: The study sample was 57% white and 51% obese. In the overall sample, lead was positively associated with CK18 M30 (β = 21.7 ± 6.0 (SE), p = 0.0004); IL-1β (β = 32.8 ± 5.2, p < 0.0001); IL-6 (β = 72.8 ± 18.3, p = 0.0001); and IL-8 (β = 140.8 ± 42.2, p = 0.001). Cadmium exposures were associated with increased IL-1β (β = 77.8 ± 26.3, p = 0.003) and IL-8 (β = 419.5 ± 201.2, p = 0.04). There were multiple significant interactions between obesity and exposure to lead, cadmium, benzene and toluene in relation to outcome biomarkers. Among obese participants (n = 108), benzene, lead, and cadmium were each positively associated with CK18 M30, IL-1β, IL-6, and IL-8. In obese subjects, lead was also inversely associated with leptin, and toluene was positively associated with IL-1β., Conclusion: For the overall sample, heavy metal exposures were associated with liver injury (lead only) and/or systemic inflammation (lead and cadmium). Obesity modified the associations between BTEXS and heavy metal exposures on several of the outcome variables. In the obesity subgroup, liver injury was positively associated with lead, cadmium and benzene exposures; systemic inflammation was increased with lead, cadmium, benzene, and toluene exposures; and leptin was inversely associated with lead exposures. The cross-sectional design of this study makes it difficult to determine causality, and all results should be interpreted cautiously. Nonetheless, the potential impact of exposures to lead, cadmium, benzene and toluene in steatohepatitis, an obesity-associated inflammatory liver disease, warrants further investigation., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Dr. Cave previously received a contract from Lakeside Life Sciences related to the clinical development of the cytokeratin 18 biomarker for alcoholic hepatitis. That contract is not directly related to this work., (Published by Elsevier Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
27. Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice.
- Author
-
Wahlang B, Hardesty JE, Head KZ, Jin J, Falkner KC, Prough RA, Cave MC, and Beier JI
- Subjects
- Animals, Apoptosis drug effects, Chemical and Drug Induced Liver Injury genetics, Chemical and Drug Induced Liver Injury metabolism, Chemical and Drug Induced Liver Injury pathology, Diet, High-Fat, Endoplasmic Reticulum Stress drug effects, Fatty Liver genetics, Fatty Liver metabolism, Fatty Liver pathology, Female, Gene Expression Regulation, Liver metabolism, Liver pathology, Male, Mice, Inbred C57BL, Risk Assessment, Sex Factors, Chemical and Drug Induced Liver Injury etiology, Environmental Pollutants toxicity, Fatty Liver chemically induced, Liver drug effects, Vinyl Chloride toxicity
- Abstract
Vinyl chloride (VC), a common industrial chemical, has been associated with hemangiosarcoma and toxicant-associated steatohepatitis (TASH) in men working at rubber-production plants. Our group previously demonstrated that chronic VC inhalation at environmentally relevant levels (< 1 ppm) in male mice exacerbated hepatic injury caused by high-fat diet (HFD) feeding. Because VC studies on TASH have only been performed in male models, the objective of this study is to examine VC inhalation in female mice in the context of TASH mechanisms. Male and female C57Bl/6 mice were fed either a low-fat diet or HFD and exposed to VC or room air using an inhalation chamber, for 12 weeks (6 h, 5 days/week); and plasma and liver samples were collected after euthanasia. Compared with males, females were less susceptible to HFD+VC-induced obesogenic effects demonstrated by lower body weight and fat composition. Histological analysis revealed that whereas VC exacerbated HFD-induced steatosis in males, this effect was absent in females. In addition, females were more resistant to VC-induced hepatic inflammation whereas males had increased liver weights and higher hepatic Tnfα mRNA levels. Systemic markers of hepatic injury, namely alanine aminotransaminase and thrombin/antithrombin levels were increased by HFD+VC co-exposures only in males. In addition, females did not show significant cell death as previously reported in males. Taken together, the results suggested that VC inhalation led to sex-dependent liver and metabolic toxicity. This study implicated the importance of assessing sex differences in environmental basic science and epidemiologic studies to better identify at-risk populations in both men and women., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
28. Insecticide and metal exposures are associated with a surrogate biomarker for non-alcoholic fatty liver disease in the National Health and Nutrition Examination Survey 2003-2004.
- Author
-
Wahlang B, Appana S, Falkner KC, McClain CJ, Brock G, and Cave MC
- Subjects
- Adult, Alanine Transaminase, Biomarkers metabolism, Cross-Sectional Studies, Environmental Pollutants metabolism, Female, Humans, Insecticides metabolism, Male, Metals metabolism, Non-alcoholic Fatty Liver Disease epidemiology, Nutrition Surveys, United States epidemiology, Environmental Exposure statistics & numerical data, Environmental Pollutants toxicity, Insecticides toxicity, Metals toxicity, Non-alcoholic Fatty Liver Disease metabolism
- Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common form of liver disease, affects over 30% of the US population. Our group and others have previously demonstrated that low-level environmental pollutant exposures were associated with increased odds ratios for unexplained alanine aminotransferase (ALT) elevation, a surrogate biomarker for NAFLD, in the adult National Health and Nutrition Examination Survey (NHANES). However, recently, more sensitive and lower ALT cutoffs have been proposed. The objective of this observational study is to utilize these ALT cutoffs to determine new associations between environmental chemicals and the surrogate NAFLD biomarker. Adult NHANES 2003-2004 participants without viral hepatitis, hemochromatosis, or alcoholic liver disease were analyzed in this cross-sectional study. ALT elevation was defined as > 30 IU/L in men and > 19 IU/L in women. Odds ratios adjusted for potential confounders for ALT elevation were determined across exposure quartiles for 17 pollutant subclasses comprised of 111 individual pollutants. The overall prevalence of ALT elevation was 37.6%. Heavy metal and organochlorine insecticide subclasses were associated with dose-dependent increased adjusted odds ratios for ALT elevation of 1.6 (95% CI 1.2-2.3) and 3.5 (95% CI 2.3-5.5) respectively, for the highest vs. lowest exposure quartiles (p
trend < 0.01). Within these subclasses, increasing whole blood levels of lead and mercury, and lipid-adjusted serum levels of dieldrin, and the chlordane metabolites, heptachlor epoxide, and trans-nonachlor, were associated with increased odds ratios for ALT elevation. In conclusion, organochlorine insecticide, lead, and mercury exposures were associated with ALT elevation and suspected NAFLD in adult NHANES 2003-2004.- Published
- 2020
- Full Text
- View/download PDF
29. Phosphodiesterase 4 Inhibition as a Therapeutic Target for Alcoholic Liver Disease: From Bedside to Bench.
- Author
-
Rodriguez WE, Wahlang B, Wang Y, Zhang J, Vadhanam MV, Joshi-Barve S, Bauer P, Cannon R, Ahmadi AR, Sun Z, Cameron A, Barve S, Maldonado C, McClain C, and Gobejishvili L
- Subjects
- Adult, Aged, Animals, Apoptosis drug effects, Cyclic AMP analysis, Cyclic AMP physiology, Cytokines blood, Endoplasmic Reticulum Stress drug effects, Female, Humans, Lipid Peroxidation drug effects, Liver Diseases, Alcoholic metabolism, Male, Mice, Middle Aged, Phosphodiesterase 4 Inhibitors pharmacology, Liver Diseases, Alcoholic drug therapy, Phosphodiesterase 4 Inhibitors therapeutic use
- Abstract
Alcoholic liver disease (ALD) is a major cause of liver-related mortality. There is still no US Food and Drug Administration-approved therapy for ALD, and therefore, identifying therapeutic targets is needed. Our previous work demonstrated that ethanol exposure leads to up-regulation of cAMP-degrading phosphodiesterase 4 (PDE4) expression, which compromises normal cAMP signaling in monocytes/macrophages and hepatocytes. This effect of ethanol on cAMP signaling contributes to dysregulated inflammatory response and altered lipid metabolism. It is unknown whether chronic alcohol consumption in humans alters hepatic PDE4 expression and cAMP signaling and whether inadequate cAMP signaling plays a pathogenic role in alcohol-induced liver injury. Our present work shows that expression of the PDE4 subfamily of enzymes is significantly up-regulated and cAMP levels are markedly decreased in hepatic tissues of patients with severe ALD. We also demonstrate the anti-inflammatory efficacy of roflumilast, a clinically available PDE4 inhibitor, on endotoxin-inducible proinflammatory cytokine production ex vivo in whole blood of patients with alcoholic hepatitis. Moreover, we demonstrate that ethanol-mediated changes in hepatic PDE4 and cAMP levels play a causal role in liver injury in in vivo and in vitro models of ALD. This study employs a drug delivery system that specifically delivers the PDE4 inhibitor rolipram to the liver to avoid central nervous system side effects associated with this drug. Our results show that PDE4 inhibition significantly attenuates ethanol-induced hepatic steatosis and injury through multiple mechanisms, including reduced oxidative and endoplasmic reticulum stress both in vivo and in vitro. Conclusion: Increased PDE4 plays a pathogenic role in the development of ALD; hence, directed interventions aimed at inhibiting PDE4 might be an effective treatment for ALD., (© 2019 by the American Association for the Study of Liver Diseases.)
- Published
- 2019
- Full Text
- View/download PDF
30. Mechanisms of Environmental Contributions to Fatty Liver Disease.
- Author
-
Wahlang B, Jin J, Beier JI, Hardesty JE, Daly EF, Schnegelberger RD, Falkner KC, Prough RA, Kirpich IA, and Cave MC
- Subjects
- Humans, Non-alcoholic Fatty Liver Disease epidemiology, Pesticides toxicity, Risk Factors, Carcinogens toxicity, Endocrine Disruptors adverse effects, Environmental Exposure adverse effects, Environmental Pollutants toxicity, Non-alcoholic Fatty Liver Disease chemically induced
- Abstract
Purpose: Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010., Recent Findings: Recently discovered modes of actions for volatile organic compounds and persistent organic pollutants include the following: (i) the endocrine-, metabolism-, and signaling-disrupting chemical hypotheses; (ii) chemical-nutrient interactions and the "two-hit" hypothesis. These key hypotheses were then reviewed in the context of the steatosis adverse outcome pathway (AOP) proposed by the US Environmental Protection Agency. The conceptual understanding of the contribution of environmental exposures to FLD has progressed significantly. However, because this is a new research area, more studies including mechanistic human data are required to address current knowledge gaps.
- Published
- 2019
- Full Text
- View/download PDF
31. Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease.
- Author
-
Wahlang B, Jin J, Hardesty JE, Head KZ, Shi H, Falkner KC, Prough RA, Klinge CM, and Cave MC
- Subjects
- Adipokines blood, Animals, Body Weight drug effects, Cytokines blood, Female, Glucose metabolism, Lipids blood, Liver drug effects, Liver metabolism, Male, Mice, Mice, Inbred C57BL, Organ Size drug effects, Aroclors toxicity, Chemical and Drug Induced Liver Injury etiology, Endocrine Disruptors toxicity, Polychlorinated Biphenyls toxicity, Sex Factors
- Abstract
Exposures to persistent environmental pollutants like polychlorinated biphenyls (PCBs) has been associated with liver diseases such as toxicant-associated steatohepatitis (TASH). However, previously published PCB hepatotoxicity studies evaluated mostly male animal models. Moreover, epidemiologic studies on PCB-exposed cohorts evaluating sex differences are scarce. Therefore, the objective of this study was to examine hepato-toxicological responses of PCB exposures in the context of sex-dependent outcomes. Male and female C57Bl/6 mice were exposed to Aroclor 1260 (20 mg/kg), and PCB126 (20 μg/kg), by gavage for two weeks. Female mice appeared to be more sensitive to PCB-induced hepatotoxic effects as manifested by increased liver injury markers, namely, hepatic Serpine1 expression. Additionally, compared to their male counterparts, PCB-exposed females exhibited dysregulated hepatic gene expression favoring lipid accumulation rather than lipid breakdown; accompanied by dyslipidemia. Sex differences were also observed in the expression and activation of PCB targets such as the epidermal growth factor receptor (EGFR) while PCB-induced pancreatic toxicity was similar in both sexes. Importantly, PCB exposure appeared to cause pro-androgenic, anti-estrogenic along with sex-dependent thyroid hormone effects. The overall findings demonstrated that the observed PCB-mediated hepatotoxicity was sex-dependent; confirming the existence of sex differences in environmental exposure-induced markers of TASH and warrants further investigation., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
32. Proteomic Analysis Reveals Novel Mechanisms by Which Polychlorinated Biphenyls Compromise the Liver Promoting Diet-Induced Steatohepatitis.
- Author
-
Hardesty JE, Wahlang B, Falkner KC, Shi H, Jin J, Zhou Y, Wilkey DW, Merchant ML, Watson CT, Feng W, Morris AJ, Hennig B, Prough RA, and Cave MC
- Subjects
- Animals, Cell Line, Male, Mice, Mice, Inbred C57BL, Proteomics, Diet, High-Fat, Liver chemistry, Liver drug effects, Liver metabolism, Non-alcoholic Fatty Liver Disease chemically induced, Non-alcoholic Fatty Liver Disease metabolism, Polychlorinated Biphenyls toxicity, Proteome analysis, Proteome drug effects, Proteome metabolism
- Abstract
Environmental pollution contributes to fatty liver disease pathogenesis. Polychlorinated biphenyl (PCB) exposures have been associated with liver enzyme elevation and suspected steatohepatitis in cohort studies. Male mice treated with the commercial PCB mixture, Aroclor 1260 (20 mg/kg), and fed high fat diet (HFD) for 12 weeks developed steatohepatitis. Receptor-based modes of action including inhibition of the epidermal growth factor (EGF) receptor were previously proposed, but other mechanisms likely exist. Objectives were to identify and validate the pathways, transcription factors, and mechanisms responsible for the steatohepatitis associated with PCB and HFD coexposures. Comparative proteomics analysis was performed in archived mouse liver samples from the aforementioned chronic exposure study. Pathway and transcription factor analysis (TFA) was performed, and selected results were validated. Liver proteomics detected 1103 unique proteins. Aroclor 1260 upregulated 154 and downregulated 93 of these. Aroclor 1260 + HFD coexposures affected 55 pathways including glutathione metabolism, intermediary metabolism, and cytoskeletal remodeling. TFA of Aroclor 1260 treatment demonstrated alterations in the function of 42 transcription factors including downregulation of NRF2 and key nuclear receptors previously demonstrated to protect against steatohepatitis (e.g., HNF4α, FXR, PPARα/δ/γ, etc.). Validation studies demonstrated that Aroclor 1260 significantly reduced HNF4α protein levels, while Aroclor 1260 + HFD reduced expression of the HNF4α target gene, albumin, in vivo. Aroclor 1260 attenuated EGF-dependent HNF4α phosphorylation and target gene activation in vitro. Aroclor 1260 reduced levels of NRF2, its target genes, and glutathione in vivo. Aroclor 1260 attenuated EGF-dependent NRF2 upregulation, in vitro. Aroclor 1260 indirectly activated hepatic stellate cells in vitro via induction of hepatocyte-derived TGFβ. PCB exposures adversely impacted transcription factors regulating liver protection, function, and fibrosis. PCBs, thus, compromised the liver by reducing its protective responses against nutritional stress to promote diet-induced steatohepatitis. The identified mechanisms by which environmental pollutants influence fatty liver disease pathogenesis require confirmation in humans.
- Published
- 2019
- Full Text
- View/download PDF
33. Polychlorinated Biphenyls and Nonalcoholic Fatty Liver Disease.
- Author
-
Wahlang B, Hardesty JE, Jin J, Falkner KC, and Cave MC
- Abstract
Polychlorinated biphenyls (PCBs) have been associated with abnormal liver enzymes and suspected nonalcoholic fatty liver disease (NAFLD) in cohort studies. NAFLD affects greater than 25% of the global population and may result in liver-related mortality. Both dioxin-like and non-dioxin-like PCBs have been associated with NAFLD, but their effects and mechanisms differ. Dioxin-like PCBs altered the gut:liver axis and microbiome and caused hepatic steatosis by disrupting hepatic lipid metabolism. In contrast, NDL PCBs reduced the liver's protective responses to promote diet-induced NAFLD. Mechanisms included the disruption of phosphoprotein signaling resulting in altered nuclear receptor function., Competing Interests: CONFLICT OF INTEREST: The authors declare that they have no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
34. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines.
- Author
-
Bassler J, Ducatman A, Elliott M, Wen S, Wahlang B, Barnett J, and Cave MC
- Subjects
- Adult, Aged, Animals, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Adipokines blood, Apoptosis drug effects, Biomarkers blood, Chemical and Drug Induced Liver Injury etiology, Environmental Exposure adverse effects, Fluorocarbons adverse effects, Lipid Metabolism drug effects
- Abstract
Exposures to perfluoroalkyl substances (PFAS) including perfluoroalkyl acids (PFAAs) are associated with increased liver enzymes in cohort studies including the C8 Health Study. In animal models, PFAAs disrupt hepatic lipid metabolism and induce apoptosis to cause nonalcoholic fatty liver disease (NAFLD). PFAAs are immunotoxic and inhibit pro-inflammatory cytokine release from stimulated leukocytes in vitro. This cross-sectional study tests the hypothesis that environmental PFAAs are associated with increased hepatocyte apoptosis and decreased pro-inflammatory cytokines in serum. Biomarkers previously associated with PFAS exposures and/or NAFLD were evaluated as secondary endpoints. Two hundred adult C8 Health Study participants were included. Measured serum biomarkers included: perfluorohexane sulfonate (PFHxS); perfluorooctanoic acid (PFOA); perfluorooctane sulfonate (PFOS); perfluorononanoic acid (PFNA); cytokeratin 18 M30 (CK18 M30, hepatocyte apoptosis); adipocytokines; insulin; and cleaved complement 3 (C3a). Confounder-adjusted linear regression models determined associations between PFAS and disease biomarkers with cut-offs determined by classification and regression tree analysis. CK18 M30 was positively associated with PFHxS (β = 0.889, p = 0.042); PFOA (β = 2.1, p = 0.005); and PFNA (β = 0.567, p = 0.03). Tumor necrosis factor α (TNFα) was inversely associated with PFHxS (β = -0.799, p = 0.001); PFOA (β = - 1.242, p = 0.001); and PFOS (β = -0.704, p < 0.001). Interleukin 8 was inversely associated with PFOS and PFNA. PFAAs were also associated with sexually dimorphic adipocytokine and C3a responses. Overall, PFAA exposures were associated with the novel combination of increased biomarkers of hepatocyte apoptosis and decreased serum TNFα. These data support previous findings from cohorts and experimental systems that PFAAs may cause liver injury while downregulated some aspects of the immune response. Further studies of PFAAs in NAFLD are warranted and should evaluate sex differences., (Published by Elsevier Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
35. Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction.
- Author
-
Deng P, Barney J, Petriello MC, Morris AJ, Wahlang B, and Hennig B
- Subjects
- Animals, Diet adverse effects, Lipid Metabolism drug effects, Liver drug effects, Methionine metabolism, Mice, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease chemically induced, Polychlorinated Biphenyls pharmacology, Liver metabolism, Metabolomics methods, Oxidative Stress drug effects, Polychlorinated Biphenyls toxicity
- Abstract
The deleterious effects of PCB 126 are complex, and the role of the liver in modifying toxic insult is not well understood. We utilized metabolomics approaches to compare liver metabolites significantly affected by PCB 126 in control mice and a diet induced liver injury mouse model. In this 14-week study, mice were fed either an amino acid supplemented control diet (CD) or a methionine-choline deficient diet (MCD) which promoted nonalcoholic steatohepatitis (NASH) and were subsequently exposed to PCB 126. The liver metabolome was profiled by a global metabolomic analysis using LC-MS. There were clear differences between PCB 126 exposed and control mice in the hepatic metabolomic profiles (216 and 266 metabolites were altered in CD-fed and MCD-fed mice respectively after PCB 126 exposure). PCB 126 modulated glycerophospholipid metabolism, glutathione metabolism, and CoA biosynthesis pathways irrespective of diet; indicating that the disturbance in lipid metabolism and thiol metabolites are general markers of PCB 126 exposure irrespective of liver health. Additionally, metabolites associated with oxidative stress and mitochondrial dysfunction were greatly elevated in PCB 126 exposed mice with compromised livers (e.g., 4-hydroxy-nonenal glutathione, oxylipids, uric acid, and acylcarnitines). Moreover, PCB 126 exposure downregulated redox genes, and the effect was more pronounced in liver injury mice. In conclusion, this study demonstrates that PCB 126 could induce oxidative stress and metabolic dysfunction, and pre-existing liver injury can markedly modify PCB 126-induced metabolic changes. Using metabolic profiling, this study suggests mechanism of enhanced PCB 126 toxicity under liver injury settings., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
36. Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis.
- Author
-
Hardesty JE, Wahlang B, Falkner KC, Shi H, Jin J, Wilkey D, Merchant M, Watson C, Prough RA, and Cave MC
- Subjects
- Animals, Cell Line, Fatty Liver metabolism, Hepatocytes metabolism, Humans, Male, Mice, Inbred C57BL, Phosphorylation drug effects, Environmental Pollutants adverse effects, Fatty Liver chemically induced, Hepatocytes drug effects, Polychlorinated Biphenyls adverse effects, Signal Transduction drug effects
- Abstract
Background: Polychlorinated biphenyl-mediated steatohepatitis has been shown to be due in part to inhibition of epidermal growth factor receptor (EGFR) signalling. EGFR signalling regulates many facets of hepatocyte function, but it is unclear which other kinases and pathways are involved in the development of toxicant-associated steatohepatitis (TASH)., Methods: Comparative hepatic phosphoproteomic analysis was used to identify which kinases were affected by either PCB exposure (Aroclor 1260 mixture), high fat diet (HFD), or their interaction in a chronic exposure model of TASH. Cellular assays and western blot analysis were used to validate the phosphoproteomic findings., Results: 1760 unique phosphorylated peptides were identified and of those 588 were significantly different. PCB exposure and dietary interaction promoted a near 25% reduction of hepatic phospho-peptides. Leptin and insulin signalling were pathways highly affected by PCB exposure and liver necrosis was a pathologic ontology over represented due to interaction between PCBs and a HFD. Casein kinase 2 (CK2), Extracellular regulated kinase (ERK), Protein kinase B (AKT), and Cyclin dependent kinase (CDK) activity were demonstrated to be downregulated after PCB exposure and this downregulation was exacerbated with a HFD. PCB exposure led to a loss of hepatic CK2 subunit expression limiting CK2 kinase activity and negatively regulating caspase-3 (CASP3). PCBs promoted secondary necrosis in vitro validating the latter observation. The loss of hepatic phosphoprotein signalling appeared to be due to decreased signal transduction rather than phosphatase upregulation., Conclusions: PCBs are signal disrupting chemicals that promote secondary necrosis through affecting a myriad of liver processes including metabolism and cellular maintenance. PCB exposure, particularly with interaction with a HFD greatly down-regulates the hepatic kinome. More data are needed on signalling disruption and its impact on liver health., (Published by Elsevier Inc.)
- Published
- 2019
- Full Text
- View/download PDF
37. Exposure to persistent organic pollutants: impact on women's health.
- Author
-
Wahlang B
- Subjects
- Female, Heart Diseases etiology, Humans, Metabolic Diseases etiology, Neoplasms etiology, Environmental Pollutants adverse effects, Heart Diseases physiopathology, Metabolic Diseases physiopathology, Neoplasms physiopathology, Reproductive Health, Women's Health
- Abstract
This literature review focuses on the causal relationship between persistent organic pollutants (POPs) exposure and women's health disorders, particularly cancer, cardio-metabolic events and reproductive health. Progressive industrialization has resulted in the production of a multitude of chemicals that are released into the environment on a daily basis. Environmental chemicals or pollutants are not only hazardous to our ecosystem but also lead to various health problems that affect the human population worldwide irrespective of gender, race or age. However, most environmental health studies that have been conducted, until recently, were exclusively biased with regard to sex and gender, beginning with exposure studies that were reported mostly in male, occupational workers and animal studies being carried out mostly in male rodent models. Health-related issues pertaining to women of all age groups have not been studied thoroughly and rather disregarded in most aspects of basic health science research and it is therefore pertinent that we address these limitations in environmental health. The review also addresses studies looking at the associations between health outcomes and exposures to POPs, particularly, polychlorinated biphenyls (PCBs), dioxins and pesticides, reported in cohort studies while accounting for gender differences. Considering that current levels of POPs in women can also impact future generations, informative guidelines related to dietary patterns and exposure history are needed for women of reproductive age. Additionally, occupational cohorts of highly exposed women worldwide, such as women working in manufacturing plants and female pesticide applicators are required to gather more information on population susceptibility and disease pathology.
- Published
- 2018
- Full Text
- View/download PDF
38. Role of cAMP and phosphodiesterase signaling in liver health and disease.
- Author
-
Wahlang B, McClain C, Barve S, and Gobejishvili L
- Subjects
- Animals, Humans, Liver Diseases, Alcoholic drug therapy, Liver Diseases, Alcoholic metabolism, Non-alcoholic Fatty Liver Disease drug therapy, Non-alcoholic Fatty Liver Disease metabolism, Phosphodiesterase Inhibitors therapeutic use, Signal Transduction, Cyclic AMP metabolism, Liver metabolism, Liver Diseases, Alcoholic pathology, Non-alcoholic Fatty Liver Disease pathology, Phosphoric Diester Hydrolases metabolism
- Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
39. The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics.
- Author
-
Gupta P, Thompson BL, Wahlang B, Jordan CT, Zach Hilt J, Hennig B, and Dziubla T
- Subjects
- Animals, Environmental Exposure, Environmental Pollutants chemistry, Humans, Nanomedicine, Oxidative Stress, Polychlorinated Biphenyls chemistry, Antioxidants therapeutic use, Cardiovascular Diseases prevention & control, Environmental Pollutants toxicity, Polychlorinated Biphenyls toxicity
- Abstract
Despite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB's strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits. This means that completely avoiding exposure is not possible, thus requiring the need to develop intervention strategies that can mitigate disease risks associated with exposure to PCBs. Currently, there is excitement in the use of nutritional compounds as a way of inhibiting the inflammation associated with PCBs, yet the suboptimal delivery and pharmacology of these compounds may not be sufficient in more acute exposures. In this review, we discuss the current state of knowledge of PCB toxicity and some of the antioxidant and anti-inflammatory nanocarrier systems that may be useful as an enhanced treatment modality for reducing PCB toxicity.
- Published
- 2018
- Full Text
- View/download PDF
40. Dioxin-like PCB 126 Increases Systemic Inflammation and Accelerates Atherosclerosis in Lean LDL Receptor-Deficient Mice.
- Author
-
Petriello MC, Brandon JA, Hoffman J, Wang C, Tripathi H, Abdel-Latif A, Ye X, Li X, Yang L, Lee E, Soman S, Barney J, Wahlang B, Hennig B, and Morris AJ
- Subjects
- Animals, Aorta drug effects, Aorta pathology, Atherosclerosis blood, Atherosclerosis immunology, Atherosclerosis pathology, Biomarkers blood, Blood Cell Count, Body Weight, Diet, Atherogenic, Inflammation, Male, Mice, Knockout, Receptors, LDL genetics, Atherosclerosis chemically induced, Cytokines blood, Environmental Pollutants toxicity, Lipids blood, Polychlorinated Biphenyls toxicity, Receptors, LDL deficiency
- Abstract
Exposure to dioxins and related persistent organic pollutants likely contributes to cardiovascular disease (CVD) risk through multiple mechanisms including the induction of chronic inflammation. Epidemiological studies have shown that leaner individuals may be more susceptible to the detrimental effects of lipophilic toxicants because they lack large adipose tissue depots that can accumulate and sequester these pollutants. This phenomenon complicates efforts to study mechanisms of pollutant-accelerated atherosclerosis in experimental animal models where high-fat feeding and adipose expansion limit the bioavailability of lipophilic pollutants. Here, we investigated whether a model dioxin-like pollutant, PCB 126, could increase inflammation and accelerate atherosclerosis in Ldlr-/- mice fed a low-fat atherogenic diet. We fed Ldlr-/- mice the Clinton/Cybulsky diet (10% kcal fat, 0.15% cholesterol) and sacrificed mice at 8, 10, or 12 weeks postPCB (2 doses of 1 μmol/kg) or vehicle gavage. To characterize this novel model, we examined the effects of PCB 126 on markers of systemic inflammation, hematological indices, fatty livers, and atherosclerotic lesion size. Mice exposed to PCB 126 exhibited significantly increased plasma inflammatory cytokine levels, increased circulating biomarkers of CVD, altered platelet, and red blood cell counts, increased accumulation of hepatic fatty acids, and accelerated atherosclerotic lesion formation in the aortic root. PCB 126 also increased circulating neutrophils, monocytes, and macrophages as determined by flow cytometry analysis. Exposure to dioxin-like PCB 126 increases inflammation and accelerates atherosclerosis in mice. This low-fat atherogenic diet may provide a useful tool to study the mechanisms linking exposure to lipophilic pollutants to increased risk of CVD.
- Published
- 2018
- Full Text
- View/download PDF
41. Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals.
- Author
-
Hardesty JE, Al-Eryani L, Wahlang B, Falkner KC, Shi H, Jin J, Vivace BJ, Ceresa BP, Prough RA, and Cave MC
- Subjects
- Animals, Cell Line, Tumor, Constitutive Androstane Receptor, Endocytosis drug effects, Epidermal Growth Factor metabolism, ErbB Receptors agonists, Hep G2 Cells, Humans, Mice, Molecular Docking Simulation, Phosphorylation, Receptors, Cytoplasmic and Nuclear genetics, Receptors, Cytoplasmic and Nuclear metabolism, Transfection, Endocrine Disruptors toxicity, ErbB Receptors metabolism, Metabolic Networks and Pathways drug effects, Signal Transduction drug effects
- Abstract
The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.
- Published
- 2018
- Full Text
- View/download PDF
42. Editor's Highlight: PCB126 Exposure Increases Risk for Peripheral Vascular Diseases in a Liver Injury Mouse Model.
- Author
-
Wahlang B, Barney J, Thompson B, Wang C, Hamad OM, Hoffman JB, Petriello MC, Morris AJ, and Hennig B
- Subjects
- Animals, Chemical and Drug Induced Liver Injury genetics, Chemical and Drug Induced Liver Injury metabolism, Chemical and Drug Induced Liver Injury pathology, Choline Deficiency, Disease Models, Animal, Energy Metabolism drug effects, Environmental Pollutants metabolism, Gene Expression Regulation, Inflammation Mediators metabolism, Liver pathology, Liver Cirrhosis genetics, Liver Cirrhosis metabolism, Liver Cirrhosis pathology, Male, Methionine deficiency, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease genetics, Non-alcoholic Fatty Liver Disease metabolism, Non-alcoholic Fatty Liver Disease pathology, Peripheral Vascular Diseases genetics, Peripheral Vascular Diseases metabolism, Polychlorinated Biphenyls metabolism, Chemical and Drug Induced Liver Injury etiology, Environmental Pollutants toxicity, Liver metabolism, Liver Cirrhosis chemically induced, Non-alcoholic Fatty Liver Disease chemically induced, Peripheral Vascular Diseases chemically induced, Polychlorinated Biphenyls toxicity
- Abstract
The liver is vital for xenobiotic and endobiotic metabolism. Previously, we demonstrated that a compromised liver worsened toxicity associated with exposure to polychlorinated biphenyls (PCBs), through disruption of energy homeostasis. However, the role of a compromised liver in defining dioxin-like PCB126 toxicity on the peripheral vasculature and associated inflammatory diseases is yet to be studied. This study investigated the effects of PCB126 on vascular inflammation linked to hepatic dysfunction utilizing a liver injury mouse model. Male C57Bl/6 mice were fed either an amino acid control diet (CD) or a methionine-choline deficient (MCD) diet in this 14-week study. Mice were exposed to PCB126 (0.5 mg/kg) and analyzed for inflammatory, calorimetric and metabolic parameters. MCD diet-fed mice demonstrated steatosis, indicative of a compromised liver. Mice fed the MCD-diet and subsequently exposed to PCB126 manifested lower body fat mass, increased liver to body weight ratio and alterations in hepatic gene expression related to lipid and carbohydrate metabolism, implicating metabolic disturbances. PCB126-induced steatosis irrespective of the diet type, but only the MCD + PCB126 group exhibited steatohepatitis and fibrosis. Furthermore, PCB126 exposure in MCD-fed mice led to increased plasma inflammatory markers such as Icam-1, plasminogen activator inhibitor-1 and proatherogenic trimethylamine-N-oxide, suggesting inflammation of the peripheral vasculature that is characteristic of atherosclerosis. Taken together, our data provide new evidence of a link between a compromised liver, PCB-mediated hepatic inflammation and vascular inflammatory markers, suggesting that environmental pollutants can promote crosstalk between different organ systems, leading to inflammatory disease pathologies., (© The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
43. Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling.
- Author
-
Hardesty JE, Wahlang B, Falkner KC, Clair HB, Clark BJ, Ceresa BP, Prough RA, and Cave MC
- Subjects
- Animals, Mice, Xenobiotics toxicity, Environmental Pollutants toxicity, ErbB Receptors metabolism, Polychlorinated Biphenyls toxicity, Signal Transduction drug effects
- Abstract
1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesized that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC
50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.- Published
- 2017
- Full Text
- View/download PDF
44. A compromised liver alters polychlorinated biphenyl-mediated toxicity.
- Author
-
Wahlang B, Perkins JT, Petriello MC, Hoffman JB, Stromberg AJ, and Hennig B
- Subjects
- Adipokines blood, Animals, Aroclors toxicity, Biomarkers blood, Blood Glucose metabolism, Cardiovascular Diseases blood, Cardiovascular Diseases chemically induced, Cardiovascular Diseases pathology, Choline administration & dosage, Diet, Disease Models, Animal, Energy Metabolism, Fatty Liver blood, Fatty Liver chemically induced, Gene Expression, Homeostasis drug effects, Inflammation blood, Inflammation chemically induced, Liver physiopathology, Liver Cirrhosis blood, Liver Cirrhosis chemically induced, Male, Methionine administration & dosage, Methionine deficiency, Mice, Inbred C57BL, Fatty Liver physiopathology, Liver drug effects, Liver Cirrhosis physiopathology, Polychlorinated Biphenyls toxicity
- Abstract
Exposure to environmental toxicants namely polychlorinated biphenyls (PCBs) is correlated with multiple health disorders including liver and cardiovascular diseases. The liver is important for both xenobiotic and endobiotic metabolism. However, the responses of an injured liver to subsequent environmental insults has not been investigated. The current study aims to evaluate the role of a compromised liver in PCB-induced toxicity and define the implications on overall body homeostasis. Male C57Bl/6 mice were fed either an amino acid control diet (CD) or a methionine-choline deficient diet (MCD) during the 12-week study. Mice were subsequently exposed to either PCB126 (4.9mg/kg) or the PCB mixture, Arcolor1260 (20mg/kg) and analyzed for inflammatory, calorimetry and metabolic parameters. Consistent with the literature, MCD diet-fed mice demonstrated steatosis, indicative of a compromised liver. Mice fed the MCD-diet and subsequently exposed to PCB126 showed observable wasting syndrome leading to mortality. PCB126 and Aroclor1260 exposure worsened hepatic fibrosis exhibited by the MCD groups. Interestingly, PCB126 but not Aroclor1260 induced steatosis and inflammation in CD-fed mice. Mice with liver injury and subsequently exposed to PCBs also manifested metabolic disturbances due to alterations in hepatic gene expression. Furthermore, PCB exposure in MCD-fed mice led to extra-hepatic toxicity such as upregulated circulating inflammatory biomarkers, implicating endothelial cell dysfunction. Taken together, these results indicate that environmental pollution can exacerbate toxicity caused by diet-induced liver injury which may be partially due to dysfunctional energy homeostasis. This is relevant to PCB-exposed human cohorts who suffer from alcohol or diet-induced fatty liver diseases., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
45. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.
- Author
-
Wahlang B, Petriello MC, Perkins JT, Shen S, and Hennig B
- Subjects
- Cells, Cultured, Gene Expression Profiling, Human Umbilical Vein Endothelial Cells metabolism, Oligonucleotide Array Sequence Analysis, Human Umbilical Vein Endothelial Cells drug effects, MicroRNAs genetics, Polychlorinated Biphenyls toxicity, Vascular Diseases genetics
- Abstract
Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
46. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors.
- Author
-
Petriello MC, Hoffman JB, Sunkara M, Wahlang B, Perkins JT, Morris AJ, and Hennig B
- Subjects
- Administration, Oral, Animals, Atherosclerosis blood, Atherosclerosis metabolism, Biomarkers blood, Choline administration & dosage, Deuterium, Dietary Fats metabolism, Environmental Pollutants administration & dosage, Enzyme Induction drug effects, Food-Drug Interactions, Liver enzymology, Liver metabolism, Male, Methylamines administration & dosage, Methylamines metabolism, Mice, Inbred C57BL, Oxygenases chemistry, Oxygenases genetics, Phosphatidylcholines administration & dosage, Phosphatidylcholines metabolism, Polychlorinated Biphenyls administration & dosage, Random Allocation, Up-Regulation drug effects, Atherosclerosis etiology, Choline metabolism, Environmental Pollutants toxicity, Liver drug effects, Methylamines blood, Oxygenases metabolism, Polychlorinated Biphenyls toxicity
- Abstract
The etiology of cardiovascular disease (CVD) is impacted by multiple modifiable and non-modifiable risk factors including dietary choices, genetic predisposition, and environmental exposures. However, mechanisms linking diet, exposure to pollutants, and CVD risk are largely unclear. Recent studies identified a strong link between plasma levels of nutrient-derived Trimethylamine N-oxide (TMAO) and coronary artery disease. Dietary precursors of TMAO include carnitine and phosphatidylcholine, which are abundant in animal-derived foods. Dioxin-like pollutants can upregulate a critical enzyme responsible for TMAO formation, hepatic flavin containing monooxygenase 3 (FMO3), but a link between dioxin-like PCBs, upregulation of FMO3, and increased TMAO has not been reported. Here, we show that mice exposed acutely to dioxin-like PCBs exhibit increased hepatic FMO3 mRNA, protein, as well as an increase in circulating levels of TMAO following oral administration of its metabolic precursors. C57BL/6 mice were exposed to 5μmol PCB 126/kg mouse weight (1.63mg/kg). At 48h post-PCB exposure, mice were subsequently given a single gavage of phosphatidylcholine dissolved in corn oil. Exposure to 5 μmole/kg PCB 126 resulted in greater than 100-fold increase in FMO3 mRNA expression, robust induction of FMO3 protein, and a 5-fold increase in TMAO levels compared with vehicle treated mice. We made similar observations in mice exposed to PCB 77 (49.6mg/kg twice); stable isotope tracer studies revealed increased formation of plasma TMAO from an orally administered precursor trimethylamine (TMA). Taken together, these observations suggest a novel diet-toxicant interaction that results in increased production of a circulating biomarker of cardiovascular disease risk., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
47. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis.
- Author
-
Wahlang B, Prough RA, Falkner KC, Hardesty JE, Song M, Clair HB, Clark BJ, States JC, Arteel GE, and Cave MC
- Subjects
- Animals, Behavior, Animal drug effects, Body Composition drug effects, Constitutive Androstane Receptor, Glucose metabolism, Lipid Metabolism, Male, Mice, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease etiology, Pregnane X Receptor, Pulmonary Gas Exchange drug effects, Receptors, Cytoplasmic and Nuclear physiology, Receptors, Steroid drug effects, Receptors, Steroid physiology, Energy Metabolism, Inflammation chemically induced, Non-alcoholic Fatty Liver Disease metabolism, Polychlorinated Biphenyls toxicity, Receptors, Cytoplasmic and Nuclear drug effects
- Abstract
Polychlorinated biphenyls (PCBs) are environmental pollutants associated with non-alcoholic-steatohepatitis (NASH), diabetes, and obesity. We previously demonstrated that the PCB mixture, Aroclor 1260, induced steatohepatitis and activated nuclear receptors in a diet-induced obesity mouse model. This study aims to evaluate PCB interactions with the pregnane-xenobiotic receptor (Pxr: Nr1i2) and constitutive androstane receptor (Car: Nr1i3) in NASH. Wild type C57Bl/6 (WT), Pxr(-/-) and Car(-/-) mice were fed the high fat diet (42% milk fat) and exposed to a single dose of Aroclor 1260 (20 mg/kg) in this 12-week study. Metabolic phenotyping and analysis of serum, liver, and adipose was performed. Steatohepatitis was pathologically similar in all Aroclor-exposed groups, while Pxr(-/-) mice displayed higher basal pro-inflammatory cytokine levels. Pxr repressed Car expression as evident by increased basal Car/Cyp2b10 expression in Pxr(-/-) mice. Both Pxr(-/-) and Car(-/-) mice showed decreased basal respiratory exchange rate (RER) consistent with preferential lipid metabolism. Aroclor increased RER and carbohydrate metabolism, associated with increased light cycle activity in both knockouts, and decreased food consumption in the Car(-/-) mice. Aroclor exposure improved insulin sensitivity in WT mice but not glucose tolerance. The Aroclor-exposed, Pxr(-/-) mice displayed increased gluconeogenic gene expression. Lipid-oxidative gene expression was higher in WT and Pxr(-/-) mice although RER was not changed, suggesting PCB-mediated mitochondrial dysfunction. Therefore, Pxr and Car regulated inflammation, behavior, and energy metabolism in PCB-mediated NASH. Future studies should address the 'off-target' effects of PCBs in steatohepatitis., (Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.)
- Published
- 2016
- Full Text
- View/download PDF
48. Identification of Environmental Chemicals Associated with the Development of Toxicant-associated Fatty Liver Disease in Rodents.
- Author
-
Al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA, and Cave M
- Subjects
- Animals, Pesticides toxicity, Toxicity Tests, Environmental Pollutants toxicity, Liver drug effects, Non-alcoholic Fatty Liver Disease chemically induced
- Abstract
Background: Toxicant-associated fatty liver disease (TAFLD) is a recently identified form of nonalcoholic fatty liver disease (NAFLD) associated with exposure to industrial chemicals and environmental pollutants. Numerous studies have been conducted to test the association between industrial chemicals/environmental pollutants and fatty liver disease both in vivo and in vitro., Objectives: The objective of the article is to report a list of chemicals associated with TAFLD., Methods: Two federal databases of rodent toxicology studies-Toxicological Reference Database (ToxRefDB; Environmental Protection Agency) and Chemical Effects in Biological Systems (CEBS, National Toxicology Program)-were searched for liver end points. Combined, these 2 databases archive nearly 2,000 rodent studies. Toxicant-associated steatohepatitis (TASH) descriptors including fatty change, fatty necrosis, Oil red O-positive staining, steatosis, and lipid deposition were queried., Results: Using these search terms, 123 chemicals associated with fatty liver were identified. Pesticides and solvents were the most frequently identified chemicals, while polychlorinated biphenyls (PCBs)/dioxins were the most potent. About 44% of identified compounds were pesticides or their intermediates, and >10% of pesticide registration studies in ToxRefDB were associated with fatty liver. Fungicides and herbicides were more frequently associated with fatty liver than insecticides., Conclusion: More research on pesticides, solvents, metals, and PCBs/dioxins in NAFLD/TAFLD is warranted due to their association with liver damage., (© 2014 by The Author(s).)
- Published
- 2015
- Full Text
- View/download PDF
49. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease.
- Author
-
Wahlang B, Song M, Beier JI, Cameron Falkner K, Al-Eryani L, Clair HB, Prough RA, Osborne TS, Malarkey DE, States JC, and Cave MC
- Subjects
- Adipokines metabolism, Adipose Tissue pathology, Animals, Aryl Hydrocarbon Hydroxylases biosynthesis, Aryl Hydrocarbon Hydroxylases genetics, Blood Glucose metabolism, Cholesterol metabolism, Cytochrome P-450 CYP3A biosynthesis, Cytochrome P-450 CYP3A genetics, Cytochrome P450 Family 2, Diet, Fatty Liver pathology, Gene Expression drug effects, Glucose Tolerance Test, Inflammation chemically induced, Inflammation pathology, Liver pathology, Membrane Proteins biosynthesis, Membrane Proteins genetics, Mice, Mice, Inbred C57BL, Non-alcoholic Fatty Liver Disease, Obesity pathology, Real-Time Polymerase Chain Reaction, Receptors, Aryl Hydrocarbon biosynthesis, Receptors, Aryl Hydrocarbon genetics, Steroid Hydroxylases biosynthesis, Steroid Hydroxylases genetics, Toll-Like Receptor 4 biosynthesis, Toll-Like Receptor 4 genetics, Triglycerides metabolism, Aroclors toxicity, Environmental Pollutants toxicity, Fatty Liver chemically induced, Obesity chemically induced
- Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20mg/kg or 200mg/kg in corn oil) for 12weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260+HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant "second hit" in the transformation of steatosis to steatohepatitis., (Copyright © 2014. Published by Elsevier Inc.)
- Published
- 2014
- Full Text
- View/download PDF
50. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture.
- Author
-
Wahlang B, Falkner KC, Clair HB, Al-Eryani L, Prough RA, States JC, Coslo DM, Omiecinski CJ, and Cave MC
- Subjects
- Base Sequence, Complex Mixtures, DNA Primers, Hep G2 Cells, Humans, Aroclors toxicity
- Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 μg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 μg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 μg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 μg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα., (© The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.