1. Complex-valued neural networks to speed-up MR Thermometry during Hyperthermia using Fourier PD and PDUNet
- Author
-
Khatun, Rupali, Chatterjee, Soumick, Bert, Christoph, Wadepohl, Martin, Ott, Oliver J., Fietkau, Rainer, Nürnberger, Andreas, Gaipl, Udo S., and Frey, Benjamin
- Subjects
Physics - Medical Physics ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
Hyperthermia (HT) in combination with radio- and/or chemotherapy has become an accepted cancer treatment for distinct solid tumour entities. In HT, tumour tissue is exogenously heated to temperatures between 39 and 43 $^\circ$C for 60 minutes. Temperature monitoring can be performed non-invasively using dynamic magnetic resonance imaging (MRI). However, the slow nature of MRI leads to motion artefacts in the images due to the movements of patients during image acquisition. By discarding parts of the data, the speed of the acquisition can be increased - known as undersampling. However, due to the invalidation of the Nyquist criterion, the acquired images might be blurry and can also produce aliasing artefacts. The aim of this work was, therefore, to reconstruct highly undersampled MR thermometry acquisitions with better resolution and with fewer artefacts compared to conventional methods. The use of deep learning in the medical field has emerged in recent times, and various studies have shown that deep learning has the potential to solve inverse problems such as MR image reconstruction. However, most of the published work only focuses on the magnitude images, while the phase images are ignored, which are fundamental requirements for MR thermometry. This work, for the first time, presents deep learning-based solutions for reconstructing undersampled MR thermometry data. Two different deep learning models have been employed here, the Fourier Primal-Dual network and the Fourier Primal-Dual UNet, to reconstruct highly undersampled complex images of MR thermometry. The method reduced the temperature difference between the undersampled MRIs and the fully sampled MRIs from 1.3 $^\circ$C to 0.6 $^\circ$C in full volume and 0.49 $^\circ$C to 0.06 $^\circ$C in the tumour region for an acceleration factor of 10.
- Published
- 2023