1. A novel discontinuous-Galerkin deterministic neutronics model for Fusion applications: development and benchmarking
- Author
-
Bogaarts, Timo Jos and Warmer, Felix
- Subjects
Physics - Computational Physics - Abstract
Neutron interactions in a fusion power plant play a pivotal role in determining critical design parameters such as coil-plasma distance and breeding blanket composition. Fast predictive neutronic capabilities are therefore crucial for an efficient design process. For this purpose, we have developed a new deterministic neutronics method, capable of quickly and quickly assessing the neutron response of a fusion reactor, even in three-dimensional geometry. It uses a novel combination of arbitrary-order discontinuous Galerkin spatial discretization, discrete-ordinates angular and multigroup energy discretizations, arbitrary-order anisotropic scattering, and matrix-free iterative solvers, allowing for fast and accurate solutions. One, two, and three-dimensional models are implemented. Cross sections can be obtained from standard databases or from Monte-Carlo simulations. Benchmarks and literature tests were performed, concluding with a successful blanket simulation.
- Published
- 2024