46 results on '"Wéber, Zoltán"'
Search Results
2. Updated stress dataset of the Circum-Pannonian region: Implications for regional tectonics and geo-energy applications
- Author
-
Békési, Eszter, Porkoláb, Kristóf, Wesztergom, Viktor, and Wéber, Zoltán
- Published
- 2023
- Full Text
- View/download PDF
3. 3D P-wave velocity image beneath the Pannonian Basin using traveltime tomography
- Author
-
Timkó, Máté, Kovács, István, and Wéber, Zoltán
- Published
- 2019
- Full Text
- View/download PDF
4. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen
- Author
-
Hetényi, György, Molinari, Irene, Clinton, John, Bokelmann, Götz, Bondár, István, Crawford, Wayne C., Dessa, Jean-Xavier, Doubre, Cécile, Friederich, Wolfgang, Fuchs, Florian, Giardini, Domenico, Gráczer, Zoltán, Handy, Mark R., Herak, Marijan, Jia, Yan, Kissling, Edi, Kopp, Heidrun, Korn, Michael, Margheriti, Lucia, Meier, Thomas, Mucciarelli, Marco, Paul, Anne, Pesaresi, Damiano, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Ritter, Joachim, Rümpker, Georg, Šipka, Vesna, Spallarossa, Daniele, Thomas, Christine, Tilmann, Frederik, Wassermann, Joachim, Weber, Michael, Wéber, Zoltán, Wesztergom, Viktor, Živčić, Mladen, AlpArray Seismic Network Team, AlpArray OBS Cruise Crew, and AlpArray Working Group
- Published
- 2018
- Full Text
- View/download PDF
5. AlpArray in Hungary: temporary and permanent seismological networks in the transition zone between the Eastern Alps and the Pannonian basin
- Author
-
Gráczer, Zoltán, Szanyi, Gyöngyvér, Bondár, István, Czanik, Csenge, Czifra, Tibor, Győri, Erzsébet, Hetényi, György, Kovács, István, Molinari, Irene, Süle, Bálint, Szűcs, Eszter, Wesztergom, Viktor, Wéber, Zoltán, and AlpArray Working Group
- Published
- 2018
- Full Text
- View/download PDF
6. Magyarország szeizmotektonikai viszonyai és veszélyeztetettsége
- Author
-
Koroknai, Balázs, primary, Kovács, Gábor, additional, Wórum, Géza, additional, Békési, Eszter, additional, Győri, Erzsébet, additional, Czecze, Barbara, additional, Wéber, Zoltán, additional, Porkoláb, Kristóf, additional, Bozsó, István, additional, Szárnya, Csilla, additional, Szűcs, Eszter, additional, Németh, Viktor, additional, Balázs, László, additional, Szabó, Gergely, additional, and Tóth, Tamás, additional
- Published
- 2023
- Full Text
- View/download PDF
7. A Kárpát-Pannon régió szeizmicitása: aktualizált és átdolgozott földrengés-adatbázis
- Author
-
Czecze, Barbara, primary, Győri, Erzsébet, additional, Timkó, Máté, additional, Kiszely, Márta, additional, Süle, Bálint, additional, and Wéber, Zoltán, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Regionális feszültségmező és deformációs sebesség a Pannon-medence térségében: új adatrendszerek és térképek bemutatása
- Author
-
Porkoláb, Kristóf, primary, Békési, Eszter, additional, Broerse, Taco, additional, Kenyeres, Ambrus, additional, and Wéber, Zoltán, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Utilization of Geoheritage in Tourism Development
- Author
-
Bujdosó, Zoltán, Dávid, Lóránt, Wéber, Zoltán, and Tenk, András
- Published
- 2015
- Full Text
- View/download PDF
10. Source parameters for the 2013–2015 earthquake sequence in Nógrád county, Hungary
- Author
-
Wéber, Zoltán
- Published
- 2016
- Full Text
- View/download PDF
11. Some Improvement of the Shortest Path Ray Tracing Algorithm
- Author
-
Wéber, Zoltán, Nolet, G., editor, Diachok, O., editor, Caiti, A., editor, Gerstoft, P., editor, and Schmidt, H., editor
- Published
- 1995
- Full Text
- View/download PDF
12. Updated Stress Dataset of the Circum-Pannonian Region: Implications for Regional Tectonics and Geo-Energy Applications
- Author
-
Békési, Eszter, primary, Porkoláb, Kristóf, additional, Wesztergom, Viktor, additional, and Wéber, Zoltán, additional
- Published
- 2022
- Full Text
- View/download PDF
13. Crustal Thinning From Orogen to Back‐Arc Basin: The Structure of the Pannonian Basin Region Revealed by P ‐to‐ S Converted Seismic Waves
- Author
-
Kalmar, Daniel, Hetényi, György, Balazs, Attila, Bondar, Istvan, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bianchi, Irene, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Subjects
010504 meteorology & atmospheric sciences ,Thinning ,Pannonian basin ,15. Life on land ,Geodynamics ,010502 geochemistry & geophysics ,01 natural sciences ,Seismic wave ,Geophysics ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Back-arc basin ,Earth and Planetary Sciences (miscellaneous) ,Geology ,Seismology ,0105 earth and related environmental sciences - Abstract
We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts. ISSN:2169-9313 ISSN:0148-0227 ISSN:2169-9356
- Published
- 2021
- Full Text
- View/download PDF
14. Seismicity and seismotectonics of the Albstadt Shear Zone in the northern Alpine foreland
- Author
-
Mader, Sarah, Ritter, Joachim R. R., Reicherter, Klaus, Bokelmann, Götz, Hetényi, György, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Abstract
The region around the town Albstadt, SW Germany, was struck by four damaging earthquakes with magnitudes greater than 5 during the last century. These earthquakes occurred along the Albstadt Shear Zone (ASZ), which is characterized by more or less continuous microseismicity. As there are no visible surface ruptures that may be connected to the fault zone, we study its characteristics by its seismicity distribution and faulting pattern. We use the earthquake data of the state earthquake service of Baden-Württemberg from 2011 to 2018 and complement it with additional phase picks beginning in 2016 at the AlpArray and StressTransfer seismic networks in the vicinity of the ASZ. This extended data set is used to determine new minimum 1-D seismic vp and vs velocity models and corresponding station delay times for earthquake relocation. Fault plane solutions are determined for selected events, and the principal stress directions are derived. The minimum 1-D seismic velocity models have a simple and stable layering with increasing velocity with depth in the upper crust. The corresponding station delay times can be explained well by the lateral depth variation of the crystalline basement. The relocated events align about north–south with most of the seismic activity between the towns of Tübingen and Albstadt, east of the 9∘ E meridian. The events can be separated into several subclusters that indicate a segmentation of the ASZ. The majority of the 25 determined fault plane solutions feature an NNE–SSW strike but NNW–SSE-striking fault planes are also observed. The main fault plane associated with the ASZ dips steeply, and the rake indicates mainly sinistral strike-slip, but we also find minor components of normal and reverse faulting. The determined direction of the maximum horizontal stress of 140–149∘ is in good agreement with prior studies. Down to ca. 7–8 km depth SHmax is bigger than SV; below this depth, SV is the main stress component. The direction of SHmax indicates that the stress field in the area of the ASZ is mainly generated by the regional plate driving forces and the Alpine topography.
- Published
- 2021
- Full Text
- View/download PDF
15. Transversely isotropic lower crust of Variscan central Europe imaged by ambient noise tomography of the Bohemian Massif
- Author
-
Kvapil, J., Plomerova, J., Kampfova Exnerova, H., Babuska, V., Hetenyi, G., Abreu , Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Subjects
geography ,QE1-996.5 ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Subduction ,Pluton ,Stratigraphy ,Paleontology ,Soil Science ,Crust ,Geology ,Massif ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,QE640-699 ,Geophysics ,Shear (geology) ,Geochemistry and Petrology ,Lithosphere ,Passive seismic ,Petrology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
The recent development of ambient noise tomography, in combination with the increasing number of permanent seismic stations and dense networks of temporary stations operated during passive seismic experiments, provides a unique opportunity to build the first high-resolution 3-D shear wave velocity (vS) model of the entire crust of the Bohemian Massif (BM). This paper provides a regional-scale model of velocity distribution in the BM crust. The velocity model with a cell size of 22 km is built using a conventional two-step inversion approach from Rayleigh wave group velocity dispersion curves measured at more than 400 stations. The shear velocities within the upper crust of the BM are ∼0.2 km s−1 higher than those in its surroundings. The highest crustal velocities appear in its southern part, the Moldanubian unit. The Cadomian part of the region has a thinner crust, whereas the crust assembled, or tectonically transformed in the Variscan period, is thicker. The sharp Moho discontinuity preserves traces of its dynamic development expressed in remnants of Variscan subductions imprinted in bands of crustal thickening. A significant feature of the presented model is the velocity-drop interface (VDI) modelled in the lower part of the crust. We explain this feature by the anisotropic fabric of the lower crust, which is characterised as vertical transverse isotropy with the low velocity being the symmetry axis. The VDI is often interrupted around the boundaries of the crustal units, usually above locally increased velocities in the lowermost crust. Due to the north-west–south-east shortening of the crust and the late-Variscan strike-slip movements along the north-east–south-west oriented sutures preserved in the BM lithosphere, the anisotropic fabric of the lower crust was partly or fully erased along the boundaries of original microplates. These weakened zones accompanied by a velocity increase above the Moho (which indicate an emplacement of mantle rocks into the lower crust) can represent channels through which portions of subducted and later molten rocks have percolated upwards providing magma to subsequently form granitoid plutons.
- Published
- 2021
16. Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)
- Author
-
Süle, Bálint and Wéber, Zoltán
- Published
- 2013
- Full Text
- View/download PDF
17. High-Resolution Crustal S-wave Velocity Model and Moho Geometry Beneath the Southeastern Alps: New Insights From the SWATH-D Experiment
- Author
-
Sadeghi-Bagherabadi, Amir, Vuan, Alessandro, Aoudia, Abdelkrim, Parolai, Stefano, Hetényi, György, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Hein , Gerrit, Bianchi, Irene, Sadeghi-Bagherabadi, A, Vuan, A, Aoudia, A, and Parolai, S
- Subjects
Friuli plain ,external Dinaride ,010504 meteorology & atmospheric sciences ,Eastern Alps ,Outcrop ,external Dinarides ,Po plain ,Fault (geology) ,010502 geochemistry & geophysics ,01 natural sciences ,Eastern Alp ,ambient noise tomography ,Moho ,basement ,phase velocity ,Dispersion (water waves) ,lcsh:Science ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Crust ,Basement (geology) ,13. Climate action ,Surface wave ,Magmatism ,General Earth and Planetary Sciences ,lcsh:Q ,Phase velocity ,Geology ,Seismology - Abstract
We compiled a dataset of continuous recordings from the temporary and permanent seismic networks to compute the high-resolution 3D S-wave velocity model of the Southeastern Alps, the western part of the external Dinarides, and the Friuli and Venetian plains through ambient noise tomography. Part of the dataset is recorded by the SWATH-D temporary network and permanent networks in Italy, Austria, Slovenia and Croatia between October 2017 and July 2018. We computed 4050 vertical component cross-correlations to obtain the empirical Rayleigh wave Green’s functions. The dataset is complemented by adopting 1804 high-quality correlograms from other studies. The fast-marching method for 2D surface wave tomography is applied to the phase velocity dispersion curves in the 2–30 s period band. The resulting local dispersion curves are inverted for 1D S-wave velocity profiles using the non-perturbational and perturbational inversion methods. We assembled the 1D S-wave velocity profiles into a pseudo-3D S-wave velocity model from the surface down to 60 km depth. A range of iso-velocities, representing the crystalline basement depth and the crustal thickness, are determined. We found the average depth over the 2.8–3.0 and 4.1–4.3 km/s iso-velocity ranges to be reasonable representations of the crystalline basement and Moho depths, respectively. The basement depth map shows that the shallower crystalline basement beneath the Schio-Vicenza fault highlights the boundary between the deeper Venetian and Friuli plains to the east and the Po-plain to the west. The estimated Moho depth map displays a thickened crust along the boundary between the Friuli plain and the external Dinarides. It also reveals a N-S narrow corridor of crustal thinning to the east of the junction of Giudicarie and Periadriatic lines, which was not reported by other seismic imaging studies. This corridor of shallower Moho is located beneath the surface outcrop of the Permian magmatic rocks and seems to be connected to the continuation of the Permian magmatism to the deep-seated crust. We compared the shallow crustal velocities and the hypocentral location of the earthquakes in the Southern foothills of the Alps. It revealed that the seismicity mainly occurs in the S-wave velocity range between ∼3.1 and ∼3.6 km/s.
- Published
- 2021
- Full Text
- View/download PDF
18. Evidence for radial anisotropy in the lower crust of the Apennines from Bayesian ambient noise tomography in Europe
- Author
-
Alder, C., Debayle, E., Bodin, T., Paul, A., Stehly, L., Pedersen, H., Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Abreu, Rafael, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Hein, Gerrit, Bianchi, Irene, Bokelmann, Götz, Hetényi, György, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), ANR-15-CE31-0015,AlpArray-FR,Voir et comprendre les Alpes en 3D, de la croûte au manteau(2015), Université de Lyon, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
Seismic anisotropy ,010504 meteorology & atmospheric sciences ,Seismic noise ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Bayesian probability ,Ambient noise level ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Physics::Geophysics ,Geochemistry and Petrology ,Anisotropy ,0105 earth and related environmental sciences ,Seismic tomography ,Crust ,Europe ,Geophysics ,13. Climate action ,Tomography ,Astrophysics::Earth and Planetary Astrophysics ,Surface waves and free oscillations ,Seismology ,Geology - Abstract
SUMMARYProbing seismic anisotropy of the lithosphere provides valuable clues on the fabric of rocks. We present a 3-D probabilistic model of shear wave velocity and radial anisotropy of the crust and uppermost mantle of Europe, focusing on the mountain belts of the Alps and Apennines. The model is built from Love and Rayleigh dispersion curves in the period range 5–149 s. Data are extracted from seismic ambient noise recorded at 1521 broad-band stations, including the AlpArray network. The dispersion curves are first combined in a linearized least squares inversion to obtain 2-D maps of group velocity at each period. Love and Rayleigh maps are then jointly inverted at depth for shear wave velocity and radial anisotropy using a Bayesian Monte Carlo scheme that accounts for the trade-off between radial anisotropy and horizontal layering. The isotropic part of our model is consistent with previous studies. However, our anisotropy maps differ from previous large scale studies that suggested the presence of significant radial anisotropy everywhere in the European crust and shallow upper mantle. We observe instead that radial anisotropy is mostly localized beneath the Apennines while most of the remaining European crust and shallow upper mantle is isotropic. We attribute this difference to trade-offs between radial anisotropy and thin (hectometric) layering in previous studies based on least-squares inversions and long period data (>30 s). In contrast, our approach involves a massive data set of short period measurements and a Bayesian inversion that accounts for thin layering. The positive radial anisotropy (VSH > VSV) observed in the lower crust of the Apennines cannot result from thin layering. We rather attribute it to ductile horizontal flow in response to the recent and present-day extension in the region.
- Published
- 2021
- Full Text
- View/download PDF
19. Shear wave splitting in the Alpine region
- Author
-
Hein, Gerrit, Kolínský, Petr, Bianchi, Irene, Bokelmann, Götz, Hetényi, György, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Subjects
Europe ,Body waves ,Geophysics ,Dynamics of lithosphere and mantle ,010504 meteorology & atmospheric sciences ,Geochemistry and Petrology ,Shear wave splitting ,Geometry ,Seismic anisotropy ,010502 geochemistry & geophysics ,01 natural sciences ,Geology ,0105 earth and related environmental sciences - Abstract
SUMMARYTo constrain seismic anisotropy under and around the Alps in Europe, we study SKS shear wave splitting from the region densely covered by the AlpArray seismic network. We apply a technique based on measuring the splitting intensity, constraining well both the fast orientation and the splitting delay. Four years of teleseismic earthquake data were processed, from 723 temporary and permanent broad-band stations of the AlpArray deployment including ocean-bottom seismometers, providing a spatial coverage that is unprecedented. The technique is applied automatically (without human intervention), and it thus provides a reproducible image of anisotropic structure in and around the Alpine region. As in earlier studies, we observe a coherent rotation of fast axes in the western part of the Alpine chain, and a region of homogeneous fast orientation in the Central Alps. The spatial variation of splitting delay times is particularly interesting though. On one hand, there is a clear positive correlation with Alpine topography, suggesting that part of the seismic anisotropy (deformation) is caused by the Alpine orogeny. On the other hand, anisotropic strength around the mountain chain shows a distinct contrast between the Western and Eastern Alps. This difference is best explained by the more active mantle flow around the Western Alps. The new observational constraints, especially the splitting delay, provide new information on Alpine geodynamics.
- Published
- 2021
- Full Text
- View/download PDF
20. Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion
- Author
-
Jozi Najafabadi, A., Haberland, Christian, Ryberg, Trond, Verwater, V. F., Le Breton, E., Handy, M. R., Weber, Michael, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Abreu, Rafael, Allegretti, Ivo, Al-Halbouni, Djamil, Jozi Najafabadi, A., Haberland, Christian, Ryberg, Trond, Verwater, V. F., Le Breton, E., Handy, M. R., Weber, Michael, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Abreu, Rafael, Allegretti, Ivo, and Al-Halbouni, Djamil
- Abstract
In this study, we analyzed a large seismological dataset from temporary and permanent networks in the southern and eastern Alps to establish high-precision hypocenters and 1-D VP and VP/VS models. The waveform data of a subset of local earthquakes with magnitudes in the range of 1–4.2 ML were recorded by the dense, temporary SWATH-D network and selected stations of the AlpArray network between September 2017 and the end of 2018. The first arrival times of P and S waves of earthquakes are determined by a semi-automatic procedure. We applied a Markov chain Monte Carlo inversion method to simultaneously calculate robust hypocenters, a 1-D velocity model, and station corrections without prior assumptions, such as initial velocity models or earthquake locations. A further advantage of this method is the derivation of the model parameter uncertainties and noise levels of the data. The precision estimates of the localization procedure is checked by inverting a synthetic travel time dataset from a complex 3-D velocity model and by using the real stations and earthquakes geometry. The location accuracy is further investigated by a quarry blast test. The average uncertainties of the locations of the earthquakes are below 500 m in their epicenter and ∼ 1.7 km in depth. The earthquake distribution reveals seismicity in the upper crust (0–20 km), which is characterized by pronounced clusters along the Alpine frontal thrust, e.g., the Friuli-Venetia (FV) region, the Giudicarie–Lessini (GL) and Schio-Vicenza domains, the Austroalpine nappes, and the Inntal area. Some seismicity also occurs along the Periadriatic Fault. The general pattern of seismicity reflects head-on convergence of the Adriatic indenter with the Alpine orogenic crust. The seismicity in the FV and GL regions is deeper than the modeled frontal thrusts, which we interpret as indication for southward propagation of the southern Alpine deformation front (blind thrusts).
- Published
- 2021
- Full Text
- View/download PDF
21. Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion
- Author
-
Belinic, Tena, Kolínský, Petr, Stipčević, Josip, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bianchi, Irene, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Belinic, Tena, Kolínský, Petr, Stipčević, Josip, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bianchi, Irene, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Abstract
Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinar
- Published
- 2021
- Full Text
- View/download PDF
22. Relocation of earthquakes in the Southern and Eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH–D network using a Markov chain Monte Carlo inversion
- Author
-
Jozi Najafabadi, A., Haberland, Christian, Ryberg, Trond, Verwater, V. F., Le Breton, E., Handy, M. R., Weber, Michael, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kolínský, Petr, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Stipčević, Josip, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, Žlebčíková, Helena, Abreu, Rafael, Allegretti, Ivo, and Al-Halbouni, Djamil
- Subjects
010504 meteorology & atmospheric sciences ,Stratigraphy ,Inversion (geology) ,Soil Science ,Inverse transform sampling ,Fault (geology) ,Induced seismicity ,010502 geochemistry & geophysics ,01 natural sciences ,relocation ,Nappe ,symbols.namesake ,Geochemistry and Petrology ,500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften ,earthquakes ,0105 earth and related environmental sciences ,Earth-Surface Processes ,QE1-996.5 ,geography ,geography.geographical_feature_category ,Alps ,Paleontology ,Geology ,Crust ,Markov chain Monte Carlo ,QE640-699 ,Geophysics ,Epicenter ,symbols ,Seismology - Abstract
In this study, we analyzed a large seismological dataset from temporary and permanent networks in the southern and eastern Alps to establish high-precision hypocenters and 1-D VP and VP/VS models. The waveform data of a subset of local earthquakes with magnitudes in the range of 1–4.2 ML were recorded by the dense, temporary SWATH-D network and selected stations of the AlpArray network between September 2017 and the end of 2018. The first arrival times of P and S waves of earthquakes are determined by a semi-automatic procedure. We applied a Markov chain Monte Carlo inversion method to simultaneously calculate robust hypocenters, a 1-D velocity model, and station corrections without prior assumptions, such as initial velocity models or earthquake locations. A further advantage of this method is the derivation of the model parameter uncertainties and noise levels of the data. The precision estimates of the localization procedure is checked by inverting a synthetic travel time dataset from a complex 3-D velocity model and by using the real stations and earthquakes geometry. The location accuracy is further investigated by a quarry blast test. The average uncertainties of the locations of the earthquakes are below 500 m in their epicenter and ∼ 1.7 km in depth. The earthquake distribution reveals seismicity in the upper crust (0–20 km), which is characterized by pronounced clusters along the Alpine frontal thrust, e.g., the Friuli-Venetia (FV) region, the Giudicarie–Lessini (GL) and Schio-Vicenza domains, the Austroalpine nappes, and the Inntal area. Some seismicity also occurs along the Periadriatic Fault. The general pattern of seismicity reflects head-on convergence of the Adriatic indenter with the Alpine orogenic crust. The seismicity in the FV and GL regions is deeper than the modeled frontal thrusts, which we interpret as indication for southward propagation of the southern Alpine deformation front (blind thrusts).
- Published
- 2020
23. Így figyeljük hazánk földjének minden rezdülését. A Csillagászati és Földtudományi Kutatóközpont Geodéziai és Geofizikai Intézet Kövesligethy Radó Szeizmológiai Obszervatórium fejlődése és küldetése 2013-tól napjainkig
- Author
-
Süle, Bálint, primary, Bondár, István, additional, Czanik, Csenge, additional, Gráczer, Zoltán, additional, Győri, Erzsébet, additional, Szanyi, Gyöngyvér, additional, Wéber, Zoltán, additional, and Kovács, István János, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Comprehensive analysis of the March 7, 2019 Somogyszob, Hungary earthquake cluster
- Author
-
Wéber, Zoltán, primary, Czecze, Barbara, additional, Gráczer, Zoltán, additional, Süle, Bálint, additional, Szanyi, Gyöngyvér, additional, Bondár, István, additional, and Working Group, the AlpArray, additional
- Published
- 2020
- Full Text
- View/download PDF
25. Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion
- Author
-
Belinic, Tena, Kolínský, Petr, Stipčević, Josip, Abreu, Rafael, Allegretti, Ivo, Apoloner, Maria-Theresia, Aubert, Coralie, Besançon, Simon, Bés de Berc, Maxime, Bianchi, Irene, Bokelmann, Götz, Brunel, Didier, Capello, Marco, Čarman, Martina, Cavaliere, Adriano, Chéze, Jérôme, Chiarabba, Claudio, Clinton, John, Cougoulat, Glenn, C. Crawford, Wayne, Cristiano, Luigia, Czifra, Tibor, D’Alema, Ezio, Danesi, Stefania, Daniel, Romuald, Dannowski, Anke, Dasović, Iva, Deschamps, Anne, Dessa, Jean-Xavier, Doubre, Cécile, Egdorf, Sven, Fiket, Tomislav, Fischer, Kasper, Friederich, Wolfgang, Fuchs, Florian, Funke, Sigward, Giardini, Domenico, Govoni, Aladino, Gráczer, Zoltán, Gröschl, Gidera, Heimers, Stefan, Heit, Ben, Herak, Davorka, Herak, Marijan, Huber, Johann, Jarić, Dejan, Jedlička, Petr, Jia, Yan, Jund, Hélène, Kissling, Edi, Klingen, Stefan, Klotz, Bernhard, Kopp, Heidrun, Korn, Michael, Kotek, Josef, Kühne, Lothar, Kuk, Krešo, Lange, Dietrich, Loos, Jürgen, Lovati, Sara, Malengros, Deny, Margheriti, Lucia, Maron, Christophe, Martin, Xavier, Massa, Marco, Mazzarini, Francesco, Meier, Thomas, Métral, Laurent, Molinari, Irene, Moretti, Milena, Nardi, Anna, Pahor, Jurij, Paul, Anne, Péquegnat, Catherine, Petersen, Daniel, Pesaresi, Damiano, Piccinini, Davide, Piromallo, Claudia, Plenefisch, Thomas, Plomerová, Jaroslava, Pondrelli, Silvia, Prevolnik, Snježan, Racine, Roman, Régnier, Marc, Reiss, Miriam, Ritter, Joachim, Rümpker, Georg, Salimbeni, Simone, Santulin, Marco, Scherer, Werner, Schippkus, Sven, Schulte-Kortnack, Detlef, Šipka, Vesna, Solarino, Stefano, Spallarossa, Daniele, Spieker, Kathrin, Strollo, Angelo, Süle, Bálint, Szanyi, Gyöngyvér, Szűcs, Eszter, Thomas, Christine, Thorwart, Martin, Tilmann, Frederik, Ueding, Stefan, Vallocchia, Massimiliano, Vecsey, Luděk, Voigt, René, Wassermann, Joachim, Wéber, Zoltán, Weidle, Christian, Wesztergom, Viktor, Weyland, Gauthier, Wiemer, Stefan, Wolf, Felix Noah, Wolyniec, David, Zieke, Thomas, Živčić, Mladen, and Žlebčíková, Helena
- Subjects
010504 meteorology & atmospheric sciences ,Geodynamics ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,symbols.namesake ,Tectonics ,Geophysics ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Lithosphere ,Earth and Planetary Sciences (miscellaneous) ,symbols ,Slab ,Lithoshpere-asthenosphere boundary, Surface waves, Dinarides ,14. Life underwater ,Low-velocity zone ,Phase velocity ,Rayleigh wave ,surface waves ,Dinarides ,collision ,lithosphere ,Geology ,Seismology ,0105 earth and related environmental sciences - Abstract
Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides.
- Published
- 2019
26. Some Improvement of the Shortest Path Ray Tracing Algorithm
- Author
-
Wéber, Zoltán, primary
- Published
- 1995
- Full Text
- View/download PDF
27. Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization
- Author
-
Molinari, Irene, Clinton, John Francis, Kissling, Eduard, Hetényi, György, Giardini, Domenico, Stipčević, Josip, Dasović, Iva, Herak, Marijan, Šipka, Vesna, Wéber, Zoltán, Gráczer, Zoltán, Solarino, Stefano, The Swiss-AlpArray Field Team, and The AlpArray Working Group
- Abstract
AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe. ISSN:1680-7340 ISSN:1680-7359
- Published
- 2018
28. Imaging P n velocities beneath the Pannonian basin
- Author
-
Wéber, Zoltán
- Published
- 2002
- Full Text
- View/download PDF
29. Seismic traveltime tomography: a simulated annealing approach
- Author
-
Wéber, Zoltán
- Published
- 2000
- Full Text
- View/download PDF
30. Source analysis of the March 7, 2019 ML=4.0 Somogyszob, Hungary earthquake sequence.
- Author
-
Wéber, Zoltán, Czecze, Barbara, Süle, Bálint, and Bondár, István
- Subjects
- *
EARTHQUAKE aftershocks , *EARTHQUAKES , *ALGORITHMS , *SEISMIC event location , *SEISMOMETERS - Abstract
Between February 16 and April 5, 2019, a series of earthquakes took place around the village of Somogyszob, Somogy county, Hungary. The mainshock occurred on March 7 with a local magnitude M L = 4.0 and epicentral intensity of 5 on the EMS scale. The main event was preceded by four foreshocks and followed by four aftershocks. The largest foreshock ( M L = 2.6 ) was also felt with maximum intensity of 4 EMS. This earthquake sequence is the first remarkable one in the region that was recorded by a significant number of high-quality broadband digital seismographs. We have estimated the hypocenters of the 9 earthquakes using the hypoDD multiple-event location algorithm. The events occurred in a tight region around the mainshock at around 13–14 km depth. For the main event, we obtained an average moment magnitude of M w = 3.75 , source radii of r P = 509 m and r S = 400 m, and static stress drops of Δ σ P = 1.19 × 10 6 Pa and Δ σ S = 4.00 × 10 6 Pa from the analysis of displacement P- and S-wave spectra, respectively. The resulting spectral source parameters for the investigated events agree well with the results of earlier research. We have also shown that our recently developed probabilistic waveform inversion techniques applied in this study are suitable to retrieve the source mechanism for weak local earthquakes. We have successfully estimated the focal mechanism for the mainshock, a foreshock and an aftershock. Each earthquake was a thrust faulting event with a sub-horizontal P-axis pointing towards N-NE, coinciding with the general trend of the compressional stress field in the epicentral region. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
31. Probabilistic joint inversion of waveforms and polarity data for double-couple focal mechanisms of local earthquakes
- Author
-
Wéber, Zoltán, primary
- Published
- 2018
- Full Text
- View/download PDF
32. Source analysis of the March 7, 2019 ML=4.0Somogyszob, Hungary earthquake sequence
- Author
-
Wéber, Zoltán, Czecze, Barbara, Süle, Bálint, and Bondár, István
- Abstract
Between February 16 and April 5, 2019, a series of earthquakes took place around the village of Somogyszob, Somogy county, Hungary. The mainshock occurred on March 7 with a local magnitude ML=4.0and epicentral intensity of 5 on the EMS scale. The main event was preceded by four foreshocks and followed by four aftershocks. The largest foreshock (ML=2.6) was also felt with maximum intensity of 4 EMS. This earthquake sequence is the first remarkable one in the region that was recorded by a significant number of high-quality broadband digital seismographs. We have estimated the hypocenters of the 9 earthquakes using the hypoDD multiple-event location algorithm. The events occurred in a tight region around the mainshock at around 13–14 km depth. For the main event, we obtained an average moment magnitude of Mw=3.75, source radii of rP=509m and rS=400m, and static stress drops of ΔσP=1.19×106Pa and ΔσS=4.00×106Pa from the analysis of displacement P- and S-wave spectra, respectively. The resulting spectral source parameters for the investigated events agree well with the results of earlier research. We have also shown that our recently developed probabilistic waveform inversion techniques applied in this study are suitable to retrieve the source mechanism for weak local earthquakes. We have successfully estimated the focal mechanism for the mainshock, a foreshock and an aftershock. Each earthquake was a thrust faulting event with a sub-horizontal P-axis pointing towards N-NE, coinciding with the general trend of the compressional stress field in the epicentral region.
- Published
- 2020
- Full Text
- View/download PDF
33. Probabilistic waveform inversion for 22 earthquake moment tensors in Hungary: new constraints on the tectonic stress pattern inside the Pannonian basin
- Author
-
Wéber, Zoltán, primary
- Published
- 2015
- Full Text
- View/download PDF
34. Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization.
- Author
-
Molinari, Irene, Clinton, John, Kissling, Edi, Hetényi, György, Giardini, Domenico, Stipčević, Josip, Dasović, Iva, Herak, Marijan, Šipka, Vesna, Wéber, Zoltán, Gráczer, Zoltán, Solarino, Stefano, and Tilmann, F. J.
- Subjects
SEISMOLOGICAL research ,SEISMOLOGICAL stations ,DATA analysis ,DATA quality ,BROADBAND communication systems - Abstract
AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120 s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
35. Probabilistic waveform inversion for 22 earthquake moment tensors in Hungary: new constraints on the tectonic stress pattern inside the Pannonian basin.
- Author
-
Wéber, Zoltán
- Subjects
- *
SEISMOLOGICAL research , *EARTHQUAKES , *STRUCTURAL geology , *SEISMOGRAMS , *GEOPHYSICS research - Abstract
We have successfully estimated the full moment tensors of 22 local earthquakes with local magnitude ranging from 1.2 to 4.8 that occurred in the Hungarian part of the Pannonian basin between 1995 and 2014. We used a probabilistic waveform inversion procedure that takes into account the effects of the random noise contained in the seismograms, the uncertainty of the hypocentre determined from arrival times and the inaccurate knowledge of the velocity structure, while estimating the error affecting the derived focal parameters. The applied probabilistic approach maps the posterior probability density functions (PPDFs) for both the hypocentral coordinates and the moment tensor components. The final estimates are given by the maximum likelihood points of the PPDFs, while solution uncertainties are presented by histogram plots. The estimated uncertainties in the moment tensor components are plotted on the focal sphere in such a way, that the significance of the double couple (DC), the compensated linear vector dipole (CLVD) and the isotropic (ISO) parts of the source can be assessed. We have shown that the applied waveform inversion method is equally suitable to recover the source mechanism for low-magnitude events using short-period local waveforms as well as for moderate-size earthquakes using long-period seismograms. The non-DC components of the retrieved focal mechanisms are statistically insignificant for all the analysed earthquakes. The negligible amount of the ISO component implies the tectonic nature of the investigated events. The moment tensor solutions reported by other agencies for five of the ML > 4 earthquakes studied in this paper are very similar to those calculated by the applied waveform inversion algorithm. We have found only strike-slip and thrust faulting events, giving further support to the hypothesis that the Pannonian basin is currently experiencing a compressional regime of deformation. The orientations of the obtained focal mechanisms are in good agreement with the main stress pattern published for the Pannonian region. The azimuth of the subhorizontal P principal axis varies from about NNE-SSW in SW Hungary through NE-SW well inside the basin to around E-W in the NE part of the country. Most of the analysed earthquakes occurred on faults or subfaults differently oriented than the main fault system. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
36. Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)
- Author
-
Süle, Bálint, primary and Wéber, Zoltán, additional
- Published
- 2012
- Full Text
- View/download PDF
37. Estimating source time function and moment tensor from moment tensor rate functions by constrainedL1norm minimization
- Author
-
Wéber, Zoltán, primary
- Published
- 2009
- Full Text
- View/download PDF
38. Probabilistic local waveform inversion for moment tensor and hypocentral location
- Author
-
Wéber, Zoltán, primary
- Published
- 2006
- Full Text
- View/download PDF
39. Imaging Pn velocities beneath the Pannonian basin
- Author
-
Wéber, Zoltán, primary
- Published
- 2002
- Full Text
- View/download PDF
40. Optimizing model parameterization in 2D linearized seismic traveltime tomography
- Author
-
Wéber, Zoltán, primary
- Published
- 2001
- Full Text
- View/download PDF
41. Estimating source time function and moment tensor from moment tensor rate functions by constrained L1 norm minimization.
- Author
-
Wéber, Zoltán
- Subjects
- *
EARTHQUAKES , *CATHODE ray oscillographs , *OSCILLOGRAPHS , *MONTE Carlo method , *INVERSION (Geophysics) , *EARTH movements - Abstract
Linear inversion of three-component waveform data for the time-varying moment tensor rate functions (MTRFs) is a powerful method for studying seismic sources. After finding the MTRFs, however, we should try to represent an earthquake by just one moment tensor and one source time function (STF), if possible. This approach is particularly justified when dealing with weak local events. Unfortunately, extraction of a moment tensor and STF from the MTRFs is essentially a non-linear inverse problem. In this paper, we introduce an iterative norm minimization technique to retrieve the best moment tensor and STF from the MTRFs obtained by waveform inversion. To allow only forward slip during the rupture process, we impose a positivity constraint on the STF. The error analysis, carried out by using Monte Carlo simulation, allows us to estimate and display the uncertainties of the retrieved source parameters. On the basis of the resulting moment tensor uncertainties, the statistical significance of the double-couple, compensated linear vector dipole and volumetric parts of the solution can be readily assessed. Tests on synthetic data indicate that the proposed algorithm gives good results for both simple and complex sources. Confidence zones for the retrieved STFs are usually fairly large. The mechanisms, on the other hand, are mostly well resolved. The scalar seismic moments are also determined with acceptable accuracy. If the MTRFs cannot resolve the complex nature of a source, the method yields the average source mechanism. If the subevents are well separated in time, their mechanisms can be estimated by appropriately splitting the MTRFs into subintervals. The method has also been applied to two local earthquakes that occurred in Hungary. The isotropic component of the moment tensor solutions is insignificant, implying the tectonic nature of the investigated events. The principal axes of the source mechanisms agree well with the main stress pattern published for the epicentral region. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
42. Imaging Pn velocities beneath the Pannonian basin
- Author
-
Wéber, Zoltán
- Subjects
- *
SEISMIC tomography , *MOHOROVICIC discontinuity , *EARTH'S mantle - Abstract
The Pannonian depression is an extensional back-arc basin in central Europe and is an integral part of the Alpine–Carpathian orogenic mountain belts. It can be characterized by thinned lower crust, shallow Moho discontinuity, high surface heat flow and Moho temperature, implying recent active tectonic processes. Imaging the velocity structure of the upper mantle may help us to better understand the structure and formation of the Pannonian region.In this paper, Pn traveltimes from regional earthquakes are used to tomographically image the lateral velocity variations in the uppermost mantle beneath the Pannonian basin. The set of linear tomographic equations, built up of the time term equation for each source–receiver pair, is solved by a truncated singular value decomposition algorithm. The explicit computation of the generalized inverse of the tomographic equations makes it possible to deduce both the resolution matrix and the model covariance matrix, allowing us to estimate the resolution and reliability of the solution.The mean compressional wave velocity in the uppermost mantle beneath the Pannonian basin is 7.9 km/s, substantially lower than the average continental Pn velocity of 8.1 km/s. It is mostly due to the high Moho temperature having values on average 400–500 °C more than those in the surrounding areas. The velocity anomalies range from −0.3 to 0.3 km/s relative to the mean velocity of 7.9 km/s. Due to high Moho temperature, below the North Hungarian range low (7.6–7.7 km/s) velocities can be found. High-velocity anomalies of around 8.1 km/s can be detected along the W-SW boundaries of Hungary and at the junction of the Pannonian basin and the Southern Carpathians. The Great Hungarian Plain shows average (7.9 km/s) Pn velocities. [Copyright &y& Elsevier]
- Published
- 2002
43. The Pannon LitH2Oscope project: a large scale interdisciplinary endaevour in the Pannonian Basin to test the 'pargasosphere' concept.
- Author
-
Kovács, István, Szanyi, Gyöngyvér, Gráczer, Zoltán, Wéber, Zoltán, Süle, Bálint, Timkó, Máté, Czifra, Tibor, Liptai, Nóra, Berkesi, Márta, Lange, Thomas, Novák, Attila, Molnár, Csaba, Szűcs, Eszter, Szabó, Csaba, and Wesztergom, Viktor
- Published
- 2019
44. Swiss-AlpArray temporary broadband seismic stations deployment and noise characterization
- Author
-
Molinari, Irene, Clinton, John Francis, Kissling, Eduard, Hetényi, György, Giardini, Domenico, Stipčević, Josip, Dasović, Iva, Herak, Marijan, Šipka, Vesna, Wéber, Zoltán, Gráczer, Zoltán, Solarino, Stefano, The Swiss-AlpArray Field Team, and The AlpArray Working Group
- Subjects
7. Clean energy - Abstract
AlpArray is a large collaborative seismological project in Europe that includes more than 50 research institutes and seismological observatories. At the heart of the project is the collection of top-quality seismological data from a dense network of broadband temporary seismic stations, in compliment to the existing permanent networks, that ensures a homogeneous station coverage of the greater Alpine region. This Alp Array Seismic Network (AASN) began operation in January 2016 and will have a duration of at least 2 years. In this work we report the Swiss contribution to the AASN, we concentrate on the site selection process, our methods for stations installation, data quality and data management. We deployed 27 temporary broadband stations equipped with STS-2 and Trillium Compact 120s sensors. The deployment and maintenance of the temporary stations across 5 countries is managed by ETH Zurich and it is the result of a fruitful collaboration between five institutes in Europe., Advances in Geosciences, 43, ISSN:1680-7340, ISSN:1680-7359
45. Lithosphere structure of the Pannonian Basin using seismic traveltime tomography.
- Author
-
Timkó, Máté and Wéber, Zoltán
- Subjects
- *
SEISMIC tomography , *LITHOSPHERE - Published
- 2018
46. The role of 'water' and pargasite in the formation of the LAB beneath the Pannonian Basin.
- Author
-
Kovács, István, Lenkey, László, Green, David, Fancsik, Tamás, Falus, György, Kiss, János, Orosz, László, Vikor, Zsuzsanna, Angyal, Jolán, Szanyi, Gyöngyvér, Gráczer, Zoltán, Novák, Attila, Wéber, Zoltán, Süle, Bálint, Szucs, Eszter, Wesztergom, Viktor, Berkesi, Márta, and Szabó, Csaba
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.