83 results on '"W. P. Oliver"'
Search Results
2. Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor
- Author
-
C. Augier, G. Baulieu, V. Belov, L. Berge, J. Billard, G. Bres, J-. L. Bret, A. Broniatowski, M. Calvo, A. Cazes, D. Chaize, M. Chapellier, L. Chaplinsky, G. Chemin, R. Chen, J. Colas, M. De Jesus, P. de Marcillac, L. Dumoulin, O. Exshaw, S. Ferriol, E. Figueroa-Feliciano, J. -B. Filippini, J. A. Formaggio, S. Fuard, J. Gascon, A. Giuliani, J. Goupy, C. Goy, C. Guerin, E. Guy, P. Harrington, S. T. Heine, S. A. Hertel, M. Heusch, C. F. Hirjibehedin, Z. Hong, J.-C. Ianigro, Y. Jin, J. P. Johnston, A. Juillard, D. Karaivanov, S. Kazarcev, J. Lamblin, H. Lattaud, M. Li, A. Lubashevskiy, S. Marnieros, D. W. Mayer, J. Minet, D. Misiak, J-.L. Mocellin, A. Monfardini, F. Mounier, W. D. Oliver, E. Olivieri, C. Oriol, P. K. Patel, E. Perbet, H. D. Pinckney, D. Poda, D. Ponomarev, F. Rarbi, J.-S. Real, T. Redon, A. Robert, S. Rozov, I. Rozova, T. Salagnac, V. Sanglard, B. Schmidt, Ye. Shevchik, V. Sibille, T. Soldner, J. Stachurska, A. Stutz, L. Vagneron, W. Van De Pontseele, F. Vezzu, S. Weber, L. Winslow, E. Yakushev, D. Zinatulina, and the Ricochet Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The future Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 m away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, the Ricochet Collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment’s shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present the Ricochet neutron background characterization using $$^3$$ 3 He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the future Ricochet experiment and the resulting CENNS detection significance. Our results show that depending on the effectiveness of the muon veto, we expect a total nuclear recoil background rate between 44 ± 3 and 9 ± 2 events/day/kg in the CENNS region of interest, i.e. between 50 eV and 1 keV. We therefore found that the Ricochet experiment should reach a statistical significance of 4.6 to 13.6 $$\sigma $$ σ for the detection of CENNS after one reactor cycle, when only the limiting neutron background is considered.
- Published
- 2023
- Full Text
- View/download PDF
3. Porcine single nucleotide polymorphisms and their functional effect: an update
- Author
-
B. N. Keel, D. J. Nonneman, A. K. Lindholm-Perry, W. T. Oliver, and G. A. Rohrer
- Subjects
Swine ,Genome sequence ,Functional variation ,Loss-of-function ,Medicine ,Biology (General) ,QH301-705.5 ,Science (General) ,Q1-390 - Abstract
Abstract Objective To aid in the development of a comprehensive list of functional variants in the swine genome, single nucleotide polymorphisms (SNP) were identified from whole genome sequence of 240 pigs. Interim data from 72 animals in this study was published in 2017. This communication extends our previous work not only by utilizing genomic sequence from additional animals, but also by the use of the newly released Sscrofa 11.1 reference genome. Results A total of 26,850,263 high confidence SNP were identified, including 19,015,267 reported in our previously published results. Variation was detected in the coding sequence or untranslated regions (UTR) of 78% of the genes in the porcine genome: 1729 loss-of-function variants were predicted in 1162 genes, 12,686 genes contained 64,232 nonsynonymous variants, 250,403 variants were present in UTR of 15,739 genes, and 15,284 genes contained 90,939 synonymous variants. In total, approximately 316,000 SNP were classified as being of high to moderate impact (i.e. loss-of-function, nonsynonymous, or regulatory). These high to moderate impact SNP will be the focus of future genome-wide association studies.
- Published
- 2018
- Full Text
- View/download PDF
4. Demonstration of Density Matrix Exponentiation Using a Superconducting Quantum Processor
- Author
-
M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, and W. D. Oliver
- Subjects
Physics ,QC1-999 - Abstract
Density matrix exponentiation (DME) is a general technique for using a quantum state ρ to enact the quantum operation e^{-iρθ} on a target system. It was first proposed in the context of quantum machine learning, but has since been shown to have broad applications in quantum metrology and computation. No experimental demonstration of DME has been performed thus far due to its demanding circuit depths and the need to efficiently generate multiple identical copies of ρ during the finite lifetime of the target system. In this work, we describe the first demonstration of the DME algorithm, which we accomplish using a superconducting quantum processor. Our demonstration relies on a 99.7% fidelity controlled-phase gate implemented using two tunable superconducting transmon qubits. We achieve a fidelity surpassing 90% at circuit depths exceeding 70 when comparing the output of the circuit executed on our quantum processor to a simulation assuming perfect operations and measurements.
- Published
- 2022
- Full Text
- View/download PDF
5. Autopsy Standardized Mortality Review: A Pilot Study Offering a Methodology for Improved Patient Outcomes
- Author
-
C. A. Early BS, M. G. F. Gilliland MD, K. L. Kelly MD, W. R. Oliver MD, and P. J. Kragel MD
- Subjects
Pathology ,RB1-214 - Abstract
A standardized mortality review of hospital autopsies identified discrepancies between clinical diagnoses and autopsy findings, unexpected deaths, adequacy of diagnostic workup, presence of adverse event, and type of a quality issue if present. The standardized review elements were chosen based on a review of quality metrics commonly used by hospitals. The review was completed by the pathologist based on their initial autopsy findings. The final autopsy report was later reviewed to confirm the initial review findings. Major discrepancies in diagnosis were categorized as class I or II based on the modified Goldman criteria. Ninety-six hospital autopsy cases from January 2015 to February 2018 were included in the study. The overall major discrepancy rate was 27%. Class I discrepancies, where a diagnosis found at autopsy might have improved survival had it been made premortem, were identified in 16% of cases. Categories associated with increased discrepancy rates included unexpected deaths, inadequate workup, abnormal labs or imaging not addressed, and certain quality issues. Deaths not expected at admission but expected at the time of death, those with adverse events, those within 48 hours of a procedure, those within 48 hours of admission, those with physician-specific quality issues, and those with system or process issues were not significantly related to diagnostic accuracy.
- Published
- 2019
- Full Text
- View/download PDF
6. Lyophilized B. subtilis ZB183 Spores: 90-Day Repeat Dose Oral (Gavage) Toxicity Study in Wistar Rats
- Author
-
B. Appala Naidu, Kamala Kannan, D. P. Santhosh Kumar, John W. K. Oliver, and Zachary D. Abbott
- Subjects
Toxicology. Poisons ,RA1190-1270 - Abstract
A 90-day repeated-dose oral toxicological evaluation was conducted according to GLP and OECD guidelines on lyophilized spores of the novel genetically modified strain B. subtilis ZB183. Lyophilized spores at doses of 109, 1010, and 1011 CFU/kg body weight/day were administered by oral gavage to Wistar rats for a period of 90 consecutive days. B. subtilis ZB183 had no effects on clinical signs, mortality, ophthalmological examinations, functional observational battery, body weights, body weight gains and food consumption in both sexes. There were no test item-related changes observed in haematology, coagulation, urinalysis, thyroid hormonal analysis, terminal fasting body weights, organ weights, gross pathology and histopathology. A minimal increase in the plasma albumin level was observed at 1010 and 1011 CFU/kg/day doses without an increase in total protein in males or females and was considered a nonadverse effect. The “No Observed Adverse Effect Level (NOAEL)” is defined at the highest dose of 1011 CFU/kg body weight/day for lyophilized B. subtilis ZB183 Spores under the test conditions employed.
- Published
- 2019
- Full Text
- View/download PDF
7. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator
- Author
-
Philip Krantz, Andreas Bengtsson, Michaël Simoen, Simon Gustavsson, Vitaly Shumeiko, W. D. Oliver, C. M. Wilson, Per Delsing, and Jonas Bylander
- Subjects
Science - Abstract
Efficient qubit readout is essential for quantum information technology, which requires sufficient recognition of signal from noise. Here, Krantz et al. propose a simplified technique using a Josephson parametric oscillator, demonstrating single-shot readout performance of a superconducting qubit.
- Published
- 2016
- Full Text
- View/download PDF
8. Is thermospheric long-term cooling due to CO2 or O3?
- Author
-
P. L. Walsh and W. L. Oliver
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
While greenhouse gases trap heat emanating from the Earth and thereby heat the surface atmosphere, they act as emitters in the high atmosphere and cool the air there. In 1989 Roble and Dickinson (1989) estimated the cooling that would occur in the thermosphere (250–500 km altitude) due to a doubling of greenhouse gas densities. Ever since, long-term data bases have been scoured for evidence of this thermospheric "global cooling." Here we show evidence that the thermosphere did indeed cool over the period 1966–1987, but the data suggest that the cooling accelerated at a "breakpoint year" around 1979 to a rate far larger than may be attributed to greenhouse cooling. This 1979 breakpoint year appears to coincide with a breakpoint year in ozone (O3) column density. Further, the cooling was confined largely to the daytime thermosphere while the nighttime showed only a small trend. These results suggest, first, that the greenhouse cooling of the thermosphere may well not be detectable with current data sets and, second, that the long-term cooling that is clearly seen may be due largely to O3 depletion.
- Published
- 2011
- Full Text
- View/download PDF
9. Modeling the behavior of hot oxygen ions
- Author
-
M. D. Zettergren, W. L. Oliver, P.-L. Blelly, and D. Alcaydé
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Photochemical processes in the upper atmosphere are known to create significant amounts of energetic oxygen atoms or "hot O". In this research we simulate the effects of ionized hot oxygen, hot O+, on the ionosphere. We find that hot O+ is not able to maintain a temperature substantially above the ambient ion temperature at most altitudes, the exception being around the F-region ion density peak. However, the thermalization of hot O+, due to Coulomb collisions, represents an important heating process for the ambient ions. A time-dependent, fluid-kinetic model of the ionosphere (TRANSCAR) is used to self-consistently simulate hot O+ by considering it to be a separate species from O+. A Maxwellian neutral hot O population having characteristics consistent with current knowledge is added to TRANSCAR. The production of the hot O+ is then computed by considering ion charge exchange with the neutral hot O population that we have assumed. Loss of hot O+ results from these charge exchange reactions and from reactions with molecular atoms.
- Published
- 2006
- Full Text
- View/download PDF
10. Letter to the EditorEffects of hot oxygen in the ionosphere: TRANSCAR simulations
- Author
-
D. Alcaydé, P.-L. Blelly, W. Kofman, A. Litvin, and W. L. Oliver
- Subjects
Science ,Physics ,QC1-999 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Recent studies of the ion energy balance in the mid-latitude ionosphere have led to the suggestion that hot neutral atomic oxygen may play a significant role; the presence of a population of hot O could explain some of the problems met in balancing the ion energy budget for Incoherent Scatter (IS) observations. The aim of the present study is to look at such effects by using numerical simulation. The TRANSCAR model is a time-dependent, 13-moment ionosphere model developed for high latitude studies. It was first adapted for mid-latitude conditions. In a first step the model was calibrated and cross-checked with St. Santin IS measurements for the winter case of 27 January 1972 around noon using, in particular, the MSIS neutral atmosphere model. This provides a reference diurnal variation of the ionosphere. The second step investigated the influence of a maxwellian population of hot neutral atomic oxygen introduced in addition to the standard neutral atmosphere. The paper describes the initial comparison between the model and St. Santin IS data, and then the effects induced by a hot atomic oxygen population.Key words. Ionosphere (ionosphere-atmosphere interactions; ion chemistry and composition; mid-latitude ionosphere)
- Published
- 2001
- Full Text
- View/download PDF
11. Cyanobacteria as a platform for biofuel production
- Author
-
Nicole E Nozzi, John W. K. Oliver, and Shota eAtsumi
- Subjects
Cyanobacteria ,Metabolic Engineering ,Photosynthesis ,Synthetic Biology ,biofuel ,Biotechnology ,TP248.13-248.65 - Abstract
Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light.
- Published
- 2013
- Full Text
- View/download PDF
12. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum
- Author
-
D. M. Toyli, A. W. Eddins, S. Boutin, S. Puri, D. Hover, V. Bolkhovsky, W. D. Oliver, A. Blais, and I. Siddiqi
- Subjects
Physics ,QC1-999 - Abstract
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.
- Published
- 2016
- Full Text
- View/download PDF
13. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications
- Author
-
W. M. Roach, D. B. Beringer, J. R. Skuza, W. A. Oliver, C. Clavero, C. E. Reece, and R. A. Lukaszew
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.
- Published
- 2012
- Full Text
- View/download PDF
14. Measurement of singleπ0production by coherent neutral-currentνFe interactions in the MINOS Near Detector
- Author
-
N. Graf, R. Gran, P. J. Litchfield, M. Bishai, M. Orchanian, K. Grzelak, L. Mualem, S. De Rijck, D. Torretta, M. Kordosky, D. Cronin-Hennessy, R. K. Plunkett, L. Corwin, Carlos Escobar, S. Phan-Budd, Andrew Blake, R. J. Nichol, A. Sousa, M. A. Thomson, J. K. De Jong, A. Perch, J. Hartnell, A. Timmons, H. R. Gallagher, P. Sail, P. Gouffon, S. Moed Sher, N. E. Devenish, A. Holin, R. Zwaska, R. C. Webb, B. Viren, C. Rosenfeld, G. M. Irwin, P. Schreiner, R. Chen, R. Toner, Gregory J Pawloski, M. V. Frohne, P. Adamson, C. M. Castromonte, B. Rebel, M. D. Messier, G. J. Feldman, L. Whitehead, S. Childress, R. L. Talaga, G. Tzanakos, C. James, S. V. Cao, S. M. S. Kasahara, Subhasmita Mishra, C. L. McGivern, G. Koizumi, C. D. Moore, D. A. Jensen, Joao A B Coelho, X. Tian, X. Qiu, A. Schreckenberger, J. Schneps, N. Mayer, D. Cherdack, J. C. Thomas, J. J. Evans, M. M. Pfützner, S. Germani, T. Kafka, A. E. Kreymer, J. K. Nelson, E. Falk, J. Todd, Warner A. Miller, Mcd Sanchez, H. A. Rubin, Z. Isvan, Marvin L Marshak, Christopher G. White, D. Naples, J. M. Paley, A. V. Devan, J. Urheim, R. Sharma, R. B. Pahlka, L. H. Whitehead, D. D. Phan, W. P. Oliver, P. Vahle, M. Y. Gabrielyan, R. A. Gomes, N. Tagg, Alec Habig, Karol Lang, W. A. Mann, W. Flanagan, G.D. Barr, Junwei Huang, M. M. Medeiros, J. A. Musser, R. Hatcher, N. Poonthottathil, P. Lucas, T. J. Carroll, S. C. Tognini, G. J. Bock, Harvey B Newman, R. Mehdiyev, S. R. Hahn, R. B. Patterson, J. R. Meier, A. Radovic, D. Bogert, A. Aurisano, Stanley G. Wojcicki, J. O'Connor, J. Hylen, M. C. Goodman, M. V. Diwan, J. A. Nowak, I. Anghel, and A. C. Weber
- Subjects
Physics ,Neutral current ,010308 nuclear & particles physics ,Scattering ,Detector ,01 natural sciences ,NuMI ,Nuclear physics ,MINOS ,0103 physical sciences ,Fermilab ,Neutrino ,010306 general physics ,Coherence (physics) - Abstract
Forward single π^0 production by coherent neutral-current interactions, νA→νAπ^0, is investigated using a 2.8×10^(20) protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1–8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei with ⟨A⟩=48, the highest-⟨A⟩ target used to date in the study of this coherent reaction. The total cross section for coherent neutral-current single π^0 production initiated by the ν_μ flux of the NuMI low-energy beam with mean (mode) E_ν of 4.9 GeV (3.0 GeV), is 77.6±5.0(stat)^(+15.0)_(−16.8)(syst)×10^(−40) cm^2 pernucleus. The results are in good agreement with predictions of the Berger-Sehgal model.
- Published
- 2016
15. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector
- Author
-
S. Murgia, B. Speakman, D. J. Auty, A. Lebedev, D. G. Michael, M. Zois, M. Kordosky, P. S. Miyagawa, P. Stamoulis, V. K. Semenov, A. E. Kreymer, P. Vahle, C. Howcroft, G. Tzanakos, H. R. Gallagher, G. Koizumi, J. K. De Jong, P. Lucas, N. Mayer, M. Watabe, D. J. Boehnlein, J. Reichenbacher, D. A. Harris, David Petyt, Marvin L Marshak, E. A. Peterson, M. Bishai, Warner A. Miller, Ken Heller, Mcd Sanchez, T. Joffe-Minor, Ž Pavlović, T. Kafka, M. Dierckxsens, M. A. Thomson, D. Naples, A. C. Weber, P. A. Symes, Stanley G. Wojcicki, S. M. Seun, M. Dorman, Jie Liu, K. Grzelak, M. D. Messier, S. Childress, R. Piteira, S. R. Mishra, Niki Saoulidou, G. F. Pearce, V. A. Ryabov, E. Buckley-Geer, J. Boehm, J. J. Evans, D. Rahman, S. Avvakumov, G. Tinti, A. Holin, T. Bergfeld, S. M S Kasahara, A. D. Marino, R. C. Webb, J. A. Thompson, Jorge G. Morfin, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. Ishitsuka, Harvey B Newman, B. R. Becker, D. Bogert, D. J. Koskinen, A. Belias, Juan Pedro Ochoa-Ricoux, J. H. Cobb, T. Durkin, C. James, E. P. Hartouni, D. R. Ward, A. Mislivec, R. J. Nichol, Douglas Wright, Anatael Cabrera, I. Trostin, John Marshall, N. Grossman, T. M. Raufer, D. Bhattacharya, A. M. McGowan, S. K. Kotelnikov, K. Ruddick, E. Grashorn, H. Zheng, J. Hartnell, S. L. Mufson, R. Ospanov, T. C. Nicholls, Q. K. Wu, K. E. Arms, J. Gogos, J. Schneps, C. Rosenfeld, V. A. Tsarev, T. H. Fields, R. P. Litchfield, R. Pittam, Ruben Saakyan, Sacha E Kopp, G. M. Irwin, G. A. Giurgiu, D. Cherdack, R. Gran, G. J. Bock, H. A. Rubin, C. P. Ward, Carlos Escobar, M. V. Frohne, D. Indurthy, P. Schreiner, M. V. Diwan, A. Marchionni, C. Andreopoulos, H. J. Kang, D. E. Reyna, Andrew Blake, R. K. Plunkett, E. Falk Harris, C. D. Moore, Alec Habig, T. Osiecki, A. Sousa, Francisco Yumiceva, G. J. Feldman, W. Smart, J. Urheim, R. Armstrong, Brajesh C Choudhary, Peter D. Barnes, P. Adamson, B. C. Barish, W. P. Oliver, V. Paolone, C. R. Bower, J. L. Thron, E. Tetteh-Lartey, R. Zwaska, J. K. Nelson, R. L. Talaga, D. A. Jensen, D. E. Jaffe, A. J. Culling, E. Beall, H. Ping, D. Drakoulakos, S. Kumaratunga, B. Rebel, M. S. Kim, B. Baller, V. Smirnitsky, Philip Harris, J. A. Musser, A. De Santo, R. H. Milburn, C. White, C. W. Peck, P. J. Litchfield, P. M. Border, Karol Lang, L. Mualem, V. Verebryusov, R. A. Rameika, T. Yang, R. Hatcher, A. R. Erwin, John Derek Chapman, J. R. Meier, G. I. Merzon, N. West, D. S. Ayres, L. Jenner, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, A. Godley, P. Gouffon, R. Lee, B. Viren, R. Ford, Caleb Smith, J. M. Paley, A. A. Wehmann, N. Tagg, T. Patzak, G.D. Barr, John Miller, Juergen Thomas, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Monte Carlo method ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Super-Kamiokande ,Neutrino oscillation ,Lepton - Abstract
We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios is consistent with an oscillation signal. A fit to the data for the oscillation parameters excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons by charge sign in both the data and Monte Carlo events and found the ratio of the total number of negative to positive muons in both samples. The ratio of those ratios is a test of CPT conservation. The result is consistent with CPT conservation., 14 pages, 15 figures
- Published
- 2016
16. The SOUDAN 2 detector - The operation and performance of the tracking calorimeter modules
- Author
-
S. Yarker, L. Balka, M. A. Thomson, L. Mualem, M. Lowe, R.J. Cotton, G. Villaume, B. Saitta, Marvin L Marshak, T. H. Fields, W. Leeson, J. Schneps, Christian P. Minor, K. Johns, N. West, D. M. DeMuth, V. W. Edwards, R. H. Milburn, Graham L. Giller, P.D. Shield, D. S. Ayres, S. Heppelmann, P. J. Litchfield, S. M S Kasahara, D. Wall, L.M. Kirby-Gallagher, H.M. Gallagher, Warner A. Miller, S. J. Werkema, C. A. Woods, N. Mondal, J. L. Thron, V. Vassiliev, E.W.G. Wallis, D. Rosen, N. Hill, D. Roback, Edward May, T. Joyce, F. V. Lopez, G.D. Barr, G. F. Pearce, Maury Goodman, J. H. Cobb, N. Sundaralingam, U. DasGupta, C.B. Brooks, W. A. Mann, H. Courant, B. Ewen, S. P. Wakely, R. H. Giles, C. Garcia-Garcia, A. Napier, J. Kochocki, E.M. Nelson, B. Dahlin, N. P. Longley, M. Shupe, D. Schmid, P. M. Border, J. H. Hoftiezer, I. Ambats, J. W. Dawson, T. Kafka, L. E. Price, L. McMaster, G. J. Alner, W.W.M. Allison, L. Weems, C. Bode, D. Benjamin, R. N. Gray, W. P. Oliver, Donald H. Perkins, U.M. Wielgosz, R. Seidlein, David Ja Cockerill, R. Nickson, W. L. Barrett, J. Schlereth, A. Stassinakis, K. Ruddick, E. A. Peterson, S. Spear, D. J. Jankowski, K. Coover, D. Maxam, and M.H. Schub
- Subjects
Physics ,Nuclear and High Energy Physics ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,Plane (geometry) ,business.industry ,Detector ,Tracking (particle physics) ,Charged particle ,Nuclear physics ,Optics ,Spatial reference system ,High Energy Physics::Experiment ,Nucleon ,business ,Instrumentation ,Image resolution - Abstract
SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and dE/ dx to be recorded for charged particles traversing the tubes. The spatial resolution is 0.38 cm in the x-y plane and 0.65 cm in the z, or drift, direction. The operation and performance of the modules are discussed.
- Published
- 2016
17. A comprehensive characterization of Hamamatsu 16-and 64-anode PMTs
- Author
-
P. Adamson, P. S. Miyagawa, Hyun-Chul Kim, R. Lee, K. Ruddick, V. Makeev, Juergen Thomas, S. L. Mufson, S. Eilerts, J. Schneps, M. Ignatenko, G. Tzanakos, A. Para, Karol Lang, Philip Harris, M. A. Barker, A. C. Weber, J. Day, D. G. Michael, W. P. Oliver, Reinhard Schwienhorst, P.J. Dervan, P. Cushman, P. M. Border, C. R. Bower, A. De Santo, Ruben Saakyan, S. Fuqua, R. C. Webb, P. Vahle, and M. Kordosky
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Linearity ,Anode ,Optics ,MINOS ,Fiber ,Fermilab ,Photonics ,Neutrino ,business ,Neutrino oscillation ,Instrumentation - Abstract
We are reporting preliminary results of studies of R59000-00-M16 and M64 tubes, manufactured by Hamamatsu Photonics, to he employed by the MINOS neutrino experiment. Our tests focused on anode response uniformity, gain, cross-talk, and linearity for light illuminating PMTs through a 1.2mm diameter fiber. (C) 2001 Elsevier Science B.V. All rights reserved.
- Published
- 2016
18. STUDY OF MUONS FROM THE DIRECTION OF CYGNUS-X-3 USING AN UNDERGROUND PROPORTIONAL-TUBE ARRAY
- Author
-
L. McMaster, R. H. Milburn, David Ja Cockerill, M. Lowe, J. W. Dawson, P. D. Shield, J. H. Cobb, N. Sundaralingam, T. Kafka, R. H. Giles, P. J. Litchfield, J. Kochocki, D. Benjamin, A. Napier, Marvin L Marshak, Maury Goodman, B. Saitta, K. Ruddick, J. H. Hoftiezer, Ken Heller, W. P. Oliver, J. L. Thron, L. E. Price, K. Coover, C.B. Brooks, J. L. Schlereth, N. West, U. DasGupta, C. Garcia-Garcia, H. Courant, D. S. Ayres, L.M. Kirby-Gallagher, S. J. Werkema, G.D. Barr, W.W.M. Allison, W. L. Barrett, W. A. Mann, L. Balka, D. H. Perkins, M. Shupe, D. Schmid, B. Dahlin, D. J. Jankowski, I. Ambats, S. Heppelman, G. J. Alner, E. A. Peterson, D. Rosen, D. Roback, T. Joyce, F. V. Lopez, K. Johns, T. H. Fields, N. Hill, Warner A. Miller, G. F. Pearce, P. M. Border, M. A. Thomson, E. N. May, V. W. Edwards, and J. Schneps
- Subjects
Nuclear physics ,Physics ,Muon ,Argon ,chemistry ,Degree (graph theory) ,chemistry.chemical_element ,Cosmic ray ,Elementary particle ,Fermion ,Particle detector ,Lepton - Abstract
From July 1987 through March 1988 an array of proportional wire modules was operated as a muon detector at a depth of 2090 meters water equivalent in the Soudan mine in northern Minnesota. A spatial angular resolution of 1.2{degree} was achieved for muon tracking. A clean sample of 1.02{times}10{sup 5} muon trajectories recorded underground is used to search for an excess flux of muons from the direction of Cygnus X-3. For muons within the phase interval (0.6, 0.9) of the source's 4.8-h period, 90%-C.L. upper limits for fluxes arriving within 3{degree} and 1.5{degree} half-angle cones centered on the Cygnus X-3 direction are 8.5{times}10{sup {minus}11} cm{sup {minus}2}s{sup {minus}1} and 3.1{times}10{sup {minus}11} cm{sup {minus}2}s{sup {minus}1}, respectively.
- Published
- 2016
19. Active to sterile neutrino mixing limits from neutral-current interactions in MINOS
- Author
-
R. B. Patterson, M. D. Messier, M. Kordosky, Andrew Blake, D. J. Auty, Christopher G. White, A. M. McGowan, R. Toner, D. S. Ayres, J. J. Evans, P. Schreiner, B. Rebel, J. R. Meier, N. Graf, Carlos Escobar, R. Zwaska, R. K. Plunkett, Xian-Rong Huang, M. V. Diwan, Sacha E Kopp, R. Gran, E. Falk, R. Pittam, M. V. Frohne, Matthew L Strait, W. A. Mann, G. M. Irwin, P. Stamoulis, Daniel P Cronin-Hennessy, Joao A B Coelho, Rakesh Sharma, G. J. Feldman, M. Dorman, P. Vahle, S. Cavanaugh, E. Tetteh-Lartey, D. J. Boehnlein, D. Cherdack, A. E. Kreymer, G. F. Pearce, Maury Goodman, J. A. Nowak, J. K. De Jong, M. Bishai, R. A. Gomes, C. Rosenfeld, X. Qiu, P. Lucas, J. Ratchford, C. D. Moore, W. H. Miller, L. Loiacono, H. R. Gallagher, Marvin L Marshak, C. Backhouse, M. Orchanian, S. Phan-Budd, A. Sousa, R. L. Talaga, J. K. Nelson, G. J. Bock, K. Grzelak, M. A. Thomson, D. Naples, P. Adamson, L. Whitehead, Stanley G. Wojcicki, J. Urheim, A. C. Weber, D. A. Harris, P. A. Rodrigues, S. M. S. Kasahara, G. Tinti, J. J. Walding, N. E. Devenish, G. Lefeuvre, S. Childress, D. A. Jensen, Gregory J Pawloski, A. Holin, L. Corwin, P. J. Litchfield, Jorge G. Morfin, N. Mayer, N. Grant, S. L. Mufson, J. A. Musser, C. James, Harvey B Newman, T. Kafka, D. Bogert, G. Tzanakos, T. C. Nicholls, R. Hatcher, R. C. Webb, G. Koizumi, J. Schneps, I. Z. Danko, H. A. Rubin, R. Mehdiyev, W. P. Oliver, D. Torretta, J. Hartnell, P. Gouffon, B. Viren, J. Ilic, S. J. Coleman, J. M. Paley, N. Tagg, G.D. Barr, M. C. Sanchez, David Petyt, Juergen Thomas, T. M. Raufer, S. R. Mishra, R. J. Nichol, Alec Habig, John C. Mitchell, D. E. Jaffe, J. Hylen, A. Himmel, Z. Isvan, L. Mualem, P. Shanahan, and Karol Lang
- Subjects
Physics ,Sterile neutrino ,Particle physics ,Physics::Instrumentation and Detectors ,High Energy Physics::Phenomenology ,General Physics and Astronomy ,FOS: Physical sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Measurements of neutrino speed ,Muon neutrino ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation ,Lepton - Abstract
Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of $7.07\times10^{20}$ protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of $754\pm28\rm{(stat.)}\pm{37}\rm{(syst.)}$ for oscillations among three active flavors. The fraction $f_s$ of disappearing \numu that may transition to $\nu_s$ is found to be less than 22% at the 90% C.L., Comment: 5 pages, 3 tables, 2 figures. Published in Physical Review Letters
- Published
- 2016
20. THE OBSERVATION OF UNDERGROUND MUONS FROM THE DIRECTION OF CYGNUS-X-3 DURING THE JANUARY 1991 RADIO FLARE
- Author
-
N. West, D. S. Ayres, M. Lowe, R. H. Giles, J. Kochocki, L.M. Kirby-Gallagher, B. Saitta, S. J. Werkema, W. P. Oliver, Donald H. Perkins, G.D. Barr, C. A. Woods, L. E. Price, L. Balka, S. Heppelmann, J. H. Hoftiezer, J. Schneps, S. M S Kasahara, David Ja Cockerill, E. A. Peterson, Christian P. Minor, D. Rosen, W. A. Mann, D. J. Jankowski, N. P. Longley, W.W.M. Allison, W. L. Barrett, P. D. Shield, P. J. Litchfield, R. H. Milburn, D. Roback, T. Joyce, A. Napier, B. Ewen, K. Ruddick, G. F. Pearce, J. W. Dawson, V. W. Edwards, Maury Goodman, C.B. Brooks, T. Kafka, M. A. Thomson, N. Hill, J. Schlereth, G. J. Alner, C. Garcia-Garcia, Marvin L Marshak, P. M. Border, D. Benjamin, R. N. Gray, Edward May, T. H. Fields, Jack L. Uretsky, J. L. Thron, J. H. Cobb, N. Sundaralingam, Graham L. Giller, M. Shupe, D. Schmid, I. Ambats, H. Courant, K. Johns, Warner A. Miller, F. V. Lopez, and L. McMaster
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,law ,Detector ,Astronomy ,Nucleon ,Flare ,law.invention - Abstract
Muons recorded in the Soudan 2 underground nucleon decay detector from January 1989 to February 1991 have been examined for any correlation with the radio flares of Cygnus X-3 observed during this period. On two nearby days during the radio flare of January 1991 a total of 32 muons within 2.0° of the Cygnus X-3 direction were observed when 11.4 were expected.
- Published
- 2016
21. The NuMI neutrino beam
- Author
-
J. Urheim, David Petyt, S. Moed Sher, S. Phan-Budd, A. Sousa, Francisco Yumiceva, R. L. Talaga, N. E. Devenish, P. J. Litchfield, S. R. Mishra, M.L. Wong-Squires, J. A. Musser, S. Avvakumov, R. Reilly, M. Olsen, William L. Barrett, T. Yang, D. E. Jaffe, G. Tzanakos, R. H. Milburn, J. Hylen, B. Viren, S. C. Tognini, G. Koizumi, Niki Saoulidou, W. A. Mann, S. Murgia, J. K. Nelson, Maury Goodman, B. Baller, A. Perch, D. Michael, C. M. Castromonte, S. Childress, J. Johnstone, J. Biggs, R. J. Nichol, Alec Habig, P. Schreiner, D. A. Jensen, M. M. Medeiros, M. A. Thomson, K. Vaziri, Stanley G. Wojcicki, J. P. Cravens, R. H. Bernstein, A. Para, A. V. Devan, J. J. Evans, M. M. Pfützner, P. Shanahan, A. Holin, D. Crane, H. R. Gallagher, N. Tagg, Christopher G. White, R. C. Webb, J. A. Thompson, E. Falk, A. Radovic, C. Rosenfeld, D. A. Harris, M. P. Andrews, M. C. Sanchez, R. B. Pahlka, Brajesh C Choudhary, E. A. Peterson, R. Ford, Leigh H. Whitehead, N. Poonthottathil, A. C. Weber, A. R. Erwin, G.D. Barr, Junwei Huang, L. Loiacono, J. Schneps, D. Bogert, D. S. Ayres, R. Hatcher, K. Bourkland, L. H. Whitehead, J. K. De Jong, J.H. Cobb, Karol Lang, G. Vogel, Harvey B Newman, R. Andrews, P. Adamson, D. J. Harding, D. Pushka, A. Marchionni, Scott Osprey, X. Tian, I. Anghel, I. Trostin, Gregory J Pawloski, R. A. Rameika, John Miller, S. M. S. Kasahara, M. V. Diwan, Jorge G. Morfin, Juergen Thomas, N. Mayer, Ahmed Ibrahim, S. V. Cao, A. Aurisano, G. M. Irwin, C. James, Kevin Anderson, G. J. Feldman, J. R. Meier, N. Graf, R. Webber, Caleb Smith, J. M. Paley, W. Smart, A. A. Wehmann, D. Cronin-Hennessy, A. Stefanik, J. A. Nowak, D. Tinsley, P. Gouffon, R. Mehdiyev, P. Vahle, R. A. Gomes, T. Patzak, G. Tassotto, D. J. Boehnlein, T. H. Fields, C. Laughton, E. Villegas, L. Sauer, R. Zwaska, D. Naples, S. Hays, J. O׳Connor, M. D. Messier, C. L. McGivern, D. Indurthy, Rakesh Sharma, J. Ratchford, C. D. Moore, Z. Isvan, L. Mualem, W. H. Miller, G. J. Bock, D. Torretta, Sacha E Kopp, R. Gran, L. Corwin, S. L. Mufson, G. Lefeuvre, V. Zarucheisky, V. Bocean, T. Kafka, M. Bishai, M. Orchanian, K. Grzelak, M. V. Frohne, P. Prieto, J. Hartnell, B. C. Barish, R. Ducar, Philip Harris, H. A. Rubin, R. B. Patterson, K. Ruddick, Joao A B Coelho, V. Garkusha, D. Augustine, Ž Pavlović, D. Schoo, A. E. Kreymer, P. Lucas, W. P. Oliver, Marvin L Marshak, Ken Heller, M. J. Murtagh, M. Kordosky, S. R. Hahn, Andrew Blake, N. Grossman, A. Timmons, A. Schreckenberger, Carlos Escobar, R. K. Plunkett, X. Qiu, R. Toner, B. Rebel, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Accelerator Physics (physics.acc-ph) ,Target ,Nuclear and High Energy Physics ,Particle physics ,beam monitoring ,Physics::Instrumentation and Detectors ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,beam transport ,neutrino: beam ,Neutrino beam ,7. Clean energy ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,beam: alignment ,Long Baseline ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,hardware ,Fermilab ,[ PHYS.PHYS.PHYS-ACC-PH ] Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Neutrinos ,010306 general physics ,Instrumentation ,activity report ,Physics ,010308 nuclear & particles physics ,Monitoring system ,Beam ,Main injector ,Main Injector ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment ,Neutrino ,Beam (structure) ,performance - Abstract
International audience; This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.
- Published
- 2016
22. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
- Author
-
Xian-Rong Huang, T.C. Nicholls, Mcd Sanchez, R. A. Gomes, V. K. Semenov, J. K. Nelson, S. R. Mishra, P. Vahle, S. Cavanaugh, R. J. Nichol, M. V. Diwan, D. J. Boehnlein, T. M. Raufer, John Marshall, D. A. Jensen, A. Holin, C. Backhouse, G. M. Irwin, T. Yang, Alec Habig, R. Zwaska, P. Gouffon, G. J. Feldman, D. Bogert, C. Rosenfeld, M. D. Messier, P. Adamson, L. Whitehead, S. M. S. Kasahara, Karol Lang, S. Budd, Christopher G. White, R. Toner, D. G. Michael, B. Rebel, Gregory J Pawloski, J. Ilic, Harvey B Newman, J. L. Thron, A. Himmel, Z. Isvan, L. Mualem, C. James, E. Falk, G. J. Bock, E. A. Peterson, M. Dorman, D. Cherdack, V.A. Ryabov, R. Hatcher, P. A. Rodrigues, C. Andreopoulos, G. Lefeuvre, M. A. Thomson, D. Naples, P. Shanahan, L. Loiacono, T. Kafka, P. Lucas, Stanley G. Wojcicki, R. P. Litchfield, N. Grant, J. Hylen, M. C. Goodman, J. R. Meier, N. Tagg, J. Schneps, G.D. Barr, I. Z. Danko, G.F. Pearce, J. J. Evans, Juergen Thomas, Carlos Escobar, S. J. Coleman, R. Mehdiyev, Warner A. Miller, J. M. Paley, R. K. Plunkett, B. Viren, R. L. Talaga, A. Sousa, N. E. Devenish, P. J. Litchfield, J. K. De Jong, J.H. Cobb, P. Schreiner, R. C. Webb, E. Grashorn, J. Urheim, C. R. Bower, Philip Harris, J. A. Musser, A. Godley, R. Pittam, B. C. Choudhary, M. V. Frohne, H. A. Rubin, R. B. Patterson, M. Bishai, S. Childress, W. P. Oliver, A. M. McGowan, A. C. Weber, J. Ratchford, C. D. Moore, Douglas Wright, William L. Barrett, L. Corwin, S. L. Mufson, B. Bock, M. Orchanian, A. E. Kreymer, Marvin L Marshak, Z. Krahn, D. E. Jaffe, G. Tinti, N. Mayer, M. Kordosky, Andrew Blake, W. A. Mann, John C. Mitchell, G. Tzanakos, Matthew L Strait, K. Grzelak, G. Koizumi, Joao A B Coelho, Sacha E Kopp, J. Reichenbacher, R. Gran, J. Hartnell, Daniel P Cronin-Hennessy, D. S. Ayres, H. R. Gallagher, and D. A. Harris
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Muon ,Detector ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Astrophysics - Solar and Stellar Astrophysics ,MINOS ,Celestial coordinate system ,Physics::Space Physics ,Shadow ,High Energy Physics::Experiment ,Angular resolution ,Astrophysics::Earth and Planetary Astrophysics ,Interplanetary magnetic field ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of \unit[2070]{mwe} using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the \unit[5.6]{$\sigma$} level and the shadow of the sun at the \unit[3.8]{$\sigma$} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17\pm 0.12^\circ. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow., Comment: Submitted to AstroParticle Physics
- Published
- 2011
23. Horizontal muons and a search for AGN neutrinos in Soudan 2
- Author
-
Marvin L Marshak, K. Ruddick, B. Speakman, T. Kafka, David Ja Cockerill, H.J. Trost, G. F. Pearce, Maury Goodman, A. Sousa, G. Villaume, M. C. Sanchez, J. Schneps, P. J. Litchfield, A. Napier, J. L. Thron, W. L. Barrett, J. H. Cobb, David Petyt, G. J. Alner, Warner A. Miller, E. A. Peterson, L. Mualem, R. Gran, Jack L. Uretsky, W. P. Oliver, R. H. Milburn, S. M S Kasahara, H. R. Gallagher, P. M. Border, T. H. Fields, D. M. DeMuth, N. West, D. S. Ayres, W. A. Mann, H. Courant, and T. Joffe-Minor
- Subjects
Physics ,Energy loss ,Particle physics ,Active galactic nucleus ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Neutrino telescope ,FOS: Physical sciences ,Flux ,Astronomy and Astrophysics ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,High Energy Physics::Experiment ,Neutrino astronomy ,Neutrino ,Astrophysics::Galaxy Astrophysics - Abstract
We measure the horizontal ($|\cos(\theta_z), Comment: 18 pages 12 figures
- Published
- 2004
24. Identification of neutrino interactions using the DONUT spectrometer
- Author
-
V. Paolone, Mitsuhiro Nakamura, Masahiro Komatsu, T. Toshito, J. S. Song, B. Baller, Koichi Kodama, T. Kafka, N. Nonaka, G. Tzanakos, B. Lundberg, S. Yoshida, Roger Rusack, D. J. Boehnlein, K. Narita, R. A. Rameika, Osamu Sato, T. Hara, M. A. Kubantsev, N. R. Stanton, Takayoshi Kawai, Niki Saoulidou, M. Skender, C. Erickson, D. P. Ciampa, S. H. Chung, K. Okada, N. Giokaris, W. P. Oliver, C. Rosenfeld, H. Matsuoka, J. Kawada, J. Trammell, C. Andreopoulos, P. Berghaus, Reinhard Schwienhorst, C. S. Yoon, R. A. Sidwell, Shigeki Aoki, Ken Heller, H. Jiko, T. Akdogan, Toshiyuki Nakano, M. Miyanishi, Matt W. Graham, N. W. Reay, J. Sielaff, A. Kulik, J. Wilcox, K. Hoshino, J. Schneps, and K. Niwa
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Particle physics ,Muon ,Spectrometer ,Physics::Instrumentation and Detectors ,High Energy Physics::Phenomenology ,Detector ,Nuclear physics ,Tau neutrino ,High Energy Physics::Experiment ,Nuclear emulsion ,Neutrino ,Instrumentation ,Lepton - Abstract
The experimental apparatus used for the first direct observation of the tau neutrino (the DONUT experiment) is described. Its main features consisted of a target system composed of nuclear emulsion targets and scintillation fiber trackers, a magnetic charged-particle spectrometer and detectors for lepton identification. This paper will concentrate on the description of the electronic detectors and their performance in selecting neutrino interactions, making the vertex predictions necessary for locating events in the emulsion target and lepton identification.
- Published
- 2004
25. Search for the proton decay mode p→νK in Soudan 2
- Author
-
H.R. Gallagher, S. Wakeley, C.B. Brooks, G. J. Alner, Marvin L Marshak, T. Joffe–Minor, M.H. Schub, A. Napier, G.D. Barr, J. L. Thron, Warner A. Miller, C. Garcia-Garcia, L. Mualem, W.W.M. Allison, C. Bode, M. C. Goodman, N. P. Longley, R. Gran, K. Ruddick, R.J. Cotton, U.M. Wielgosz, G. F. Pearce, W. Leeson, G. Villaume, T. H. Fields, H. Courant, D. Wall, L. E. Price, A. Stassinakis, R. H. Milburn, J.H. Cobb, J. Schneps, W. P. Oliver, E. A. Peterson, D. M. DeMuth, V. Vassiliev, William L. Barrett, P. J. Litchfield, W. A. Mann, R. Seidlein, N. West, D. S. Ayres, P. M. Border, D. A. Petyt, T. Kafka, S. M S Kasahara, and H. Tom
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Proton decay ,Analytical chemistry ,High resolution - Abstract
We have searched for the proton decay mode p {yields} {nu} K{sup +} using the one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for occurrence of a visible K{sup +} track which decays at rest into {mu}{sup +}{nu} or {pi}{sup +}{pi}{sup 0}. We found one candidate event consistent with background, yielding a limit, {tau}/B(p {yields} {nu} K{sup +})>4.3x10{sup 31} years at 90% CL with no background subtraction.
- Published
- 1998
26. Search for flavor-changing non-standard neutrino interactions by MINOS
- Author
-
S. Moed Sher, S. R. Mishra, M. C. Sanchez, R. B. Pahlka, P. Schreiner, A. Schreckenberger, Rakesh Sharma, A. Holin, E. Falk, S. Childress, J. K. De Jong, L. H. Whitehead, M. V. Frohne, Harvey B Newman, C. D. Moore, M. D. Messier, M. Kordosky, W. A. Mann, M. A. Thomson, H. R. Gallagher, P. Gouffon, D. Naples, Andrew Blake, Stanley G. Wojcicki, D. Bogert, G. M. Irwin, B. Viren, Christopher G. White, G. J. Feldman, J. Hylen, R. L. Talaga, G. Tzanakos, D. Cherdack, M. C. Goodman, P. Lucas, L. Corwin, S. L. Mufson, N. Tagg, J. J. Evans, G.D. Barr, R. C. Webb, G. Koizumi, J. Schneps, Karol Lang, J. K. Nelson, A. C. Weber, Joao A B Coelho, Juergen Thomas, S. V. Cao, Warner A. Miller, M. Mathis, P. Vahle, D. A. Jensen, M. V. Diwan, A. V. Devan, A. E. Kreymer, J. M. Paley, R. Gran, Marvin L Marshak, Gregory J Pawloski, R. B. Patterson, S. Phan-Budd, M. M. Medeiros, A. Radovic, Daniel P Cronin-Hennessy, Carlos Escobar, C. James, R. K. Plunkett, A. Sousa, N. E. Devenish, P. J. Litchfield, J. A. Nowak, R. J. Nichol, T. Kafka, Alec Habig, N. Mayer, M. Bishai, X. Qiu, M. Orchanian, K. Grzelak, A. Himmel, Z. Isvan, L. Mualem, J. Urheim, D. Torretta, J. A. Musser, J. Hartnell, H. A. Rubin, W. P. Oliver, R. A. Gomes, C. Rosenfeld, P. Adamson, S. M. S. Kasahara, R. Zwaska, G. J. Bock, R. Toner, B. Rebel, R. Hatcher, R. Mehdiyev, J. R. Meier, and N. Graf
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Solar neutrino ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Solar neutrino problem ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,MINOS ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Fermilab ,Neutrino ,Neutrino oscillation - Abstract
We report new constraints on flavor-changing non-standard neutrino interactions from the MINOS experiment, in which neutrino versus antineutrino interactions can be distinguished on an event-by-event basis. We analyzed a combined set of beam neutrino and antineutrino data from the well-understood NuMI beam, and found no evidence for deviations from standard neutrino mixing. The observed energy spectra constrain the non-standard neutrino interactions parameter to the range -0.20
- Published
- 2013
27. Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS
- Author
-
Carlos Escobar, M. V. Diwan, A. Holin, R. K. Plunkett, S. R. Mishra, X. Qiu, M. C. Sanchez, C. M. Castromonte, S. Childress, D. Torretta, C. Backhouse, Gregory J Pawloski, P. Schreiner, C. James, Harvey B Newman, J. A. Nowak, P. Lucas, J. Hartnell, A. Schreckenberger, W. H. Miller, R. Toner, L. Corwin, S. Moed Sher, R. Mehdiyev, Maury Goodman, R. B. Pahlka, R. Zwaska, S. C. Tognini, L. Mualem, B. Rebel, G. M. Irwin, S. R. Hahn, H. R. Gallagher, E. Falk, G. J. Feldman, M. A. Thomson, J. Urheim, D. Naples, S. V. Cao, T. Kafka, Stanley G. Wojcicki, M. Mathis, A. E. Kreymer, R. Sharma, G. Tzanakos, R. A. Gomes, C. D. Moore, H. A. Rubin, A. Radovic, M. V. Frohne, J. A. Musser, J. O'Connor, C. Rosenfeld, G. Koizumi, J. Hylen, Marvin L Marshak, W. A. Mann, R. Hatcher, J. J. Evans, J. M. Paley, N. Mayer, P. Adamson, L. Whitehead, A. C. Weber, M. M. Medeiros, M. Bishai, S. M. S. Kasahara, W. P. Oliver, Karol Lang, G. J. Bock, R. C. Webb, D. G. Michael, R. J. Nichol, Alec Habig, A. Himmel, Z. Isvan, B. Viren, I. Anghel, M. Kordosky, J. R. Meier, J. K. De Jong, M. Orchanian, N. Graf, R. B. Patterson, Andrew Blake, N. Tagg, K. Grzelak, A. M. McGowan, G.D. Barr, Juergen Thomas, G. Tinti, Joao A B Coelho, R. Gran, Daniel P Cronin-Hennessy, P. Vahle, A. V. Devan, P. J. Litchfield, S. Phan-Budd, A. Sousa, R. L. Talaga, N. E. Devenish, P. Gouffon, L. H. Whitehead, D. Bogert, M. D. Messier, Christopher G. White, J. K. Nelson, D. A. Jensen, and J. Schneps
- Subjects
Physics ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Oscillation ,General Physics and Astronomy ,FOS: Physical sciences ,Neutrino ,Neutrino oscillation ,Beam (structure) ,High Energy Physics - Experiment - Abstract
We report measurements of oscillation parameters from $\nu_{mu}$ and $\bar{\nu}_{\mu}$ disappearance using beam and atmospheric data from MINOS. The data comprise exposures of \unit[$10.71 \times 10^{20}$]{protons on target (POT)} in the $\nu_{\mu}$-dominated beam, $\unit[3.36\times10^{20}]{POT}}$ in the $\bar{\nu}_{\mu}$-enhanced beam, and 37.88 kton-years of atmospheric neutrinos. Assuming identical $\nu$ and $\bar{\nu}$ oscillation parameters, we measure \mbox{$|\Delta m^2}| = \unit[2.41^{+0.09}_{-0.10}) \times 10^{-3}]{eV^{2}}$} and $\sin^{2}/!/left(2\theta \right) = 0.950^{+0.035}_{-0.036}$. Allowing independent $\nu$ and $\bar{\nu}$ oscillations, we measure antineutrino parameters of $|\Delta \bar{m}^2| = \unit[(2.50 ^{+0.23}_{-0.25}) \times 10^{-3}]{eV^{2}}$ and $\sin^{2}/!/left(2\bar{\theta} \right) = 0.97^{+0.03}_{-0.08}$, with minimal change to the neutrino parameters., Comment: 5 pages, 3 figures
- Published
- 2013
28. The SOUDAN 2 detector The design and construction of the tracking calorimeter modules
- Author
-
W. Leeson, D. Rosen, J. Schneps, P. J. Litchfield, D. Roback, T. Joyce, Christian P. Minor, J. H. Hoftiezer, B. Saitta, L. Mualem, P.D. Shield, S. Heppelmann, C. Garcia-Garcia, P. M. Border, R.J. Cotton, G. Villaume, T. H. Fields, G. F. Pearce, Maury Goodman, V. W. Edwards, U. DasGupta, D. M. DeMuth, V. Vassiliev, M. Shupe, D. Schmid, M. A. Thomson, David Ja Cockerill, R. Nickson, W. L. Barrett, I. Ambats, S. P. Wakely, R. H. Milburn, R. H. Giles, Graham L. Giller, N. Hill, C.B. Brooks, J. Kochocki, Edward May, L. E. Price, H. Courant, R. Seidlein, W. A. Mann, N. Mondal, H.M. Gallagher, A. Napier, N. P. Longley, S. Yarker, D. Wall, C. A. Woods, J. Schlereth, L. Balka, N. West, W.W.M. Allison, C. Bode, D. S. Ayres, U.M. Wielgosz, L.M. Kirby-Gallagher, S. J. Werkema, K. Coover, D. Maxam, M.H. Schub, J. W. Dawson, A. Stassinakis, T. Kafka, E. A. Peterson, S. Spear, E.M. Nelson, B. Dahlin, D. Benjamin, R. N. Gray, B. Ewen, G. J. Alner, Marvin L Marshak, K. Johns, M. Lowe, K. Ruddick, Donald H. Perkins, L. McMaster, Warner A. Miller, D. J. Jankowski, G.D. Barr, E.W.G. Wallis, F. V. Lopez, L. Weems, J. H. Cobb, N. Sundaralingam, W. P. Oliver, S. M S Kasahara, and J. L. Thron
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Calorimeter (particle physics) ,Physics::Instrumentation and Detectors ,Detector ,High Energy Physics::Experiment ,Tracking (particle physics) ,Nucleon ,Instrumentation ,Charged particle - Abstract
SOUDAN 2 is a 960-ton tracking calorimeter which has been constructed to search for nucleon decay and other phenomena. The full detector consists of 224 calorimeter modules each weighing 4.3 tons. The design and construction of the modules are described. The modules consist of finely segmented iron instrumented with 1 m long drift tubes of 15 mm internal diameter. The tubes enable three spatial coordinates and dE/dx to be recorded for charged particles traversing the tubes.
- Published
- 1996
29. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector
- Author
-
A. C. Weber, P. Gouffon, D. Bogert, B. Viren, R. L. Talaga, S. V. Cao, J. M. Paley, P. Schreiner, N. Tagg, G.D. Barr, S. R. Mishra, P. Lucas, Juergen Thomas, N. Mayer, R. B. Patterson, M. Kordosky, R. Toner, Gregory J Pawloski, Sacha E Kopp, B. Rebel, H. A. Rubin, R. Gran, M. D. Messier, C. James, Andrew Blake, R. Mehdiyev, A. Schreckenberger, L. H. Whitehead, A. Holin, T. Kafka, Harvey B Newman, R. Hatcher, Christopher G. White, S. Phan-Budd, A. Sousa, Daniel P Cronin-Hennessy, J. K. De Jong, M. C. Sanchez, R. B. Pahlka, R. C. Webb, J. Urheim, W. P. Oliver, E. Falk, N. E. Devenish, G. Tzanakos, G. Koizumi, P. J. Litchfield, J. A. Musser, D. Torretta, G. M. Irwin, J. R. Meier, J. Schneps, N. Graf, Rakesh Sharma, S. Childress, J. Ratchford, C. D. Moore, G. J. Feldman, M. V. Frohne, R. A. Gomes, G. J. Bock, J. Hartnell, I. Z. Danko, Matthew L Strait, R. K. Plunkett, John C. Mitchell, L. Corwin, S. L. Mufson, H. R. Gallagher, J. K. Nelson, M. Bishai, M. Mathis, D. A. Jensen, Warner A. Miller, M. Orchanian, M. A. Thomson, K. Grzelak, J. J. Evans, Carlos Escobar, D. Naples, G. Tinti, Stanley G. Wojcicki, L. Loiacono, Joao A B Coelho, W. A. Mann, J. Hylen, M. C. Goodman, M. V. Diwan, X. Qiu, R. Zwaska, A. E. Kreymer, C. Rosenfeld, D. S. Ayres, J. A. Nowak, P. Adamson, Marvin L Marshak, S. M. S. Kasahara, Alec Habig, R. J. Nichol, J. J. Walding, P. Vahle, S. Cavanaugh, D. J. Boehnlein, Karol Lang, A. Radovic, A. Himmel, Z. Isvan, and L. Mualem
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Context (language use) ,QC0793 ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Standard-Model Extension ,Sidereal time ,MINOS ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation - Abstract
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is placed in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients., 6 pages, 2 figures, 4 tables
- Published
- 2012
30. Measurements of atmospheric neutrinos and antineutrinos in the MINOS Far Detector
- Author
-
A. C. Weber, John C. Mitchell, M. D. Messier, A. E. Kreymer, B. Speakman, Marvin L Marshak, Christopher G. White, D. Bogert, C. Backhouse, R. Toner, M. A. Thomson, D. Naples, G. Tzanakos, S. Phan-Budd, Gregory J Pawloski, Stanley G. Wojcicki, B. Rebel, A. Sousa, J. K. Nelson, Harvey B Newman, G. Koizumi, P. Gouffon, R. Mehdiyev, D. A. Jensen, A. Holin, M. Kordosky, C. James, N. E. Devenish, T. Kafka, J. Hylen, B. Viren, J. J. Evans, Andrew Blake, S. R. Mishra, G. M. Irwin, R. B. Patterson, R. Zwaska, D. E. Jaffe, G. J. Feldman, W. A. Mann, R. L. Talaga, C. Rosenfeld, S. V. Cao, M. C. Goodman, M. V. Diwan, L. H. Whitehead, Sacha E Kopp, P. Adamson, R. Gran, J. K. De Jong, S. M. S. Kasahara, J. J. Walding, H. R. Gallagher, M. V. Frohne, Warner A. Miller, Daniel P Cronin-Hennessy, P. J. Litchfield, Carlos Escobar, J. M. Paley, M. Bishai, Rakesh Sharma, S. Childress, J. A. Nowak, R. K. Plunkett, Alec Habig, M. Orchanian, K. Grzelak, G. J. Bock, J. Ratchford, R. A. Gomes, J. Schneps, P. Vahle, C. D. Moore, N. Tagg, A. Radovic, I. Z. Danko, D. J. Boehnlein, X. Qiu, G.D. Barr, P. Lucas, Juergen Thomas, L. Corwin, S. L. Mufson, K. Zhang, A. Himmel, Z. Isvan, D. Torretta, Karol Lang, L. Mualem, M. Mathis, J. Hartnell, M. M. Medeiros, J. Urheim, M. C. Sanchez, R. B. Pahlka, Matthew L Strait, Joao A B Coelho, J. A. Musser, H. A. Rubin, W. P. Oliver, P. Schreiner, John Derek Chapman, A. Schreckenberger, E. Falk, J. R. Meier, R. C. Webb, N. Graf, R. Hatcher, R. J. Nichol, N. Mayer, and L. Loiacono
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Neutral current ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Monte Carlo method ,High Energy Physics::Phenomenology ,Flux ,FOS: Physical sciences ,QC0793 ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Neutrino oscillation ,Charged current - Abstract
This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ interactions, and 701 contained-vertex showers, composed mainly of charged-current $\nu_{e}$ and $\bar{\nu}_{e}$ interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ events. The observed ratio of $\bar{\nu}_{\mu}$ to $\nu_{\mu}$ events is compared with the Monte Carlo simulation, giving a double ratio of $R^{data}_{\bar{\nu}/\nu}/R^{MC}_{\bar{\nu}/\nu} = 1.03 \pm 0.08 (stat.) \pm 0.08 (syst.)$. The $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ data are separated into bins of $L/E$ resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed $L/E$ distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of $|\Delta m^{2}| = (1.9 \pm 0.4) \times 10^{-3} eV^{2}$ and $sin^{2} 2\theta > 0.86$. The fit is extended to incorporate separate $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ oscillation parameters, returning 90% confidence limits of $|\Delta m^{2}|-|\Delta \bar{m}^{2}| = 0.6^{+2.4}_{-0.8} \times 10^{-3} eV^{2}$ on the difference between the squared-mass splittings for neutrinos and antineutrinos., Comment: 22 pages, 19 figures, submitted to Phys. Rev. D
- Published
- 2012
- Full Text
- View/download PDF
31. Comparisons of annual modulations in MINOS with the event rate modulation in CoGeNT
- Author
-
P. Lucas, R. B. Patterson, Carlos Escobar, R. K. Plunkett, J. Schneps, M. Bishai, A. M. McGowan, M. V. Diwan, X. Qiu, J. K. De Jong, I. Anghel, M. Orchanian, J. A. Nowak, K. Grzelak, H. A. Rubin, M. C. Sanchez, M. A. Thomson, D. Naples, Stanley G. Wojcicki, Rakesh Sharma, M. V. Frohne, J. O'Connor, J. Hylen, Sacha E Kopp, M. C. Goodman, R. B. Pahlka, R. Gran, A. E. Kreymer, S. V. Cao, Daniel P Cronin-Hennessy, S. Childress, M. D. Messier, D. E. Jaffe, Marvin L Marshak, J. J. Evans, C. D. Moore, G. M. Irwin, Christopher G. White, S. Moed Sher, J. M. Paley, P. Schreiner, Warner A. Miller, W. P. Oliver, A. V. Devan, G. J. Feldman, A. C. Weber, R. Hatcher, A. Holin, S. R. Mishra, Karol Lang, W. A. Mann, D. Torretta, H. R. Gallagher, M. Kordosky, J. K. Nelson, A. Himmel, Z. Isvan, L. Mualem, P. Gouffon, S. Phan-Budd, A. Sousa, Andrew Blake, P. Vahle, B. Viren, D. A. Jensen, L. H. Whitehead, J. Hartnell, Alec Habig, R. C. Webb, N. E. Devenish, P. J. Litchfield, R. L. Talaga, G. Tzanakos, M. M. Medeiros, N. Tagg, R. Zwaska, T. Kafka, G. Koizumi, J. Urheim, J. R. Meier, G.D. Barr, N. Graf, Harvey B Newman, C. Rosenfeld, D. Bogert, Juergen Thomas, R. J. Nichol, Joao A B Coelho, G. J. Bock, L. Corwin, P. Adamson, N. Mayer, A. Radovic, J. A. Musser, S. M. S. Kasahara, M. Mathis, R. Toner, B. Rebel, R. A. Gomes, R. Mehdiyev, Gregory J Pawloski, C. James, A. Schreckenberger, and E. Falk
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Dark matter ,Flux ,chemistry.chemical_element ,FOS: Physical sciences ,Radon ,Cosmic ray ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,chemistry ,MINOS ,Modulation (music) ,Event (particle physics) - Abstract
The CoGeNT collaboration has recently published results from a fifteen month data set which indicate an annual modulation in the event rate similar to what is expected from weakly interacting massive particle interactions. It has been suggested that the CoGeNT modulation may actually be caused by other annually modulating phenomena, specifically the flux of atmospheric muons underground or the radon level in the laboratory. We have compared the phase of the CoGeNT data modulation to that of the concurrent atmospheric muon and radon data collected by the MINOS experiment which occupies an adjacent experimental hall in the Soudan Underground Laboratory. The results presented are obtained by performing a shape-free $\chi^{2}$ data-to-data comparison and from a simultaneous fit of the MINOS and CoGeNT data to phase-shifted sinusoidal functions. Both tests indicate that the phase of the CoGeNT modulation is inconsistent with the phases of the MINOS muon and radon modulations at the \unit[3.0]{$\sigma$} level., Comment: 8 pages, 4 figures
- Published
- 2012
- Full Text
- View/download PDF
32. First Direct Observation of Muon Antineutrino Disappearance
- Author
-
J. Urheim, A. E. Kreymer, H. A. Rubin, Marvin L Marshak, Carlos Escobar, M. V. Diwan, G. J. Bock, R. K. Plunkett, J. A. Musser, W. P. Oliver, M. Bishai, P. Shanahan, D. Cherdack, A. Holin, R. Mehdiyev, D. J. Auty, W. H. Miller, Matthew L Strait, X. Qiu, J. R. Meier, N. Graf, P. Stamoulis, C. Andreopoulos, R. Ospanov, J. Ratchford, C. D. Moore, L. Loiacono, R. Toner, P. A. Rodrigues, Joao A B Coelho, G. Lefeuvre, P. Lucas, B. Rebel, Juan Pedro Ochoa-Ricoux, R. A. Gomes, M. Orchanian, R. C. Webb, T. Kafka, S. Childress, J. K. De Jong, T. Yang, K. Grzelak, J. A. Nowak, C. Rosenfeld, S. Phan-Budd, A. Sousa, D. Bogert, R. L. Talaga, L. Corwin, S. L. Mufson, H. R. Gallagher, P. Adamson, J. Ilic, N. E. Devenish, L. Whitehead, P. J. Litchfield, D. A. Harris, R. B. Patterson, M. Kordosky, D. S. Ayres, M. A. Thomson, S. M. S. Kasahara, D. Naples, J. K. Nelson, G. Tinti, N. Mayer, Stanley G. Wojcicki, J. J. Evans, Andrew Blake, Sacha E Kopp, R. Gran, P. Vahle, D. A. Jensen, C. Howcroft, S. Cavanaugh, D. J. Boehnlein, Karol Lang, G. Tzanakos, A. M. McGowan, G. Koizumi, R. Hatcher, Daniel P Cronin-Hennessy, A. C. Weber, M. D. Messier, R. Zwaska, N. Grant, Christopher G. White, M. V. Frohne, W. A. Mann, E. Tetteh-Lartey, P. Schreiner, T. C. Nicholls, Xian-Rong Huang, J. Schneps, I. Z. Danko, E. Falk, Brajesh C Choudhary, M. C. Sanchez, M. Dorman, G. F. Pearce, Maury Goodman, C. Backhouse, Gregory J Pawloski, Jorge G. Morfin, David Petyt, C. James, John C. Mitchell, N. Tagg, G.D. Barr, T. M. Raufer, S. R. Mishra, Juergen Thomas, D. E. Jaffe, P. Gouffon, J. Hylen, B. Viren, R. J. Nichol, Alec Habig, G. M. Irwin, S. J. Coleman, G. J. Feldman, J. M. Paley, Harvey B Newman, A. Himmel, Z. Isvan, L. Mualem, and J. Hartnell
- Subjects
Physics ,Particle physics ,Antiparticle ,Muon ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,NEUTRINO OSCILLATIONS, LEPTON CHARGE, MATTER ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation ,Nucleon ,Nuclear Experiment ,Charged current ,Lepton - Abstract
This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for muon antineutrino production, accumulating an exposure of $1.71\times 10^{20}$ protons on target. In the Far Detector, 97 charged current muon antineutrino events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at $6.3\sigma$. The best fit to oscillation yields $\Delta \bar{m}^{2}=(3.36^{+0.46}_{-0.40}\textrm{(stat.)}\pm0.06\textrm{(syst.)})\times 10^{-3}\,\eV^{2}$, $\sin^{2}(2\bar{\theta})=0.86^{+0.11}_{-0.12}\textrm{(stat.)}\pm0.01\textrm{(syst.)}$. The MINOS muon neutrino and muon antineutrino measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters., Comment: Six pages, four figures. This version published by Physical Review Letters
- Published
- 2011
33. Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
- Author
-
A. E. Kreymer, Marvin L Marshak, H. R. Gallagher, D. A. Harris, G. M. Irwin, J. Schneps, I. Z. Danko, V. A. Ryabov, M. V. Diwan, C. Backhouse, J. Reichenbacher, J. A. Nowak, G. J. Feldman, P. Schreiner, J. Ilic, Matthew L Strait, M. A. Thomson, R. Hatcher, D. Naples, P. Vahle, S. Cavanaugh, Karol Lang, Stanley G. Wojcicki, A. Himmel, Z. Isvan, J. Urheim, L. Mualem, N. Mayer, Gregory J Pawloski, S. J. Coleman, J. Hylen, John C. Mitchell, Joao A B Coelho, M. C. Goodman, G. Tzanakos, Xian-Rong Huang, Jorge G. Morfin, D. J. Auty, D. J. Boehnlein, C. James, T. H. Fields, J. M. Paley, G. Koizumi, J. A. Musser, G. J. Bock, Harvey B Newman, Sacha E Kopp, R. Gran, J. J. Evans, Philip Harris, M. Kordosky, P. Bhattarai, P. Shanahan, R. Mehdiyev, Warner A. Miller, T. Yang, A. Holin, D. Cronin-Hennessy, N. Tagg, G.D. Barr, R. J. Nichol, M. Bishai, Andrew Blake, R. Pittam, T. M. Raufer, D.S. Damiani, S. R. Mishra, D. G. Michael, M. Orchanian, R. C. Webb, M. V. Frohne, A. Sousa, P. Gouffon, Alec Habig, K. Grzelak, D. Bogert, G. Tinti, P. A. Rodrigues, Brajesh C Choudhary, Juergen Thomas, N. E. Devenish, R. Zwaska, C. Rosenfeld, G. Lefeuvre, R. B. Patterson, M. D. Messier, M. C. Sanchez, P. J. Litchfield, D. E. Jaffe, B. Viren, A. M. McGowan, T. Kafka, R. Toner, J. K. De Jong, B. Rebel, P. Adamson, L. Whitehead, M. Dorman, Christopher G. White, J. R. Meier, R. L. Talaga, N. Graf, Niki Saoulidou, G. F. Pearce, S. M. S. Kasahara, E. Falk, J. K. Nelson, A. C. Weber, D. A. Jensen, N. Grant, S. Budd, Z. Krahn, D. Cherdack, C. Andreopoulos, L. Loiacono, R. A. Gomes, S. Childress, J. Ratchford, C. D. Moore, Douglas Wright, L. Corwin, S. L. Mufson, P. Lucas, Carlos Escobar, R. K. Plunkett, William L. Barrett, X. Qiu, W. A. Mann, D. S. Ayres, H. A. Rubin, W. P. Oliver, and J. Hartnell
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Meson ,Physics::Instrumentation and Detectors ,Detector ,FOS: Physical sciences ,Cosmic ray ,High Energy Physics - Experiment ,Nuclear physics ,Particle decay ,High Energy Physics - Experiment (hep-ex) ,MINOS ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Nuclear Experiment ,Lepton ,Dimensionless quantity - Abstract
The magnetized MINOS Near Detector, at a depth of 225 meters of water equivalent (mwe), is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266+/-0.001(stat.)+0.015/-0.014(syst.). This measurement is consistent with previous results from other shallow underground detectors, and is 0.108+/-0.019(stat. + syst.) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energies., 11 pages, 8 figures submitted to Physical Review D
- Published
- 2011
34. Search for Lorentz invariance and CPT violation with the MINOS far detector
- Author
-
D. G. Michael, H. R. Gallagher, J. K. Nelson, G. M. Irwin, D. A. Harris, John C. Mitchell, Carlos Escobar, A. C. Weber, S. Childress, R. K. Plunkett, D. A. Jensen, M. Bishai, G. J. Feldman, M. D. Messier, T. Yang, J. Ratchford, C. D. Moore, M. C. Sanchez, N. Mayer, Christopher G. White, C. Rosenfeld, P. Adamson, V. A. Ryabov, C. Backhouse, N. Grant, L. Whitehead, M. Orchanian, P. Lucas, K. Grzelak, J. H. Cobb, V. K. Semenov, G. Tzanakos, Douglas Wright, S. M S Kasahara, D. S. Ayres, H. A. Rubin, P. Vahle, S. Cavanaugh, G. Koizumi, R. Pittam, S. Budd, G. Tinti, Xian-Rong Huang, Gregory J Pawloski, D. J. Boehnlein, G. J. Bock, Z. Krahn, M. V. Diwan, A. Holin, C. James, Harvey B Newman, Sacha E Kopp, J. Ilic, L. Corwin, S. L. Mufson, William L. Barrett, P. Shanahan, R. J. Nichol, R. Gran, D. J. Auty, A. Himmel, Z. Isvan, L. Mualem, R. Hatcher, M. Kordosky, Karol Lang, Andrew Blake, M. V. Frohne, D. Bogert, Daniel P Cronin-Hennessy, W. A. Mann, R. A. Gomes, Alec Habig, P. A. Rodrigues, W. P. Oliver, T. M. Raufer, S. R. Mishra, G. Lefeuvre, P. Schreiner, T. Kafka, J. Urheim, E. Falk, R. Toner, M. Dorman, C. R. Bower, Warner A. Miller, B. Rebel, J. R. Meier, D. E. Jaffe, M. Zois, Niki Saoulidou, R. Zwaska, G. F. Pearce, J. A. Musser, A. E. Kreymer, Marvin L Marshak, Philip Harris, D. Cherdack, A. Sousa, Matthew L Strait, Brajesh C Choudhary, J. Schneps, N. E. Devenish, P. J. Litchfield, R. C. Webb, I. Z. Danko, Joao A B Coelho, J. Hartnell, R. B. Patterson, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, A. M. McGowan, M. C. Goodman, L. Loiacono, W. Smart, J. P. Cravens, R. Mehdiyev, J. K. De Jong, N. Tagg, G.D. Barr, T. Patzak, John Miller, Juergen Thomas, J. J. Evans, S. J. Coleman, J. M. Paley, P. Gouffon, B. Viren, R. L. Talaga, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,CPT symmetry ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,Lorentz covariance ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Fermilab ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,High Energy Physics - Phenomenology ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be a consequence of Lorentz and CPT violation as described by the Standard-Model Extension framework. It also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We found no evidence for this sidereal signature and the upper limits placed on the magnitudes of the Lorentz and CPT violating coefficients describing the theory are an improvement by factors of $20-510$ over the current best limits found using the MINOS near detector., 5 pages, 2 figures
- Published
- 2010
35. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector
- Author
-
David Petyt, D. E. Jaffe, John Marshall, J. K. De Jong, D. G. Michael, M. Kordosky, M. D. Messier, Andrew Blake, A. C. Weber, Christopher G. White, Peter D. Barnes, H. R. Gallagher, D. A. Harris, B. Viren, N. Mayer, P. Schreiner, S. R. Mishra, G. Tzanakos, R. L. Talaga, G. Koizumi, R. J. Nichol, Matthew L Strait, S. M S Kasahara, N. Tagg, T. Osiecki, A. R. Erwin, G.D. Barr, P. Stamoulis, A. Sousa, J. Schneps, I. Z. Danko, J. K. Nelson, K. Zhang, P. Lucas, Z. Krahn, Joao A B Coelho, Alec Habig, J. J. Kim, R. B. Patterson, N. E. Devenish, D. A. Jensen, Ž Pavlović, Juan Pedro Ochoa-Ricoux, Juergen Thomas, R. A. Rameika, P. J. Litchfield, Karol Lang, A. E. Kreymer, Mcd Sanchez, John C. Mitchell, J. J. Evans, A. Himmel, Z. Isvan, Marvin L Marshak, L. Mualem, A. Holin, K. Grzelak, S. Childress, H. A. Rubin, R. P. Litchfield, S. J. Coleman, R. Ospanov, Caleb Smith, Ken Heller, C. D. Moore, J. M. Paley, D. J. Auty, A. M. McGowan, P. Gouffon, N. West, Warner A. Miller, V. A. Ryabov, P. A. Rodrigues, M. Watabe, D. S. Ayres, C. Backhouse, Philip Harris, G. J. Bock, E. Falk, D. J. Koskinen, T. Kafka, R. Pittam, Gregory J Pawloski, R. Armstrong, Douglas Wright, W. P. Oliver, M. V. Frohne, Jorge G. Morfin, S. L. Mufson, C. James, D. Cherdack, William L. Barrett, P. Shanahan, R. Toner, B. Rebel, M. Dorman, T. C. Nicholls, W. A. Mann, A. Godley, Niki Saoulidou, G. F. Pearce, E. Grashorn, Carlos Escobar, K. E. Arms, B. C. Choudhary, T. Yang, R. K. Plunkett, D. Bhattacharya, C. Andreopoulos, J. Hartnell, L. Loiacono, Sacha E Kopp, R. Gran, R. Mehdiyev, Daniel P Cronin-Hennessy, R. Zwaska, A. J. Culling, M. Bishai, A. Rahaman, R. Hatcher, G. Tinti, C. Rosenfeld, John Derek Chapman, C. J. Metelko, J. R. Meier, P. Adamson, L. Whitehead, J. Urheim, V. Paolone, C. R. Bower, M. Zois, J. A. Musser, R. C. Webb, W. Smart, D. Bogert, V. A. Tsarev, V. K. Semenov, P. Vahle, S. Cavanaugh, D. J. Boehnlein, Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, M. C. Goodman, Harvey B Newman, M. V. Diwan, T. M. Raufer, G. M. Irwin, and G. J. Feldman
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Cross section (physics) ,MINOS ,Antimatter ,High Energy Physics::Experiment ,Fermilab ,Neutrino ,Charged current ,Lepton - Abstract
The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood., accepted by PRD
- Published
- 2010
36. Observation of muon intensity variations by season with the MINOS far detector
- Author
-
R. Toner, B. Rebel, R. Ospanov, K. E. Arms, A. E. Kreymer, H. R. Gallagher, D. A. Harris, Sacha E Kopp, R. Gran, D. E. Jaffe, N. Mayer, Marvin L Marshak, G. Tzanakos, J. Hartnell, G. J. Bock, C. Rosenfeld, Daniel P Cronin-Hennessy, T. M. Raufer, S. R. Mishra, G. Koizumi, G. M. Irwin, Ken Heller, G. J. Feldman, J. J. Evans, B. R. Becker, P. Lucas, T. Osiecki, P. Adamson, L. Whitehead, M. C. Sanchez, Philip Harris, J. Urheim, J. Reichenbacher, M. D. Messier, R. Mehdiyev, A. Sousa, Christopher G. White, M. Kordosky, R. J. Nichol, N. E. Devenish, C. R. Bower, M. Zois, P. J. Litchfield, A. Holin, S. Childress, Harvey B Newman, Andrew Blake, R. B. Patterson, J. K. De Jong, J. A. Musser, Alec Habig, K. Korman, A. Rahaman, T. Patzak, P. Gouffon, B. Viren, E. W. Grashorn, John C. Mitchell, C. D. Moore, J. H. Cobb, D. J. Auty, John J. Barnett, R. L. Talaga, H. A. Rubin, J. K. Nelson, A. M. McGowan, D. A. Jensen, K. Grzelak, Douglas Wright, N. Tagg, B. Speakman, Warner A. Miller, John Marshall, Matthew L Strait, G.D. Barr, T. H. Fields, R. Pittam, R. Armstrong, P. Stamoulis, W. P. Oliver, R. C. Webb, Brajesh C Choudhary, S. L. Mufson, T. C. Nicholls, D. Cherdack, V. A. Ryabov, M. V. Frohne, M. Bishai, Juergen Thomas, P. A. Rodrigues, C. Backhouse, P. Vahle, M. Watabe, S. J. Coleman, T. Kafka, S. Cavanaugh, Scott Osprey, Gregory J Pawloski, W. Smart, Caleb Smith, R. Zwaska, A. J. Culling, E. Falk, Jorge G. Morfin, J. M. Paley, Juan Pedro Ochoa-Ricoux, C. James, D. J. Boehnlein, A. Himmel, Z. Isvan, G. Tinti, L. Mualem, M. Dorman, C. Andreopoulos, Niki Saoulidou, G. F. Pearce, E. A. Peterson, K. Zhang, L. Loiacono, P. Schreiner, R. A. Rameika, D. Bogert, Karol Lang, Carlos Escobar, R. K. Plunkett, V. A. Tsarev, John Derek Chapman, D. G. Michael, C. J. Metelko, J. R. Meier, T. Yang, D. J. Koskinen, R. Hatcher, A. C. Weber, S. M S Kasahara, Z. Krahn, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, N. West, Jian Ma, M. A. Thomson, D. Naples, D. S. Ayres, Stanley G. Wojcicki, A. Godley, J. Hylen, M. C. Goodman, J. Schneps, I. Z. Danko, M. V. Diwan, J. L. Thron, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Background radiations ,Nuclear and High Energy Physics ,Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon ,Neutrino ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Cosmic rays ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Muon ,010308 nuclear & particles physics ,Cosmic ray muons ,pion ,cosmic ray detectors ,and other elementary particle detectors ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,MINOS ,Muon flux ,High Energy Physics::Experiment ,Production (computer science) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Intensity (heat transfer) - Abstract
The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan MN, USA, has collected over 67 million cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, $\alpha_T$, relating changes in the muon rate to changes in atmospheric temperature was found to be: $\alpha_T = 0.874 \pm 0.009$ (stat.) $\pm 0.010$ (syst.). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to $\alpha_T$ due to the different masses and lifetimes. This allows the measured value of $\alpha_T$ to be interpreted as a measurement of the K/$\pi$ ratio for $E_{p}\gtrsim$\unit[7]{TeV} of $0.13 \pm 0.08$, consistent with the expectation from collider experiments., Comment: 8 pages, 9 figures, accepted for publication in Phys. Rev. D
- Published
- 2010
37. New constraints on muon-neutrino to electron-neutrino transitions in MINOS
- Author
-
Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, N. Tagg, R. Zwaska, G.D. Barr, C. Rosenfeld, P. Adamson, L. Whitehead, D. Bogert, S. Budd, J. J. Evans, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, A. E. Kreymer, J. Hartnell, D. S. Ayres, M. V. Diwan, Philip Harris, Marvin L Marshak, J. K. Nelson, P. Schreiner, P. Bhattarai, Juergen Thomas, D. Cherdack, W. Smart, D. A. Jensen, Ken Heller, M. Bishai, J. Urheim, C. R. Bower, R. P. Litchfield, C. Andreopoulos, R. Pittam, T. Yang, J. Ilic, P. Shanahan, M. C. Sanchez, M. Zois, H. R. Gallagher, L. Loiacono, G. M. Irwin, M. Orchanian, M. Kordosky, R. Ospanov, John Marshall, J. A. Musser, Andrew Blake, S. J. Coleman, Caleb Smith, W. A. Mann, A. Godley, M. V. Frohne, J. M. Paley, Brajesh C Choudhary, V. A. Ryabov, C. Backhouse, R. Toner, B. Rebel, D. A. Harris, K. Lang, N. Mayer, J. Boehm, K. Grzelak, J. K. De Jong, H. A. Rubin, G. J. Feldman, P. Lucas, Matthew L Strait, J. Schneps, R. B. Patterson, G. Tzanakos, S. K. Swain, G. Tinti, R. C. Webb, Gregory J Pawloski, I. Z. Danko, M. D. Messier, G. Koizumi, David Petyt, P. Gouffon, Jorge G. Morfin, Joao A B Coelho, P. A. Rodrigues, R. Mehdiyev, Christopher G. White, P. Vahle, A. M. McGowan, C. James, Sacha E Kopp, R. Gran, Juan Pedro Ochoa-Ricoux, G. Lefeuvre, W. P. Oliver, S. Cavanaugh, D. J. Boehnlein, B. Viren, J. R. Meier, N. Graf, J. H. Cobb, T. M. Raufer, S. R. Mishra, T. Kafka, Daniel P Cronin-Hennessy, R. L. Talaga, G. J. Bock, M. Dorman, Xian-Rong Huang, G. F. Pearce, R. Hatcher, Carlos Escobar, R. K. Plunkett, Harvey B Newman, E. Falk, R. J. Nichol, R. A. Rameika, Alec Habig, D. E. Jaffe, M. Betancourt, John C. Mitchell, E. Grashorn, A. C. Weber, S. M S Kasahara, D. J. Auty, Z. Krahn, Warner A. Miller, Douglas Wright, A. Himmel, Z. Isvan, L. Mualem, L. Corwin, S. L. Mufson, A. Sousa, N. E. Devenish, P. J. Litchfield, A. Holin, S. Childress, C. D. Moore, K. Zhang, and D. G. Michael
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,MINOS ,CP violation ,Muon neutrino ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation ,Lepton - Abstract
This letter reports results from a search for muon-neutrino to electron-neutrino transitions by the MINOS experiment based on a 7x10^20 protons-on-target exposure. Our observation of 54 candidate electron-neutrino events in the Far Detector with a background of 49.1+/-7.0(stat.)+/-2.7(syst.) events predicted by the measurements in the Near Detector requires 2sin^2(2theta_{13})sin^2(theta_{23}), 5 pages, 4 figures
- Published
- 2010
- Full Text
- View/download PDF
38. Search for sterile neutrino mixing in the MINOS long-baseline experiment
- Author
-
T. Yang, D. Bogert, Carlos Escobar, M. C. Sanchez, R. J. Nichol, P. Schreiner, R. K. Plunkett, A. Rahaman, T. Osiecki, J. Urheim, V. Paolone, C. R. Bower, Xian-Rong Huang, A. Sousa, N. E. Devenish, Alec Habig, S. Childress, P. J. Litchfield, M. V. Diwan, D. G. Michael, J. A. Musser, D. E. Jaffe, M. Kordosky, T. M. Raufer, S. R. Mishra, John Derek Chapman, C. J. Metelko, C. D. Moore, John Marshall, D. J. Auty, Andrew Blake, R. Zwaska, J. R. Meier, D. Cherdack, M. Bishai, A. J. Culling, H. A. Rubin, S. J. Coleman, Warner A. Miller, R. C. Webb, Caleb Smith, C. Rosenfeld, William L. Barrett, P. Vahle, John C. Mitchell, Peter D. Barnes, Douglas Wright, J. M. Paley, P. Lucas, P. Shanahan, M. Orchanian, S. Cavanaugh, P. Adamson, L. Whitehead, K. Grzelak, D. J. Boehnlein, J. H. Cobb, S. L. Mufson, A. Holin, C. Andreopoulos, R. Hatcher, A. E. Kreymer, G. Tinti, R. P. Litchfield, A. R. Erwin, W. A. Mann, A. Godley, A. C. Weber, J. Schneps, B. Viren, L. Loiacono, P. Gouffon, Marvin L Marshak, Sacha E Kopp, R. Gran, I. Z. Danko, R. L. Talaga, Ken Heller, W. P. Oliver, H. R. Gallagher, Daniel P Cronin-Hennessy, N. Tagg, S. M S Kasahara, E. Falk, G.D. Barr, Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, D. J. Koskinen, Z. Krahn, P. A. Rodrigues, M. Watabe, D. A. Harris, Brajesh C Choudhary, Matthew L Strait, J. Hylen, N. Mayer, A. Himmel, Z. Isvan, L. Mualem, Juergen Thomas, V. A. Ryabov, P. Stamoulis, M. C. Goodman, C. Backhouse, T. Kafka, T. C. Nicholls, G. Tzanakos, Joao A B Coelho, Ž Pavlović, G. Koizumi, J. P. Cravens, Juan Pedro Ochoa-Ricoux, K. Zhang, R. A. Rameika, Karol Lang, N. West, Gregory J Pawloski, Jorge G. Morfin, D. S. Ayres, C. James, J. Hartnell, W. Smart, R. Mehdiyev, M. Dorman, Niki Saoulidou, G. F. Pearce, J. K. Nelson, D. A. Jensen, R. Ospanov, J. J. Evans, M. D. Messier, J. K. De Jong, G. M. Irwin, Christopher G. White, A. Marchionni, G. J. Feldman, Harvey B Newman, G. J. Bock, R. B. Patterson, R. Toner, B. Rebel, E. Grashorn, A. M. McGowan, Philip Harris, R. Pittam, and M. V. Frohne
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Sterile neutrino ,Physics::Instrumentation and Detectors ,Solar neutrino ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,Solar neutrino problem ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino ,Neutrino oscillation - Abstract
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated non-interacting "sterile" neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18x10^{20} protons on target in which neutrinos of energies between ~500 MeV and 120 GeV are produced predominantly as nu_mu, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near detector sample shows that of the portion of the nu_mu flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles theta_{24} and theta_{34} are constrained to be less than 11 degrees and 56 degrees at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime tau_3/m_3 > 2.1x10^{-12} s/eV at 90% C.L.., 18 pages, 17 figures. Published in Phys. Rev. D
- Published
- 2010
- Full Text
- View/download PDF
39. Search for Muon-Neutrino to Electron-Neutrino Transitions in MINOS
- Author
-
B. Speakman, K. Zhang, M. V. Diwan, D. Cherdack, Karol Lang, M. Bishai, E. Falk, G. M. Irwin, E. Grashorn, P. A. Rodrigues, G. J. Feldman, M. Watabe, A. Belias, R. Hatcher, N. West, C. Andreopoulos, T. Kafka, D. G. Michael, D. E. Jaffe, A. Himmel, Z. Isvan, L. Loiacono, L. Mualem, R. Toner, H. R. Gallagher, B. Rebel, D. A. Harris, M. D. Messier, D. S. Ayres, G. Tinti, J. J. Evans, A. C. Weber, R. Zwaska, J. Boehm, Harvey B Newman, J. L. Thron, A. J. Culling, S. Childress, M. Betancourt, T. Yang, P. Schreiner, Christopher G. White, N. Mayer, A. Godley, A. Holin, C. Rosenfeld, S. M S Kasahara, T. C. Nicholls, C. D. Moore, H. Zheng, K. E. Arms, D. J. Koskinen, A. R. Erwin, C. Howcroft, G. Tzanakos, P. Adamson, L. Whitehead, Sacha E Kopp, J. K. De Jong, Douglas Wright, R. Gran, G. J. Bock, Z. Krahn, G. Koizumi, J. Schneps, W. Smart, S. L. Mufson, R. C. Webb, I. Z. Danko, Daniel P Cronin-Hennessy, Alec Habig, John Derek Chapman, P. Vahle, S. Cavanaugh, D. J. Boehnlein, J. Urheim, R. J. Nichol, John C. Mitchell, C. R. Bower, C. J. Metelko, J. R. Meier, A. Rahaman, J. Reichenbacher, M. Zois, Philip Harris, K. Grzelak, J. K. Nelson, R. P. Litchfield, J. A. Musser, William L. Barrett, P. Shanahan, S. J. Coleman, Jian Ma, M. A. Thomson, D. A. Jensen, D. Bogert, D. Naples, Stanley G. Wojcicki, W. A. Mann, Brajesh C Choudhary, R. Ospanov, V. A. Tsarev, J. Hylen, R. H. Bernstein, A. Para, Caleb Smith, M. C. Goodman, R. B. Patterson, J. M. Paley, M. Dorman, A. M. McGowan, Niki Saoulidou, G. F. Pearce, R. Mehdiyev, R. Pittam, V. A. Ryabov, C. Backhouse, M. V. Frohne, P. Gouffon, D. R. Ward, T. Patzak, Gregory J Pawloski, Jorge G. Morfin, C. James, B. Viren, R. L. Talaga, N. Tagg, G.D. Barr, Juergen Thomas, A. Sousa, N. E. Devenish, P. J. Litchfield, D. J. Auty, Warner A. Miller, Carlos Escobar, R. K. Plunkett, P. Lucas, A. E. Kreymer, Marvin L Marshak, John Marshall, J. H. Cobb, B. R. Becker, M. C. Sanchez, Ken Heller, Xian-Rong Huang, Peter D. Barnes, David Petyt, T. M. Raufer, S. R. Mishra, Matthew L Strait, P. Stamoulis, Joao A B Coelho, Ž Pavlović, R. A. Rameika, Juan Pedro Ochoa-Ricoux, M. Kordosky, Andrew Blake, H. A. Rubin, R. Armstrong, W. P. Oliver, D. Bhattacharya, J. Hartnell, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Particle physics ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Beams in particle accelerators ,010308 nuclear & particles physics ,Hadron ,FOS: Physical sciences ,General Physics and Astronomy ,Elementary particle ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,MINOS ,Ordinary neutrinos (nuW bosons ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,CP violation ,Neutrino ,010306 general physics ,Neutrino oscillation ,Lepton - Abstract
This letter reports on a search for $\nu_\mu \to \nu_e$ transitions by the MINOS experiment based on a \unit[$3.14\times10^{20}$]{protons-on-target} exposure in the Fermilab NuMI beam. We observe 35 events in the Far Detector with a background of $27\pm 5 {\rm (stat.)} \pm 2 {\rm (syst.)$ events predicted by the measurements in the Near Detector. If interpreted in terms of $\nu_\mu \to \nu_e$ oscillations, this 1.5 $\sigma$ excess of events is consistent with $\sin^{2}(2\theta_{13})$ comparable to the CHOOZ limit when $|\delmsq{}|$=\unit[2.43$\times 10^{-3}$] {${\rm eV^{2}}$} and \sinsq{23}=1.0 are assumed., Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett
- Published
- 2009
40. Sudden stratospheric warmings seen in MINOS deep underground muon data
- Author
-
S. J. Coleman, Caleb Smith, J. M. Paley, R. P. Litchfield, A. Holin, A. A. Wehmann, P. Vahle, S. Cavanaugh, P. A. Symes, A. Sousa, P. J. Litchfield, David Petyt, D. J. Boehnlein, D. J. Auty, N. Mayer, S. Kumaratunga, J. Urheim, R. Hatcher, M. V. Diwan, Warner A. Miller, V. Paolone, C. R. Bower, J. J. Kim, D. G. Michael, N. Tagg, A. Himmel, Brajesh C Choudhary, L. Mualem, G.D. Barr, N. West, Alec Habig, P. Lucas, J. Smith, B. Baller, D. S. Ayres, G. Koizumi, Harvey B Newman, J. L. Thron, J. A. Musser, Richard J.H. Smith, J. J. Evans, T. M. Raufer, Z. Pavlovic, K. E. Arms, John Derek Chapman, D. Bogert, B. Speakman, D. Cherdack, Scott Osprey, Gregory J Pawloski, Jorge G. Morfin, G. M. Irwin, J. H. Cobb, S. R. Mishra, N. Grossman, K. Grzelak, C. J. Metelko, J. R. Meier, Jian Ma, M. A. Thomson, D. Naples, M. Kordosky, A. Godley, W. Smart, M. Dierckxsens, J. Reichenbacher, Juergen Thomas, S. Childress, G. J. Feldman, R. Ospanov, C. Andreopoulos, Sacha E Kopp, R. Gran, John Marshall, L. Loiacono, Stanley G. Wojcicki, C. James, T. Yang, P. Gouffon, B. R. Becker, D. J. Koskinen, L. Miller, Andrew Blake, J. Boehm, R. C. Webb, J. Hylen, R. H. Bernstein, P. A. Rodrigues, J. A. Thompson, J. K. De Jong, E. Grashorn, M. Ishitsuka, M. C. Sanchez, S. M. Seun, Carlos Escobar, M. Watabe, A. Belias, R. J. Nichol, M. Dorman, B. Viren, R. K. Plunkett, M. C. Goodman, D. E. Jaffe, H. R. Gallagher, C. D. Moore, J. K. Nelson, Peter D. Barnes, Niki Saoulidou, A. M. McGowan, H. A. Rubin, D. A. Harris, K. Ruddick, T. Kafka, Matthew L Strait, G. F. Pearce, D. A. Jensen, William L. Barrett, P. Shanahan, P. Stamoulis, M. D. Messier, R. L. Talaga, P. Schreiner, Christopher G. White, C. W. Peck, K. Zhang, J. Schneps, W. A. Mann, M. V. Frohne, Karol Lang, M. Bishai, Juan Pedro Ochoa-Ricoux, S. A. Dytman, R. Armstrong, W. P. Oliver, Philip Harris, Douglas Wright, A. E. Kreymer, Marvin L Marshak, A. C. Weber, G. Tzanakos, D. Bhattacharya, R. Pittam, J. Hartnell, M. A. Tavera, G. Tinti, John J. Barnett, T. C. Nicholls, S. L. Mufson, G. J. Bock, S. M S Kasahara, B. Rebel, A. Rahaman, R. Zwaska, A. J. Culling, C. Rosenfeld, P. Adamson, R. A. Rameika, E. Buckley-Geer, and E. Falk
- Subjects
Physics ,Muon ,Physics::Instrumentation and Detectors ,Cosmic ray muons ,Cosmic ray ,Atmospheric sciences ,Atmospheric temperature ,Troposphere ,Atmosphere ,Geophysics ,MINOS ,Climatology ,General Earth and Planetary Sciences ,High Energy Physics::Experiment ,Stratosphere ,Physics::Atmospheric and Oceanic Physics - Abstract
The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere. Copyright 2009 by the American Geophysical Union.
- Published
- 2009
41. First results from the Soudan 2 proton decay experiment
- Author
-
L. E. Price, J.H. Cobb, G. F. Pearce, D. Rosen, L. M. Tupper, Donald H. Perkins, D. Roback, C.B. Brooks, B. Saitta, R. N. Gray, K. Ruddick, P.D. Shield, A. Napier, J. L. Thron, P. J. Litchfield, D. P. Benjamin, M. Lowe, C. Garcia-Garcia, M. A. Thomson, R. H. Giles, G.D. Barr, J. Kochocki, F. V. Lopez, J. W. Dawson, David Ja Cockerill, L. McMaster, J. Schneps, Marvin L Marshak, K. A. Johns, H. Courant, J. L. Schlereth, M. C. Goodman, W. W.M. Allison, T. Kafka, D. Schmid, I. Ambats, S. Heppelmann, D. J. Jankowski, L. Balka, R. H. Milburn, V. W. Edwards, G. J. Alner, W. P. Oliver, N. Sundaralingam, E. A. Peterson, B. Dahlin, Warner A. Miller, William L. Barrett, W. A. Mann, N. P. Longley, N. West, D. S. Ayres, S. J. Werkema, P. M. Border, N. Hill, Edward May, Michael Shupe, S. M. S. Kasahara, and T. H. Fields
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Physics::Instrumentation and Detectors ,Proton decay ,High Energy Physics::Phenomenology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Solar neutrino problem ,Nuclear physics ,Neutrino detector ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,Neutrino oscillation - Abstract
First results on contained neutrino interactions are presented from the Soudan 2 proton decay experiment. 20 neutrino events have been found in a fiducial exposure of 0.29 kton years.
- Published
- 1991
42. Search for Active Neutrino Disappearance Using Neutral-Current Interactions in the MINOS Long-Baseline Experiment
- Author
-
P. Adamson, C. Andreopoulos, K. E. Arms, R. Armstrong, D. J. Auty, D. S. Ayres, C. Backhouse, B. Baller, G. Barr, W. L. Barrett, B. R. Becker, A. Belias, R. H. Bernstein, D. Bhattacharya, M. Bishai, A. Blake, G. J. Bock, J. Boehm, D. J. Boehnlein, D. Bogert, C. Bower, E. Buckley-Geer, S. Cavanaugh, J. D. Chapman, D. Cherdack, S. Childress, B. C. Choudhary, J. H. Cobb, S. J. Coleman, A. J. Culling, J. K. de Jong, M. Dierckxsens, M. V. Diwan, M. Dorman, S. A. Dytman, C. O. Escobar, J. J. Evans, E. Falk Harris, G. J. Feldman, M. V. Frohne, H. R. Gallagher, A. Godley, M. C. Goodman, P. Gouffon, R. Gran, E. W. Grashorn, N. Grossman, K. Grzelak, A. Habig, D. Harris, P. G. Harris, J. Hartnell, R. Hatcher, K. Heller, A. Himmel, A. Holin, L. Hsu, J. Hylen, G. M. Irwin, M. Ishitsuka, D. E. Jaffe, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, J. J. Kim, M. S. Kim, G. Koizumi, S. Kopp, M. Kordosky, D. J. Koskinen, S. K. Kotelnikov, A. Kreymer, S. Kumaratunga, K. Lang, J. Ling, P. J. Litchfield, R. P. Litchfield, L. Loiacono, P. Lucas, J. Ma, W. A. Mann, A. Marchionni, M. L. Marshak, J. S. Marshall, N. Mayer, A. M. McGowan, J. R. Meier, M. D. Messier, C. J. Metelko, D. G. Michael, W. H. Miller, S. R. Mishra, C. D. Moore, J. Morfín, L. Mualem, S. Mufson, S. Murgia, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, T. C. Nicholls, J. P. Ochoa-Ricoux, W. P. Oliver, R. Ospanov, J. Paley, V. Paolone, A. Para, T. Patzak, Ž. Pavlović, G. Pawloski, G. F. Pearce, C. W. Peck, D. A. Petyt, R. Pittam, R. K. Plunkett, A. Rahaman, R. A. Rameika, T. M. Raufer, B. Rebel, J. Reichenbacher, P. A. Rodrigues, C. Rosenfeld, H. A. Rubin, V. A. Ryabov, M. C. Sanchez, N. Saoulidou, J. Schneps, P. Schreiner, P. Shanahan, W. Smart, C. Smith, A. Sousa, B. Speakman, P. Stamoulis, M. Strait, N. Tagg, R. L. Talaga, M. A. Tavera, J. Thomas, M. A. Thomson, J. L. Thron, G. Tinti, I. Trostin, V. A. Tsarev, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, D. R. Ward, M. Watabe, A. Weber, R. C. Webb, A. Wehmann, N. West, C. White, S. G. Wojcicki, D. M. Wright, T. Yang, K. Zhang, R. Zwaska, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Particle physics ,etc ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutral current ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,right-handed neutrinos ,01 natural sciences ,High Energy Physics - Experiment ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,High Energy Physics - Experiment (hep-ex) ,Neutral currents ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Baseline (configuration management) ,Non-standard-model neutrinos - Abstract
We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between muon neutirnos and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of muon neutrino oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from electron neutrino appearance at the current experimental limit is also presented., Comment: 5 pages, 3 figures
- Published
- 2008
43. The magnetized steel and scintillator calorimeters of the MINOS experiment
- Author
-
J. J. Grudzinski, R. J. Nichol, Q. K. Wu, N. Tagg, R. Piteira, L. E. Price, G.D. Barr, T. Osiecki, B. R. Becker, A. Sousa, Francisco Yumiceva, A. Byon-Wagner, A. C. Weber, Alec Habig, D.S. Damiani, M. C. Sanchez, John Miller, M. A. Barker, M. Ignatenko, Carlos Escobar, J. K. Nelson, P. J. Litchfield, R. K. Plunkett, Juergen Thomas, J. Trevor, D. Pushka, H. R. Gallagher, D. E. Reyna, Raymond Lee, S. Childress, E. Maher, J. Boehm, E. Falk Harris, C. D. Moore, J. Kilmer, P. Adamson, M. Proga, M. V. Frohne, P. Gouffon, D. Indurthy, D. A. Harris, R. C. Webb, J. A. Thompson, S. M. Seun, M. Dorman, T. Alexopoulos, C. Rosenfeld, S. M S Kasahara, L. Wai, W.W.M. Allison, S. Boyd, E. A. Peterson, R. Ospanov, P. S. Miyagawa, B. Baller, William L. Barrett, P. Shanahan, B. Bock, M. Kostin, Harvey B Newman, J. L. Thron, P. N. Smith, M. Gebhard, B. Viren, Paul Schoessow, S.R. Mishra, T. Bergfeld, Yu. A. Gornushkin, T. M. Raufer, H. Ping, K. Grzelak, A. L. Read, W. Smart, M. D. Messier, A. M. McGowan, K. Ruddick, A. S. Ladran, W. A. Mann, John Oliver, G. I. Merzon, N. West, John Marshall, J. Urheim, S. Madani, V. Paolone, C. R. Bower, M. Zois, J. A. Musser, A. De Santo, D. J. Koskinen, P. Stamoulis, Ž Pavlović, Juan Pedro Ochoa-Ricoux, S. Murgia, A. Lebedev, M. Vakili, Warner A. Miller, G. M. Irwin, Weonjong Lee, D. Rahman, S. Avvakumov, Randall White, Gary Drake, A. D. Marino, H. A. Rubin, D. S. Ayres, W. Luebke, Christopher G. White, A. Belias, Y. Ho, R. L. Talaga, J. C. Yun, J. J. Evans, Carole C. Perry, L. Jenner, F. A. Nezrick, G. J. Feldman, E. Buckley-Geer, P. A. Symes, G. Tzanakos, V.A. Onuchin, C. Arroyo, A. Godley, W. P. Oliver, P. Lucas, R. Shivane, N. Felt, Marvin L Marshak, C. P. Ward, C. Howcroft, G. Koizumi, J. D. Cossairt, H. Zheng, D. R. Ward, H. J. Kang, C. Velissaris, B. C. Choudhary, T. Durkin, N. P. Longley, P. Schreiner, Ken Heller, R. H. Milburn, D. Krakauer, Reinhard Schwienhorst, T. Patzak, J. H. Cobb, B. Speakman, Kevin Anderson, S. J. Coleman, Hyun-Chul Kim, Peter D. Barnes, D. Bhattacharya, N. Grossman, M. J. Murtagh, R. Ford, J. Hartnell, Caleb Smith, E. P. Hartouni, E. Beall, D. A. Jensen, M. S. Kim, S. Kumaratunga, K. Vaziri, J. M. Paley, B. C. Barish, R. A. Rameika, J. W. Dawson, E. Tetteh-Lartey, M. Watabe, Andrew Blake, G. J. Alner, R. Ducar, V. J. Guarino, T. Kafka, R. Trendler, T. C. Nicholls, T. H. Fields, A. A. Wehmann, C. Andreopoulos, Philip Harris, M. Bishai, C. W. Peck, S. Chernichenko, H. Courant, Karol Lang, D. M. DeMuth, Ruben Saakyan, Sacha E Kopp, D. G. Michael, Thomas R. Chase, J. McDonald, O. Fackler, T. Joffe-Minor, W. G. Yan, R. Morse, A. J. Culling, D. Crane, Niki Saoulidou, G. F. Pearce, V. A. Ryabov, J. Gogos, E. Grashorn, V. Makeev, Jorge G. Morfin, C. James, M. P. Andrews, Anna Pla-Dalmau, R. P. Litchfield, N. Hill, Ji-Yong Liu, P.D. Shield, M. Dierckxsens, V. K. Semenov, P. Vahle, D. J. Boehnlein, C. Laughton, M. Kordosky, V. Smirnitsky, D. Bogert, C. Nelson, A. Marchionni, I. Trostin, G. J. Bock, Alexander Terekhov, L. Mualem, V. A. Tsarev, J. K. de Jong, P. M. Border, J. Hanson, R. Halsall, T. Yang, Douglas Wright, Anatael Cabrera, S. L. Mufson, M. Libkind, V. Bocean, B. Rebel, J. M. Swan, N. Pearson, V. Verebryusov, R. Hatcher, John Derek Chapman, J. R. Meier, P. Sullivan, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. V. Diwan, Keith Bechtol, D. A. Petyt, A. Stefanik, S. K. Kotelnikov, A. R. Erwin, J. Schneps, R. Andrews, R. Zwaska, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,FOS: Physical sciences ,01 natural sciences ,7. Clean energy ,NuMI ,Nuclear physics ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Neutrino oscillation ,physics.ins-det ,Instrumentation ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,Instrumentation and Detectors (physics.ins-det) ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutrino - Abstract
The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper., Comment: Revised according to referee's comments. 91 pages, 43 figures, submitted to NIM. arXiv figures are greatly compressed, please see NIM itself or the Fermilab library server for full resolution figures
- Published
- 2008
44. Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam
- Author
-
Jian Ma, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, P. A. Symes, S. K. Kotelnikov, V. A. Ryabov, J. Schneps, S. A. Dytman, M. V. Diwan, Gregory J Pawloski, Jorge G. Morfin, R. A. Rameika, C. James, A. Holin, N. Tagg, R. Pittam, G.D. Barr, G. M. Irwin, K. E. Arms, R. P. Litchfield, M. Kordosky, A. Godley, John Marshall, Sacha E Kopp, R. Gran, G. J. Feldman, Andrew Blake, A. Sousa, C. P. Ward, P. J. Litchfield, Philippe Lucas, John Miller, Brajesh C Choudhary, Juergen Thomas, Peter D. Barnes, S. Murgia, M. Bishai, D. J. Auty, B. Baller, M. D. Messier, G. I. Merzon, W. Smart, Warner A. Miller, N. West, G. Tinti, P. Vahle, Harvey B Newman, J. L. Thron, H. A. Rubin, D. S. Ayres, S. Cavanaugh, P. Adamson, D. J. Boehnlein, J. J. Evans, M. Dierckxsens, R. Armstrong, D. R. Ward, T. Patzak, A. C. Weber, W. P. Oliver, P. Stamoulis, A. Rahaman, T. C. Nicholls, G. J. Bock, J. K. de Jong, A. E. Kreymer, B. Speakman, E. A. Peterson, S. M S Kasahara, R. Ospanov, Marvin L Marshak, S. J. Coleman, S. M. Seun, M. Dorman, M. Ishitsuka, Caleb Smith, A. M. McGowan, K. Ruddick, Niki Saoulidou, B. Rebel, G. F. Pearce, J. Boehm, Ken Heller, J. M. Paley, S. Kumaratunga, E. Buckley-Geer, P. Gouffon, B. R. Becker, A. A. Wehmann, P. A. Rodrigues, M. A. Tavera, M. Watabe, William L. Barrett, P. Shanahan, M. C. Sanchez, R. C. Webb, J. A. Thompson, C. Rosenfeld, R. Zwaska, A. J. Culling, Douglas Wright, D. Bogert, T. Kafka, W. A. Mann, D. Cherdack, B. Viren, A. Marchionni, J. K. Nelson, I. Trostin, Philip Harris, C. Andreopoulos, D. A. Jensen, M. S. Kim, R. L. Talaga, S. L. Mufson, L. Loiacono, J. J. Kim, D. E. Jaffe, V. A. Tsarev, David Petyt, A. Belias, Matthew L Strait, J. H. Cobb, T. M. Raufer, S. R. Mishra, N. Grossman, Ž Pavlović, Juan Pedro Ochoa-Ricoux, Carlos Escobar, R. K. Plunkett, E. Grashorn, K. Grzelak, P. Schreiner, John Derek Chapman, R. J. Nichol, C. J. Metelko, J. R. Meier, Alec Habig, J. Urheim, V. Paolone, C. R. Bower, S. Childress, R. Hatcher, E. Falk Harris, C. D. Moore, J. A. Musser, C. White, M. V. Frohne, T. Yang, A. Himmel, L. Mualem, D. G. Michael, M. Zois, N. Mayer, C. W. Peck, G. Tzanakos, K. Zhang, G. Koizumi, Karol Lang, J. Reichenbacher, D. J. Koskinen, H. R. Gallagher, D. A. Harris, D. Bhattacharya, J. Hartnell, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Particle physics ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Ordinary neutrinos (nuW bosons ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,Beams in particle accelerators ,High Energy Physics::Phenomenology ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Spectrometers and spectroscopic techniques ,Neutrino detector ,MINOS ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
This letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum mechanical oscillations of neutrino flavor with mass splitting $|\Delta m^2|=(2.43\pm 0.13)\times10^{-3}$ eV$^2$ (68% confidence level) and mixing angle $\sin^2(2\theta)>0.90$ (90% confidence level). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight, namely neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively., Comment: 5 pages, 4 figures, submitted to Phys. Rev. Lett
- Published
- 2008
45. Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam
- Author
-
A. E. Kreymer, William L. Barrett, D. E. Jaffe, P. Shanahan, Carlos Escobar, B. Bock, Marvin L Marshak, R. K. Plunkett, E. Buckley-Geer, W. A. Mann, D. Cherdack, Ken Heller, John Derek Chapman, T. Osiecki, A. Sousa, John Marshall, R. H. Milburn, A. Holin, E. P. Hartouni, G. I. Merzon, N. West, C. J. Metelko, J. R. Meier, V. Smirnitsky, C. Andreopoulos, P. J. Litchfield, D. S. Ayres, P. Lucas, P. Gouffon, S. Murgia, J. J. Evans, D. E. Reyna, A. Himmel, L. Loiacono, B. Viren, L. Mualem, B. Speakman, V. A. Ryabov, L. Jenner, D. J. Auty, Raymond Lee, P. M. Border, Matthew L Strait, C. W. Peck, S. Childress, A. Lebedev, R. L. Talaga, M. Ishitsuka, R. J. Nichol, Harvey B Newman, Karol Lang, E. Falk Harris, J. H. Cobb, Peter D. Barnes, C. D. Moore, N. Grossman, T. Yang, P. Adamson, S. J. Coleman, Caleb Smith, David Petyt, A. D. Marino, R. A. Rameika, T. M. Raufer, H. Ping, Warner A. Miller, T. H. Fields, J. M. Paley, Douglas Wright, Anatael Cabrera, A. A. Wehmann, Jorge G. Morfin, T. Durkin, G. M. Irwin, A. Godley, J. Gogos, Ž Pavlović, D. Bhattacharya, Juan Pedro Ochoa-Ricoux, N. Tagg, Alec Habig, J. Hartnell, P. A. Rodrigues, Ji-Yong Liu, C. James, G. J. Feldman, M. Watabe, G.D. Barr, G. J. Bock, S. L. Mufson, B. Baller, D. J. Koskinen, J. K. de Jong, John Miller, P. A. Symes, Juergen Thomas, D. Bogert, T. C. Nicholls, D. R. Ward, T. Patzak, H. A. Rubin, K. E. Arms, R. Zwaska, A. J. Culling, E. Beall, T. Kafka, M. Kordosky, S. M. Seun, K. Grzelak, M. Dorman, R. C. Webb, J. A. Thompson, Ruben Saakyan, Sacha E Kopp, R. Gran, S. R. Mishra, D. Rahman, A. Marchionni, Andrew Blake, I. Trostin, Niki Saoulidou, R. Armstrong, W. P. Oliver, G. F. Pearce, R. Ford, S. Avvakumov, A. Belias, V. Verebryusov, R. P. Litchfield, A. Mislivec, R. Hatcher, E. A. Peterson, M. Bishai, Christopher P. Ward, B. R. Becker, D. G. Michael, Brajesh C Choudhary, A. R. Erwin, C. Rosenfeld, M. Zois, H. Zheng, V. A. Tsarev, G. Tinti, B. Rebel, J. Boehm, D. Indurthy, W. Smart, P. Schreiner, J. Urheim, V. Paolone, C. R. Bower, J. A. Musser, V. K. Semenov, C. White, P. Vahle, S. Cavanaugh, D. Drakoulakos, D. J. Boehnlein, A. C. Weber, S. M S Kasahara, M. Dierckxsens, E. Grashorn, A. M. McGowan, K. Ruddick, R. Pittam, H. J. Kang, S. K. Kotelnikov, J. Schneps, M. V. Frohne, B. C. Barish, E. Tetteh-Lartey, J. K. Nelson, S. A. Dytman, M. V. Diwan, Philip Harris, D. A. Jensen, M. S. Kim, M. D. Messier, S. Kumaratunga, Mcd Sanchez, J. L. Thron, C. Howcroft, G. Tzanakos, G. Koizumi, M. A. Thomson, N. Mayer, D. Naples, Stanley G. Wojcicki, R. Ospanov, J. Reichenbacher, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, H. R. Gallagher, D. A. Harris, P. Stamoulis, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Physics::Instrumentation and Detectors ,Solar neutrino ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Fermilab ,010306 general physics ,Neutrino oscillation ,Physics ,010308 nuclear & particles physics ,Solar neutrino problem ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutrino detector ,MINOS ,Physics::Accelerator Physics ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level., In submission to Phys. Rev. D
- Published
- 2008
46. Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
- Author
-
K. Grzelak, A. Belias, T. C. Nicholls, A. E. Kreymer, E. Grashorn, Marvin L Marshak, C. Rosenfeld, P. Adamson, K. E. Arms, P. Schreiner, G. M. Irwin, D. E. Jaffe, John Marshall, A. C. Weber, Sacha E Kopp, R. Gran, R. Zwaska, A. J. Culling, S. L. Mufson, A. Rahaman, J. Urheim, G. J. Feldman, Ken Heller, V. Paolone, C. R. Bower, W. Smart, R. Ospanov, P. Lucas, D. Bogert, S. M S Kasahara, M. A. Tavera, M. Zois, A. Sousa, J. Schneps, A. M. McGowan, D. G. Michael, B. Rebel, J. A. Musser, J. K. De Jong, H. A. Rubin, N. Grossman, M. Ishitsuka, P. J. Litchfield, John Derek Chapman, A. Holin, S. A. Dytman, M. D. Messier, S. Childress, P. Vahle, M. Kordosky, Carlos Escobar, S. Cavanaugh, P. Gouffon, S. Murgia, Jian Ma, M. A. Thomson, C. J. Metelko, Christopher G. White, R. J. Nichol, R. C. Webb, J. R. Meier, J. A. Thompson, Andrew Blake, R. K. Plunkett, D. Naples, R. Armstrong, D. J. Boehnlein, E. Falk Harris, M. Bishai, B. Baller, C. D. Moore, Stanley G. Wojcicki, W. P. Oliver, S. Kumaratunga, Alec Habig, D. J. Auty, Philip Harris, H. R. Gallagher, N. West, M. V. Frohne, J. Hylen, R. H. Bernstein, A. Para, T. Yang, M. C. Goodman, D. A. Harris, Matthew L Strait, M. V. Diwan, A. Himmel, C. W. Peck, L. Mualem, D. S. Ayres, K. Zhang, J. Boehm, R. Pittam, P. Stamoulis, D. Bhattacharya, J. J. Evans, J. Hartnell, J. K. Nelson, D. Cherdack, T. Patzak, Karol Lang, Ž Pavlović, Warner A. Miller, N. Mayer, Juan Pedro Ochoa-Ricoux, R. Hatcher, B. Speakman, G. Tinti, William L. Barrett, D. A. Jensen, P. Shanahan, G. J. Bock, C. Andreopoulos, D. J. Koskinen, L. Loiacono, W. A. Mann, P. A. Rodrigues, M. Watabe, G. Tzanakos, T. Kafka, G. Koizumi, J. Reichenbacher, J. J. Kim, E. Buckley-Geer, R. A. Rameika, M. Dorman, Niki Saoulidou, G. F. Pearce, B. R. Becker, R. P. Litchfield, M. C. Sanchez, Brajesh C Choudhary, Gregory J Pawloski, Jorge G. Morfin, C. James, David Petyt, T. M. Raufer, S. R. Mishra, S. J. Coleman, J. M. Paley, A. A. Wehmann, N. Tagg, G.D. Barr, John Miller, Juergen Thomas, Harvey B Newman, J. L. Thron, B. Viren, R. L. Talaga, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Particle physics ,Neutrino mass and mixing ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,CPT symmetry ,Physics::Instrumentation and Detectors ,Lorentz transformation ,time reversal ,Charge conjugation ,General Physics and Astronomy ,FOS: Physical sciences ,Lorentz covariance ,Lorentz and Poincare invariance ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,symbols.namesake ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010306 general physics ,Neutrino oscillation ,and other discrete symmetries ,Physics ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,High Energy Physics - Phenomenology ,MINOS ,parity ,symbols ,Measurements of neutrino speed ,High Energy Physics::Experiment ,Neutrino - Abstract
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10-4 and 10-2 of the maximum expected, assuming a suppression of these signatures by a factor of 10-17. © 2008 The American Physical Society.
- Published
- 2008
- Full Text
- View/download PDF
47. Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector
- Author
-
V. A. Ryabov, R. Armstrong, W. P. Oliver, R. Pittam, T. H. Fields, Harvey B Newman, Jorge G. Morfin, C. James, M. A. Thomson, D. Naples, Stanley G. Wojcicki, M. V. Frohne, D. Indurthy, S. Murgia, N. Tagg, J. Hylen, R. H. Bernstein, A. Para, S. M. Seun, M. Dorman, T. Patzak, R. P. Litchfield, D. J. Auty, M. C. Goodman, G.D. Barr, Niki Saoulidou, T. Durkin, G. F. Pearce, A. Lebedev, B. C. Barish, G. A. Giurgiu, R. Zwaska, D. Cherdack, L. Mualem, D. Bhattacharya, A. J. Culling, E. Beall, B. Baller, Brajesh C Choudhary, J. Hartnell, J. K. De Jong, P. Lucas, A. Holin, S. K. Kotelnikov, D. Drakoulakos, T. M. Raufer, David Petyt, J. Schneps, John Miller, Juergen Thomas, Warner A. Miller, D. E. Jaffe, G. M. Irwin, B. Rebel, S. Kumaratunga, D. E. Reyna, V. K. Semenov, C. Andreopoulos, E. P. Hartouni, A. Mislivec, H. J. Kang, A. Marchionni, G. J. Feldman, M. Ishitsuka, R. C. Webb, S. R. Mishra, D. Rahman, M. V. Diwan, R. J. Nichol, A. M. McGowan, K. Ruddick, R. Piteira, E. Falk Harris, C. D. Moore, C. Howcroft, G. Tzanakos, Caleb Smith, J. M. Paley, J. A. Thompson, A. Godley, P. Vahle, A. Belias, S. Avvakumov, P. Adamson, R. H. Milburn, Mcd Sanchez, E. Tetteh-Lartey, A. A. Wehmann, T. C. Nicholls, John Marshall, G. Koizumi, B. R. Becker, D. J. Boehnlein, Douglas Wright, Anatael Cabrera, J. J. Evans, V. Smirnitsky, J. L. Thron, N. Mayer, W. Smart, H. Zheng, S. L. Mufson, M. Bishai, H. Ping, J. Reichenbacher, P. A. Symes, B. Speakman, D. J. Koskinen, K. Grzelak, Juan Pedro Ochoa-Ricoux, Philip Harris, P. M. Border, Ž Pavlović, P. Gouffon, C. Bungau, M. Kordosky, P. Stamoulis, P. Schreiner, T. Bergfeld, A. E. Kreymer, R. Ford, C. P. Ward, R. Lee, M. Watabe, B. Viren, D. Bogert, J. K. Nelson, I. Trostin, Marvin L Marshak, T. Kafka, J. Urheim, V. Paolone, C. R. Bower, E. A. Peterson, S. Childress, H. R. Gallagher, D. A. Jensen, M. S. Kim, G. Tinti, K. E. Arms, D. A. Harris, G. I. Merzon, Ken Heller, Ruben Saakyan, Sacha E Kopp, R. Gran, J. A. Musser, Carlos Escobar, M. D. Messier, A. De Santo, N. West, C. White, C. W. Peck, R. A. Rameika, R. K. Plunkett, C. Rosenfeld, V. A. Tsarev, Q. K. Wu, Karol Lang, D. S. Ayres, P. S. Miyagawa, D. G. Michael, J. Gogos, Andrew Blake, Alec Habig, M. Zois, L. Jenner, R. Ospanov, J. Boehm, E. Buckley-Geer, T. Joffe-Minor, Jie Liu, G. J. Bock, A. D. Marino, V. Verebryusov, D. R. Ward, Peter D. Barnes, J. H. Cobb, R. Hatcher, N. Grossman, T. Osiecki, A. Sousa, Francisco Yumiceva, R. L. Talaga, A. R. Erwin, P. J. Litchfield, John Derek Chapman, J. R. Meier, T. Yang, M. Dierckxsens, C. Velissaris, E. Grashorn, A. C. Weber, William L. Barrett, P. Shanahan, B. Bock, W. A. Mann, S. M S Kasahara, H. A. Rubin, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), MINOS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Range (particle radiation) ,Background radiations ,Muon ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Cosmic ray ,Charge (physics) ,7. Clean energy ,01 natural sciences ,Particle identification ,Magnetic field ,Standard Model ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Nuclear physics ,MINOS ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,010306 general physics - Abstract
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 207 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be Nμ+/Nμ-=1.374±0.004(stat)-0.010+0.012(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio. © 2007 The American Physical Society.
- Published
- 2007
48. First observations of separated atmosphericνμandν¯μevents in the MINOS detector
- Author
-
P. A. Symes, J. Boehm, Douglas Wright, Anatael Cabrera, H. A. Rubin, D. Krakauer, S. Childress, S. L. Mufson, J. Urheim, W. P. Oliver, M. Bishai, V. Paolone, C. R. Bower, A. Godley, Marvin L Marshak, C. Arroyo, C. Howcroft, R. Halsall, C.D. Moore, Z. Pavlovich, Ken Heller, H. Zheng, A. Lebedev, S. Chernichenko, J. A. Musser, S. Madani, G. Tzanakos, S. Kumaratunga, P. Stamoulis, T. H. Fields, D. Bogert, L. Mualem, A. L. Read, D. M. DeMuth, M. J. Murtagh, F. A. Nezrick, V. Verebryusov, C. White, T. Bergfeld, Thomas R. Chase, R. Rameika, W. G. Yan, R. Morse, D. Naples, A. J. Culling, D. Crane, M. V. Diwan, V. K. Semenov, G. Koizumi, C. Perry, A. Stefanik, P. Vahle, B. Speakman, A. De Santo, Randall White, E. Beall, W. Luebke, A. Wehmann, R. Ducar, D. J. Boehnlein, C. Laughton, J. Kilmer, R. Saakyan, M. Kordosky, William L. Barrett, P. Shanahan, B. R. Becker, R. H. Milburn, Carlos Escobar, B. Bock, R. Hatcher, J. McDonald, Andrew Blake, R. K. Plunkett, S. Murgia, M. C. Sanchez, Reinhard Schwienhorst, J. W. Dawson, C. Rosenfeld, M. Watabe, E. P. Hartouni, J. L. Thron, C. W. Peck, V. J. Guarino, J. Hanson, E. A. Peterson, R. P. Litchfield, Q. K. Wu, C. Nelson, I. Trostin, B. Baller, A. R. Erwin, R. C. Webb, Sacha E Kopp, J. A. Thompson, Robert H. Bernstein, H. R. Gallagher, R. Andrews, A. D. Marino, P. S. Miyagawa, R. Trendler, Alec Habig, M. A. Barker, H. Courant, Karol Lang, A. Belias, D. A. Harris, V. Bocean, P. Sullivan, T. Kafka, W. A. Mann, V. A. Tsarev, Theodoros Alexopoulos, C. Velissaris, S. Boyd, K. Grzelak, E. Grashorn, J. J. Grudzinski, M. A. Thomson, Paul Schoessow, David Petyt, C. Andreopoulos, H. Ping, M. Vakili, Yu. A. Gornushkin, Stanley G. Wojcicki, D. E. Reyna, P. J. Litchfield, Brajesh C Choudhary, John Marshall, R. Piteira, P.D. Shield, R. J. Nichol, J. Hylen, A. Para, J. M. Swan, Juan Pedro Ochoa-Ricoux, W. Smart, D. J. Koskinen, S. R. Mishra, E. Buckley-Geer, P. Schreiner, Y. Ho, T. Yang, D. Rahman, E. Maher, M. C. Goodman, D. Bhattacharya, M. P. Andrews, S. Avvakumov, J. Hartnell, C. P. Ward, V.A. Onuchin, S. M. Seun, Warner A. Miller, M. Dorman, N. P. Longley, E. Falk Harris, P. Adamson, J. Schneps, M. Proga, D. R. Pushka, Niki Saoulidou, Peter D. Barnes, G. F. Pearce, D. R. Ward, T. Patzak, John Derek Chapman, V. A. Ryabov, D. G. Michael, J. Trevor, J. R. Meier, R. Lee, M. Gebhard, G. J. Alner, J. H. Cobb, T. C. Nicholls, R. Ford, V. Makeev, N. Grossman, Jorge G. Morfin, C. James, W. Y. Lee, N. Felt, J. Oliver, T. Osiecki, A. Sousa, Francisco Yumiceva, M. Dierckxsens, A. C. Weber, R. L. Talaga, T. Joffe-Minor, M. Ignatenko, G. I. Merzon, N. West, M. Zois, H. J. Kang, D. S. Ayres, S. M S Kasahara, L. Wai, Hyun-Chul Kim, L. Jenner, J. K. Nelson, D. A. Jensen, K. Vaziri, M. D. Messier, J. C. Yun, J. D. Cossairt, W.W.M. Allison, R. Ospanov, P. N. Smith, M. A. Libkind, J. Gogos, N. Hill, Ji-Yong Liu, G. J. Bock, T. Durkin, B. Rebel, L. E. Price, P. Lucas, J. J. Evans, M. Kostin, Harvey B Newman, T. M. Raufer, O. D. Fackler, G. M. Irwin, Kevin Anderson, R. Zwaska, A. Marchionni, G. J. Feldman, Caleb Smith, A. Byon-Wagner, A. Pla-Dalmau, J. M. Paley, V. Smirnitsky, P. M. Border, G. Drake, A. M. McGowan, K. Ruddick, N. Tagg, A. S. Ladran, G.D. Barr, E. Tetteh-Lartey, John Miller, Juergen Thomas, P. Gouffon, B. Viren, Philip Harris, M. V. Frohne, D. Indurthy, N. Pearson, and B. C. Barish
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,01 natural sciences ,Nuclear physics ,Massless particle ,Neutrino detector ,MINOS ,0103 physical sciences ,High Energy Physics::Experiment ,Muon neutrino ,Neutrino ,010306 general physics ,Neutrino oscillation ,Lepton - Abstract
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of muon neutrino and muon anti-neutrino charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations giving: R_data(up/down)/R_MC(up/down) = 0.62^{+0.19}_{-0.14} (stat.) +- 0.02 (sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98 % confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field muon neutrino and muon anti-neutrino interactions are separated. The ratio of muon neutrino to muon anti-neutrino events in the data is compared to the Monte Carlo expectation assuming neutrinos and anti-neutrinos oscillate in same manner giving: R_data(numubar/numu)/R_MC(numubar/numu) = 0.96^{+0.38}_{-0.27} (stat.) +- 0.15 (sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for muon neutrinos and muon anti-neutrinos.
- Published
- 2006
49. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam
- Author
-
C. Velissaris, P. Stamoulis, A. Godley, A. E. Kreymer, E. Grashorn, B. Speakman, M. Gebhard, R. Piteira, D. J. Koskinen, J. Hanson, B. C. Choudhary, H. A. Rubin, N. P. Longley, C. W. Peck, F. A. Nezrick, Mcd Sanchez, T. Patzak, H. Courant, Karol Lang, V. Bocean, M. Dorman, N. Hill, R. Ford, G. Tzanakos, Douglas Wright, Anatael Cabrera, A. Holin, J. W. Dawson, D. G. Michael, M. Zois, M. P. Andrews, O. Fackler, T. Joffe-Minor, Marvin L Marshak, C. Howcroft, G. Koizumi, V. Smirnitsky, J. M. Swan, M. Watabe, R. Armstrong, W. P. Oliver, G. I. Merzon, N. West, Ken Heller, N. Mayer, E. A. Peterson, T. Kafka, P. A. Symes, S. M. Seun, D. S. Ayres, P. M. Border, J. Reichenbacher, Weonjong Lee, A. Stefanik, N. Tagg, S. L. Mufson, L. Jenner, E. P. Hartouni, J. J. Evans, Niki Saoulidou, G. F. Pearce, B. Baller, R. A. Rameika, T. Osiecki, M. J. Murtagh, B. Rebel, V. Verebryusov, V. A. Ryabov, Randall White, A. Sousa, Francisco Yumiceva, G.D. Barr, V. Makeev, Jorge G. Morfin, S. Boyd, D. Krakauer, R. L. Talaga, P. S. Miyagawa, William L. Barrett, P. Shanahan, B. Bock, E. Beall, S. Childress, Y. Ho, John Miller, C. James, Juergen Thomas, P. J. Litchfield, John Marshall, G. J. Alner, A. Mislivec, C. Arroyo, H. R. Gallagher, Carole C. Perry, M. Dierckxsens, Andrew Blake, R. P. Litchfield, T. C. Nicholls, Yu. A. Gornushkin, D. Rahman, T. Alexopoulos, D. A. Harris, T. H. Fields, J. Trevor, J. H. Cobb, K. Grzelak, N. Grossman, R. Hatcher, A. R. Erwin, V. J. Guarino, M. Bishai, S. Madani, A. D. Marino, J. Gogos, H. Zheng, G. A. Giurgiu, T. Durkin, D. R. Ward, A. C. Weber, M. Ignatenko, Ji-Yong Liu, S. Avvakumov, J. J. Grudzinski, D. M. DeMuth, N. Felt, E. Buckley-Geer, J. Oliver, Thomas R. Chase, G. J. Bock, J. K. de Jong, W. G. Yan, S. Murgia, R. Morse, R. Lee, B. Viren, C. P. Ward, D. Bhattacharya, John Derek Chapman, T. Bergfeld, M. Libkind, D. Pushka, J. Hartnell, P.D. Shield, A. J. Culling, D. Crane, S. Chernichenko, S. M S Kasahara, L. Wai, D. J. Auty, D. Cherdack, A. Lebedev, B. R. Becker, Carlos Escobar, W. Luebke, S. Kumaratunga, J. R. Meier, J. K. Nelson, M. Vakili, L. E. Price, R. K. Plunkett, G. Tinti, K. E. Arms, R. Trendler, Peter D. Barnes, Kevin Anderson, Caleb Smith, Ruben Saakyan, Sacha E Kopp, R. Gran, Paul Schoessow, D. E. Reyna, S.R. Mishra, P. Lucas, T. Yang, Warner A. Miller, J. M. Paley, C. Andreopoulos, E. Maher, M. Kostin, Juan Pedro Ochoa-Ricoux, D. E. Jaffe, Harvey B Newman, J. L. Thron, E. Falk Harris, C. D. Moore, L. Mualem, A. L. Read, A. A. Wehmann, P. Adamson, C. Bungau, M. Proga, T. M. Raufer, M. V. Frohne, R. Halsall, M. Ishitsuka, W. Smart, V.A. Onuchin, G. M. Irwin, G. J. Feldman, J. McDonald, A. Pla-Dalmau, D. Drakoulakos, A. Byon-Wagner, R. H. Milburn, Reinhard Schwienhorst, W. A. Mann, R. J. Nichol, J. Boehm, Q. K. Wu, R. C. Webb, P. Gouffon, J. A. Thompson, Alec Habig, A. Belias, M. A. Barker, P. Schreiner, J. Urheim, V. Paolone, C. R. Bower, V. K. Semenov, J. A. Musser, A. De Santo, P. Vahle, C. White, D. J. Boehnlein, C. Laughton, M. Kordosky, Ž Pavlović, D. Bogert, R. Pittam, C. Nelson, A. Marchionni, I. Trostin, Alexander Terekhov, C. Rosenfeld, V. A. Tsarev, D. Indurthy, N. Pearson, B. C. Barish, H. J. Kang, Hyun-Chul Kim, G. Drake, A. M. McGowan, K. Ruddick, D. A. Jensen, M. S. Kim, A. S. Ladran, K. Vaziri, E. Tetteh-Lartey, R. Ducar, M. D. Messier, Philip Harris, J. C. Yun, J. D. Cossairt, W.W.M. Allison, R. Ospanov, P. N. Smith, P. Sullivan, M. A. Thomson, D. Naples, Stanley G. Wojcicki, J. Hylen, R. H. Bernstein, A. Para, M. C. Goodman, M. V. Diwan, J. Kilmer, D. A. Petyt, H. Ping, S. K. Kotelnikov, J. Schneps, R. Andrews, R. Zwaska, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), MINOS, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Particle physics ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,Q1 ,01 natural sciences ,NuMI ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Muon neutrino ,Fermilab ,010306 general physics ,Neutrino oscillation ,QC ,Physics ,Muon ,010308 nuclear & particles physics ,MINOS ,14.60.Lm, 14.60.Pq, 29.27.-a, 29.30.-h ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Neutrino ,Lepton - Abstract
This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the beam axis at distances of 1 km and 735 km. With 1.27 x 10^{20} 120 GeV protons incident on the NuMI target, 215 events with energies below 30 GeV are observed at the Far Detector, compared to an expectation of 336 \pm 14.4 events. The data are consistent with muon neutrino disappearance via oscillation with |\Delta m^2_{23}| = 2.74^{+0.44}_{-0.26} x 10^{-3} eV^2/c^4 and sin^2(2\theta_{23}) > 0.87 (at 60% C.L.)., Comment: To be submitted to PRL. 6 pages, 4 figures
- Published
- 2006
50. Measurement of theL/Edistributions of atmosphericνin Soudan 2 and their interpretation as neutrino oscillations
- Author
-
M. C. Sanchez, E. A. Peterson, B. Speakman, T. H. Fields, David Petyt, W.W.M. Allison, D. M. DeMuth, J. H. Cobb, A. Sousa, Marvin L Marshak, T. Kafka, S. M S Kasahara, A. Napier, P. J. Litchfield, David Ja Cockerill, K. Ruddick, J. L. Thron, P. M. Border, G. F. Pearce, T. Joffe-Minor, H. R. Gallagher, J. K. Nelson, Warner A. Miller, J. Schneps, W. P. Oliver, G. J. Alner, N. West, D. S. Ayres, William L. Barrett, W. A. Mann, M. C. Goodman, L. Mualem, R. H. Milburn, and H. Courant
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Oscillation ,Maximum likelihood analysis ,01 natural sciences ,Interpretation (model theory) ,Nuclear physics ,Angular distribution ,Distribution (mathematics) ,0103 physical sciences ,Statistical analysis ,Neutrino ,010306 general physics ,Neutrino oscillation - Abstract
A deficit of atmospheric ${\ensuremath{\nu}}_{\ensuremath{\mu}}$ events, consistent with the hypothesis of neutrino oscillations, is observed in the 5.90 kiloton-year fiducial exposure of the Soudan 2 detector. An unbinned maximum likelihood analysis of the neutrino $L/E$ distribution has been carried out using the Feldman-Cousins prescription. The probability of the no oscillation hypothesis is $5.8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}.$ The 90% confidence allowed region in the ${\mathrm{sin}}^{2}2\ensuremath{\theta},\ensuremath{\Delta}{m}^{2}$ plane is presented. The region includes the 90% confidence allowed region of the Super-K experiment.
- Published
- 2003
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.