10 results on '"W. H. Zimmermann"'
Search Results
2. Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control
- Author
-
Volker Eckstein, Steffen Just, Sandra Hoffmann, D. Rheinert, W.-H. Zimmermann, Sabrina Diebold, Stefanie Schmitteckert, Martin Granzow, Ralph Roeth, Birgit Weiss, Beate Niesler, Anne Griesbeck, K. Raedecke, and Gudrun A. Rappold
- Subjects
0301 basic medicine ,Organogenesis ,Biophysics ,Gene regulatory network ,030204 cardiovascular system & hematology ,Biology ,Biochemistry ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Biological Clocks ,Structural Biology ,Genetics ,medicine ,Animals ,Humans ,Myocytes, Cardiac ,Molecular Biology ,Gene ,Zebrafish ,Transcription factor ,Sinoatrial Node ,Homeodomain Proteins ,Mice, Knockout ,Sinoatrial node ,Cell Differentiation ,Mouse Embryonic Stem Cells ,Zebrafish Proteins ,biology.organism_classification ,Embryonic stem cell ,Cell biology ,Gene expression profiling ,030104 developmental biology ,medicine.anatomical_structure ,Homeobox ,Transcription Factors - Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
- Published
- 2021
3. Individualisierte Therapie mit Stammzellen
- Author
-
W.-H. Zimmermann
- Subjects
Gynecology ,medicine.medical_specialty ,business.industry ,Medicine ,Cardiology and Cardiovascular Medicine ,business - Abstract
Stammzellen wird ein groses Potenzial in der regenerativen Medizin eingeraumt. Aufgrund ihrer Fahigkeit, sich unbegrenzt zu vermehren und gleichzeitig auf definierte Differenzierungsreize anzusprechen, finden pluripotente Stammzellen eine besondere Berucksichtigung. Herzmuskelzellen konnen heute in groser Menge aus pluripotenten Stammzellen gewonnen werden und dienen als Ausgangsmaterial sowohl fur die Simulation von Herzerkrankungen in der Kulturschale („patient in a dish“) als auch fur die zellbasierte Herzreparatur. Auf dem Boden der rasanten biotechnologischen Entwicklungen der letzten Jahre befinden wir uns heute in der Phase der Translation dieser Konzepte in die klinische Anwendung.
- Published
- 2014
4. Enhanced Ca2+ influx through cardiac L-type Ca2+ channels maintains the systolic Ca2+ transient in early cardiac atrophy induced by mechanical unloading
- Author
-
A. P. Schwoerer, S. Neef, I. Broichhausen, J. Jacubeit, M. Tiburcy, M. Wagner, D. Biermann, M. Didié, C. Vettel, L. S. Maier, W. H. Zimmermann, L. Carrier, T. Eschenhagen, T. Volk, A. El-Armouche, and H. Ehmke
- Subjects
Male ,medicine.medical_specialty ,Heterotopic heart transplantation ,Transplantation, Heterotopic ,Calcium Channels, L-Type ,Physiology ,Clinical Biochemistry ,Diastole ,Action Potentials ,030204 cardiovascular system & hematology ,Cardiac atrophy ,Ca2+ cycling ,Rat ,Cardiac unloading ,03 medical and health sciences ,0302 clinical medicine ,Atrophy ,Physiology (medical) ,Internal medicine ,medicine ,Myocyte ,Animals ,Myocytes, Cardiac ,Biomedicine ,Human Physiology ,Ion channel ,030304 developmental biology ,0303 health sciences ,Chemistry ,Ryanodine receptor ,Myocardium ,Ryanodine Receptor Calcium Release Channel ,medicine.disease ,Rats ,Transplantation ,Electrophysiology ,Sarcoplasmic Reticulum ,Heart failure ,Cardiology ,Heart Transplantation ,Calcium ,Ion Channels, Receptors and Transporters - Abstract
Cardiac atrophy as a consequence of mechanical unloading develops following exposure to microgravity or prolonged bed rest. It also plays a central role in the reverse remodelling induced by left ventricular unloading in patients with heart failure. Surprisingly, the intracellular Ca(2+) transients which are pivotal to electromechanical coupling and to cardiac plasticity were repeatedly found to remain unaffected in early cardiac atrophy. To elucidate the mechanisms underlying the preservation of the Ca(2+) transients, we investigated Ca(2+) cycling in cardiomyocytes from mechanically unloaded (heterotopic abdominal heart transplantation) and control (orthotopic) hearts in syngeneic Lewis rats. Following 2 weeks of unloading, sarcoplasmic reticulum (SR) Ca(2+) content was reduced by ~55 %. Atrophic cardiac myocytes also showed a much lower frequency of spontaneous diastolic Ca(2+) sparks and a diminished systolic Ca(2+) release, even though the expression of ryanodine receptors was increased by ~30 %. In contrast, current clamp recordings revealed prolonged action potentials in endocardial as well as epicardial myocytes which were associated with a two to fourfold higher sarcolemmal Ca(2+) influx under action potential clamp. In addition, Cav1.2 subunits which form the pore of L-type Ca(2+) channels (LTCC) were upregulated in atrophic myocardium. These data suggest that in early cardiac atrophy induced by mechanical unloading, an augmented sarcolemmal Ca(2+) influx through LTCC fully compensates for a reduced systolic SR Ca(2+) release to preserve the Ca(2+) transient. This interplay involves an electrophysiological remodelling as well as changes in the expression of cardiac ion channels.
- Published
- 2013
5. Poster session 1
- Author
-
J. Schlueter, T. Brand, D. J. Henderson, V. Boczonadi, P. Humbert, B. Chaudhry, D. Sedmera, J. Svatunkova, R. Kockova, B. Sankova, C. Lopez Sanchez, D. Franco, A. Aranega, V. Garcia-Martinez, E. Demina, V. Miroshikova, A. Denisenko, A. Schwarzman, F. Sanchez-Cabo, C. Torroja, A. Benguria, R. Buchan, P. Srivastava, F. Martinez, P. Barton, S. Cook, A. Dopazo, E. Lara-Pezzi, H. Rai, S. Kumar, A. K. Sharma, S. Mastana, A. Kapoor, C. M. Pandey, S. Agrawal, N. Sinha, J. Lipkova, M. Goldbergova, J. Parenica, J. Bienertova Vasku, A. Vasku, P. Kala, J. Spinar, L. Perez-Cabornero, D. Cantalapiedra, A. Forteza, R. Saez-Villaverde, J. Zumalde, V. Fernandez-Pedrosa, S. Zuniga-Trejos, M. Gil-Borja, M. Lazaro, S. Santillan, M. Costa, N. Cortez-Dias, P. Carrilho-Ferreira, D. Silva, C. Jorge, R. Placido, C. Calisto, M. Fiuza, A. Nunes Diogo, F. J. Enguita, H. H. W. Sillje, B. Lu, H. Yu, M. Zwartbol, W. P. Ruifrok, W. H. Van Gilst, R. A. De Boer, D. Zaliaduonyte-Peksiene, S. Simonyte, V. Lesauskaite, J. Vaskelyte, V. Mizariene, R. Zaliunas, W. Tigchelaar, E. Barlaka, A. Lazou, C. Del Giudice, E. Cipolletta, A. Anastasio, G. Santulli, M. Rusciano, A. S. Maione, P. Campiglia, M. Illario, B. Trimarco, G. Iaccarino, G. A. Frentzou, M. J. Drinkhill, N. A. Turner, S. G. Ball, J. F. X. Ainscough, L. Bertrand, F. Mailleux, J. Hammond, A. Ginion, L. Hue, J. L. Balligand, S. Horman, J. L. Vanoverschelde, C. Beauloye, B. Demeulder, S. L. Puhl, A. Mueller, Y. Devaux, D. R. Wagner, K. Roemer, M. Boehm, C. Maack, D. Miranda-Silva, I. Falcao-Pires, N. Goncalves, D. Moreira-Goncalves, A. F. Leite-Moreira, F. Mraiche, L. Fliegel, J. Xue, G. G. Haddad, L. C. Hsiao, C. Carr, Z. F. Cui, K. Clarke, M. A. D'amico, P. Izzicupo, A. Di Fonso, A. Bascelli, S. Gallina, A. Di Baldassarre, C. Silvestre, P. Fernandez, O. M. Pello, C. Indolfi, F. Civeira, R. Hutter, B. Ibanez, J. Chaves, J. Martinez-Gonzalez, V. Andres Garcia, A. Zabirnik, N. Smolina, A. Malashicheva, E. Omelchenko, T. Sejersen, A. Kostareva, C. Noack, M. P. Zafiriou, A. Renger, R. Dietz, H. J. Schaeffer, M. B. Bergmann, C. Zelarayan, S. Van Linthout, K. Miteva, M. P. Becher, M. Haag, J. Ringe, H.-P. schultheiss, M. Sittinger, C. Tschoepe, T. Kakuchaya, L. Bockeria, E. Golukhova, M. Eremeeva, N. Chigogidze, I. Aslanidi, I. Shurupova, A. Svobodov, A. A. Ramkisoensing, D. A. Pijnappels, J. Swildens, M. J. Goumans, M. J. Schalij, A. A. F. De Vries, D. E. Atsma, A. Gomes, G. M. Costa, C. A. Cordeiro, A. Matsuada, L. B. Rosario, A. P. Freire, M. Bousquenaud, M. Rolland-Turner, F. Maskali, L. Zhang, P. Y. Marie, F. Azuaje, A. J. Smith, G. M. Ellison, C. D. Waring, S. Purushothaman, D. Torella, B. Nadal-Ginard, M. H. Van Marion, D. W. J. Van Der Schaft, M.-J. Goumans, F. P. T. Baaijens, C. V. C. Bouten, N. Kraenkel, K. Kuschnerus, M. Mueller, T. Speer, S. Briand, M. Bader, P. Madeddu, T. F. Luescher, U. Landmesser, A. Papalamprou, C. Vicinanza, D. F. Goldspink, M. Noseda, S. J. Mcsweeney, T. Leja, E. Belian, I. Macaulay, F. Al-Beidh, S. Koenemann, M. S. Abreu Pavia, S. E. Jacobsen, M. D. Schneider, G. Foldes, Z. Bagyura, Z. Lendvai, D. Mathe, T. Nemeth, J. Skopal, I. Foldes, B. Merkely, S. E. Harding, A. J. Candasamy, R. S. Haworth, A. Boguslavsky, F. Cuello, M. J. Shattock, M. Mayr, M. Gautel, M. Avkiran, P. Leszek, B. Sochanowicz, M. Szperl, P. Kolsut, K. Brzoska, W. Piotrowski, T. Rywik, B. Danko, J. Rozanski, M. Kruszewski, N. Bouteldja, R. J. Woodman, C. L. Hewitson, E. Domingo, J. A. Barbara, A. A. Mangoni, R. Carnicer Hijazo, A. B. Hale, X. Liu, S. Suffredini, J. K. Bendall, G. B. S. Lim, N. J. Alp, K. M. Channon, B. Casadei, L. R. Moltzau, J. M. Aronsen, S. Meier, I. Sjaastad, T. Skomedal, J.-B. Osnes, F. O. Levy, E. Qvigstad, P. T. Wright, L. M. K. Pannell, A. R. Lyon, J. Gorelik, A. Guellich, S. F. Vatner, R. Fischmeister, B. Manoury, E. Dubois, J. Hamelet, A. Vanderper, P. Herijgers, D. Langin, F. Gartner, J. Gummert, H. Milting, G. Euler, M. Priess, J. Heger, T. Noll, R. Schulz, T. Doi, T. Akagami, T. Naka, T. Masuyama, M. Ohyanagi, M. Massaro, E. Scoditti, M. Pellegrino, M. A. Carluccio, C. Martines, C. Storelli, R. De Caterina, M. Falck-Hansen, M. E. Goddard, J. E. Cole, N. Astola, A. J. Cross, R. Krams, C. Monaco, M. F. Corsten, W. Verhesen, A. P. Papageorgiou, P. Carai, M. Lindow, S. Obad, G. Summer, L. De Rijck, S. Coort, M. Hazebroek, R. Van Leeuwen, M. Gijbels, M. P. J. De Winther, F. R. M. Stassen, S. Kauppinen, B. Schroen, S. Heymans, Z. Husti, V. Juhasz, L. Virag, A. Kristof, I. Koncz, T. Szel, I. Baczko, N. Jost, J. G. Y. Papp, A. Varro, A. Ghigo, A. Perino, F. Damilano, J. Leroy, V. O. Nikolaev, W. Richter, M. Conti, G. Vandecasteele, E. Hirsch, R. Ang, S. Sebastian, A. Ludwig, L. Birnbaumer, A. Tinker, E. A. Ertel, R. Sube, A. Opel, C. L-H Huang, A. Grace, N. Tribulova, J. Radosinska, B. Bacova, T. Benova, V. Knezl, J. Slezak, T. A. Matsuyama, T. Tanaka, T. Adachi, Y. Jiang, H. Ishibashi-Ueda, T. Takamatsu, J. Kornej, C. Reihardt, J. Kosiuk, A. Arya, G. Hindricks, V. Adams, D. Husser, A. Bollmann, S. Severi, M. Fantini, E. Ravagli, L. A. Charawi, D. Difrancesco, C. Poulet, L. Lu, U. R. Ravens, M. Hoch, T. Koenig, A. Gardiwal, B. Stapel, S. Erschow, A. Froese, B. Weinhold, R. Gerardy-Schahn, G. Klein, D. Hilfiker-Kleiner, K. Chinda, S. Palee, S. Surinkaew, M. Phornphutkul, S. Chattipakorn, N. Chattipakorn, B. Tuana, Z. Kohajda, A. A. Kristof, C. Corici, F. Fulop, N. L. Jost, V. Szuts, D. Menesi, G. L. Puskas, A. Zvara, N. Houshmand, J. G. Papp, N. Al-Shanti, M. Hancock, A. Venturini, C. Stewart, R. Ascione, G. Angelini, M.-S. Suleiman, A. Gonzalez-Tendero, I. Torre, F. Crispi, E. Gratacos, T. Tzanavari, E. Varela, A. Economides, S. Theocharis, C. Pantos, D. V. Cokkinos, A. Karalis, P. Hecker, V. Lionetti, W. C. Stanley, C. Ferrara, N. Piroddi, B. Scellini, C. Ferrantini, V. Sequiera, C. Remedios, L. Carrier, C. Tesi, J. Van Der Velden, C. Poggesi, V. Kooij, G. J. M. Stienen, D. Dooijes, s. Marston, C. Redwood, C. Dos Remedios, I. Diakonov, S. Tokar, M. Sikkel, S. Schlossarek, M. Sauer, A. Papageorgiou, S. Velthuis, E. Lutgens, M. Swinnen, N. Van Rooijen, J. Kzhyshkowska, P. Carmeliet, P. Garcia-Canadilla, F. Garcia-Garcia, I. Iruretagoiena, J. Dopazo, I. Amat-Roldan, M. H. Zhang, Y. H. Zhang, C. E. Sears, B. Wojtas, A. Llach, L. Hove-Madsen, V. Spinelli, L. Sartiani, M. Bucciantini, R. Coppini, E. Russo, A. Mugelli, E. Cerbai, M. Stefani, M. Ibrahim, P. Kukadia, M. Navaratnarajah, U. Siedlecka, C. Van Doorn, M. Yacoub, C. Terracciano, W. Song, N. Curtin, R. Woledge, S. Marston, M. Balteau, N. Tajeddine, G. Behets-Wydemans, C. Dessy, P. Gailly, W. J. Van Der Laarse, S. J. P. Bogaards, D. Van Groen, Y. Y. Wong, I. Schalij, A. Vonk Noordegraaf, F. M. Faz, B. Littlejohns, P. Pasdois, A. P. Halestrap, G. D. Angelini, S. Lemoine, V. Jaspard-Vinassa, F. Vigneron, P. Dos Santos, M. Popescu, A. Vlad, G. Isvoranu, L. Suciu, B. Marinescu, D. Dimulescu, L. Zagrean, P. W. M. Kleikers, K. Wingler, K. Radermacher, A. Sydykov, H. A. Ghofrani, N. Weissmann, H. H. W. Schmidt, A. Poddubnaya, K. E. M. Khurs, S. O. G. Smolenskaya, G. Szucs, Z. Murlasits, S. Torok, G. F. Kocsis, T. Csont, C. Csonka, P. Ferdinandy, R. Dongworth, D. M. Yellon, D. J. Hausenloy, Y. Y. Chen, W. S. Lian, C. F. Cheng, K. H. Khoo, T. C. Meng, G. Youcef, E. Belaidi, L. Fazal, M. P. Vinvent, D. De Paulis, G. Zadigue, C. Richer-Giudicelli, F. Alhenc-Gelas, M. Ovize, A. Pizard, R. Cal, J. Castellano, J. Farre, G. Vilahur, L. Badimon, V. Llorente-Cortes, H. Naz, M. Gharanei, C. Mee, H. Maddock, A. Hussain, O. Pisarenko, V. Shulzhenko, L. Serebryakova, I. Studneva, Y. Pelogeykina, D. Khatri, O. Tskitishvili, E. Barnucz, G. Veres, P. Hegedus, T. Radovits, S. Korkmaz, S. Klein, R. Zoller, M. Karck, G. Szabo, S. Morel, M. A. Frias, C. Rosker, R. W. James, S. Rohr, B. R. Kwak, V. Braunersreuther, B. Foglia, F. Mach, E. Shantsila, S. Montoro-Garcia, L. D. Tapp, S. Apostolakis, B. J. Wrigley, G. Y. H. Lip, E. Sokolowska, K. Przyborowski, K. Kramkowski, W. Buczko, A. Mogielnicki, U. Simonsen, E. R. Hedegaard, B. D. Nielsen, A. Kun, A. Hughes, C. Kroigaard, S. Mogensen, O. Frobert, K. Ait Aissa, J. P. Max, D. Wahl, T. Lecompte, P. Lacolley, V. Regnault, A. Novakovic, M. Pavlovic, A. Vranic, P. Milojevic, I. Stojanovic, M. Jovic, D. Nenezic, N. Ugresic, Q. Yang, G. W. He, L. Calvier, P. Reboul, B. Martin-Fernandez, V. Lahera, F. Zannad, V. Cachofeiro, P. Rossignol, N. Lopez-Andres, V. K. Pulakazhi Venu, R. Baetta, A. Bonomo, A. F. Muro, A. Corsini, A. L. Catapano, G. D. Norata, L. E. Viiri, L. E. Full, T. J. Navin, A. Didangelos, I. Seppala, T. Lehtimaki, A. H. Davies, R. Wait, D. Sedding, P. Stieger, C. Thoelen, S. Fischer, J. M. Daniel, R. Widmer-Teske, K. T. Preissner, N. Alenina, L. A. Rabelo, M. Todiras, V. N. Souza, J. M. Penninger, R. A. Santos, I. A. Leonova, S. A. Boldueva, V. S. Feoktistova, O. V. Sirotkina, M. G. Kolesnichenko, Z. Springo, P. Toth, P. Cseplo, G. Szijjarto, A. Koller, S. Puthenkalam, M. K. Frey, I. M. Lang, R. Madonna, H. Shelat, Y. J. Geng, T. Ziegler, V. Pfetsch, J. Horstkotte, C. Schwab, I. Rohwedde, R. Hinkel, Q. Di, S. Dietzel, U. Deutsch, C. Kupatt, I. Ernens, B. Lenoir, O. Fortunato, A. Caporali, E. Sangalli, D. Cordella, M. Marchetti, G. Spinetti, C. Emanueli, G. Arderiu, E. Pena, M. J. Forteza, V. Bodi, S. Novella, C. Alguero, I. Trapero, I. Benet, C. Hermenegildo, J. Sanchis, F. J. Chorro, A. Nemeth, S. Szabados, A. Cziraki, E. Sulyok, I. G. Horvath, M. Rauh, W. Rascher, I. Sikharulidze, I. B. Bakhlishvili, J. T. T. Laitinen, J. P. Hytonen, O. Leppanen, J. Taavitsainen, A. Partanen, P. Korpisalo, S. Yla-Herttuala, J. Lonn, J. Hallstrom, T. Bengtsson, M. C. Guisasola, E. Dulin, S. Stojkovic, C. Kaun, G. Maurer, K. Huber, J. Wojta, S. Demyanets, T. B. Opstad, A. Pettersen, S. Aakra, H. Arnesen, I. Seljeflot, M. Borrell-Pages, C. Romero, A. Toso, M. Leoncini, L. Tanini, T. Pizzetti, F. Tropeano, M. Maioli, P. Casprini, F. Bellandi, R. F. Antunes, J. C. Kaski, I. E. Dumitriu, E. Wu, A. A. L. Tareen, M. Udovychenko, I. Rudyk, K. Riches, L. Franklin, A. Maqbool, J. Bond, M. L. Koschinsky, D. J. O'regan, K. E. Porter, I. R. Parepa, A. I. Suceveanu, A. Suceveanu, L. Mazilu, L. Cojocaru, A. Rusali, L. A. Tuta, E. Craiu, D. Lindner, C. Zietsch, H.-P. Schultheiss, C. Tschope, D. Westermann, M. Miana, E. Martinez, R. Jurado, C. Delgado, N. Gomez-Hurtado, A. Briones, J. Young, T. J. Geng, A. Brodehl, T. Schmidt, O. Smolenskaya, C. Stegemann, D. Byzov, I. Mikhaylova, N. Chizh, E. Pushkova, O. Synchykova, B. Sandomirsky, O. Freylikhman, O. Rotar, N. Chromova, E. Moguchaya, V. Ivanenko, E. Kolesova, A. Erina, M. Boyarinova, A. Konradi, S. D. Preston, D. Baskaran, A. M. Plonczak, K. Norita, S. V. De Noronha, M. N. Sheppard, A. Haghikia, S. F. Hill, M. Hoepfner, B. Nitzsche, M. Schrader, F. Zengerling, B. Hoffmann, A. Pries, S. Gao, J. T. Laitinen, S. Laidinen, H. Markkanen, H. Karvinen, V. Marjomaki, I. Vajanto, T. T. Rissanen, K. Alitalo, P. Mello Ferrao, M. C. Waghabi, L. R. Garzoni, J. Ritterhoff, C. Weidenhammer, M. Voelkers, W. H. Zimmermann, J. Rabinowitz, P. Most, S. C. Gordts, I. Muthuramu, F. Jacobs, E. Van Craeyveld, E. Nefyodova, B. De Geest, D. R. Tribuddharat, D. R. Sathitkarnmanee, M. R. Buddhisa, M. S. Suwannasaen, D. R. Silarat, D. R. Ngamsangsirisup, D. R. Hawrylowicz, D. R. Lertmemongkolchai, S. Rain, M. L. Handoko, N. Westerhof, A. Vonk-Noordegraaf, F. S. De Man, A. S. Iakovleva, O. A. Mirolyubova, A. Berezin, T. A. Samura, Suwannasaen, Tippayawat, Ngamsangsirisup, D. R. Sutra, Hawrylowicz, Lertmemongkolchai, L. M. Lima, M. G. Carvalho, D. R. G. Junqueira, M. O. Sousa, A. Zampetaki, P. Willeit, L. Tilling, I. Drozdov, M. Prokopi, A. Shah, C. Boulanger, P. Chowienczyk, S. Kiechl, S. H. V. Oliveira, V. Kirillova, E. Prosviryakov, C. T. M. Van Der Pouw Kraan, F. J. P. Bernink, J. M. Baggen, L. Timmers, A. M. Beek, M. Diamant, A. C. Van Rossum, N. Van Royen, A. J. G. Horrevoets, J. E. A. Appelman, A. Zyatenkov, L. S. Kokov, Y. U. D. Volynskiy, M. Krestjyaninov, V. I. Ruzov, A. V. Villar, E. Martinez-Laorden, A. Almela, M. A. Hurle, M. L. Laorden, N. Apaijai, M. K. Mcmullen, J. M. Whitehouse, G. Shine, and A. Towell
- Subjects
Gerontology ,Physiology ,business.industry ,Physiology (medical) ,Cancer research ,Medicine ,SCRIB gene ,Cardiology and Cardiovascular Medicine ,business - Published
- 2012
6. Therapie des Diabetes mellitus Typ 2 und kardiovaskuläre Komplikationen
- Author
-
M. Tiburcy and W.-H. Zimmermann
- Subjects
Gynecology ,Chronic hyperglycaemia ,medicine.medical_specialty ,business.industry ,medicine ,Cardiology and Cardiovascular Medicine ,business - Abstract
Kardiovaskulare Komplikationen verkurzen das Leben von Typ-2-Diabetikern masgeblich. Die chronische Hyperglykamie ist nur ein Faktor, der zur Entstehung von makrovaskularen Komplikationen beitragt. Erhohte HbA1c-Werte weisen auf diesen Zustand hin. Unklar ist, inwieweit die therapeutische HbA1c-Senkung das kardiovaskulare Risiko verringert. Eine positive Evidenz in Bezug auf kardiovaskulare Endpunkte ist fur Lebensstilmodifikationen, Acarbose und Metformin zu erkennen. Insulinotrope Substanzen (Sulfonylharnstoffe, Glinide, Insulin) haben ein erhohtes Risiko fur Hypoglykamien und Gewichtszunahme, was moglicherweise die kardiovaskulare Morbiditat und Mortalitat negativ beeinflusst. Dies gilt besonders fur kardial vorbelastete Patienten. Bei den neueren Substanzen wie den Glitazonen gibt es positive Zeichen fur den Einsatz von Pioglitazon bei Patienten ohne Herzinsuffizienz. Fur die Inkretin-Therapeutika (Exenatid, Sitagliptin) liegen bisher keine Studien mit kardiovaskularen Endpunkten vor. Zusammenfassend legen die vorliegenden Studien und pathophysiologischen Uberlegungen den Schluss nahe, dass zur Verhinderung kardiovaskularer Komplikationen moglichst fruh, d. h. im pradiabetischen Stadium, therapiert werden sollte. Nichtinsulinotrope Substanzen fuhren in der Regel zu keinen Hypoglykamien und sind daher bei kardial vorbelasteten Patienten zu bevorzugen. Uber die Hyperglykamiebehandlung hinaus ist die Behandlung klassischer kardialer Risikofaktoren entscheidend.
- Published
- 2008
7. [Individualized stem cell therapy]
- Author
-
W-H, Zimmermann
- Subjects
Tissue Engineering ,Cardiovascular Diseases ,Guided Tissue Regeneration ,Humans ,Precision Medicine ,Patient Care Planning ,Stem Cell Transplantation - Abstract
Stem cells are attributed with having a great potential in regenerative medicine. Pluripotent stem cells are particularly interesting because they can be multiplied indefinitely and also differentiated under defined conditions. Currently, cardiomyocytes can be differentiated very effectively from pluripotent stem cells, making the former an attractive starting material for cardiac disease modeling in a culture dish (patient in a dish) and cell based-therapy in heart failure. The rapid biotechnological advances made in recent years now enable these concepts to be translated into clinical applications.
- Published
- 2014
8. Clinical considerations for cardiac tissue engineering
- Author
-
W.-H. Zimmermann
- Subjects
0303 health sciences ,medicine.medical_specialty ,Engineering ,Matrix composition ,Myocardial tissue ,business.industry ,030204 cardiovascular system & hematology ,Preclinical data ,Clinical trial ,03 medical and health sciences ,0302 clinical medicine ,Tissue engineering ,medicine ,Medical physics ,business ,030304 developmental biology ,Large animal ,Biomedical engineering - Abstract
Myocardial tissue engineering is advancing rapidly towards first-in-man studies. Given the advances in the field it is now indispensable to move the most promising strategies into large animal models and collect pivotal preclinical data to inform the regulators and those performing clinical trials how to conduct these first clinical trials. This chapter introduces the background and rationale for myocardial tissue engineering-based heart failure repair, followed by an overview of the most promising tissue engineering concepts for clinical translation and a discussion of cells and matrix composition of optimized human engineered heart muscle. Finally, arguments for large animal models to simulate clinical outcome are provided.
- Published
- 2014
9. [Heart tissue from embryonic stem cells]
- Author
-
W-H, Zimmermann
- Subjects
Embryo Research ,Treatment Outcome ,Tissue Engineering ,Myocardium ,Animals ,Humans ,Regeneration ,Cell Differentiation ,Animal Testing Alternatives ,Embryonic Stem Cells ,Cell Line - Abstract
Embryonic stem cells can give rise to all somatic cells, making them an attractive cell source for tissue engineering applications. The propensity of cells to form tissue-like structures in a culture dish has been well documented. We and others made use of this intrinsic property to generate bioartificial heart muscle. First proof-of-concept studies involved immature heart cells mainly from fetal chicken, neonatal rats and mice. They eventually provided evidence that force-generating heart muscle can be engineered in vitro. Recently, the focus shifted to the application of stem cells to eventually enable the generation of human heart muscle and reach following long-term goals: (1) development of a simplified in vitro model of heart muscle development; (2) generation of a human test-bed for drug screening and development; (3) allocation of surrogate heart tissue to myocardial repair applications. This overview will provide the background for cell-based myocardial repair, introduce the main myocardial tissue engineering concepts, discuss the use of embryonic and non-embryonic stem cells, and lays out the potential direct and indirect therapeutic use of human tissue engineered myocardium.
- Published
- 2008
10. Kardiales Tissue Engineering
- Author
-
W.-H. Zimmermann, T. Eschenhagen, and M. Weyand
- Subjects
Gynecology ,medicine.medical_specialty ,business.industry ,medicine ,business - Abstract
Patienten mit schweren linksventrikularen Funktionsstorungen haben trotz einer verbesserten Arzneimitteltherapie eine schlechte Prognose und sind haufing auf eine Herztransplantation angewiesen. Angesichts rucklaufiger Organspenden und einem gleichzeitig steigenden Organbedarf besteht eine dringende Notwendigkeit, neue Behandlungsstrategien zu entwickeln. Kunstliches, in vitro hergestelltes Herzgewebe (Tissue Engineering) konnte als Gewebeersatz eine neue Option zur Behandlung darstellen, wenn bestimmte Voraussetzungen erfullt sind. Dies sind v. a. Methoden zur Herstellung von ausreichend dicken Gewebekonstrukten mit optimierter kontraktiler Funktion, ihre Integration ins Empfangermyokard sowie die Verfugbarkeit von geeignetem und ausreichendem Zellmaterial.
- Published
- 2003
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.