1. Invariant NKT cell-augmented GM-CSF-secreting tumor vaccine is effective in advanced prostate cancer model.
- Author
-
Varghese B, Lynch L, Vriend LE, Draganov D, Clark JM, Kissick HT, Varghese S, Sanda MG, Dranoff G, Arredouani MS, Balk SP, and Exley MA
- Subjects
- Male, Mice, Animals, Humans, Granulocyte-Macrophage Colony-Stimulating Factor metabolism, Lymphocyte Activation, Galactosylceramides, Interleukin-12 pharmacology, Vaccines, Combined pharmacology, Antigens, Viral, Tumor, EGF Family of Proteins metabolism, EGF Family of Proteins pharmacology, Oligopeptides pharmacology, Mice, Inbred C57BL, Natural Killer T-Cells, Cancer Vaccines, Prostatic Neoplasms therapy, Prostatic Neoplasms metabolism
- Abstract
Invariant natural killer T cells (iNKT cells) express a semi-invariant T cell receptor that recognizes certain glycolipids (including α-galactosylceramide, αGC) bound to CD1d, and can induce potent antitumor responses. Here, we assessed whether αGC could enhance the efficacy of a GM-CSF-producing tumor cell vaccine in the transgenic SV40 T antigen-driven TRAMP prostate cancer model. In healthy mice, we initially found that optimal T cell responses were obtained with αGC-pulsed TRAMP-C2 cells secreting GM-CSF and milk fat globule epidermal growth factor protein-8 (MFG-E8) with an RGD to RGE mutation (GM-CSF/RGE TRAMP-C2), combined with systemic low dose IL-12. In a therapeutic model, transgenic TRAMP mice were then castrated at ~ 20 weeks, followed by treatment with the combination vaccine. Untreated mice succumbed to tumor by ~ 40 weeks, but survival was markedly prolonged by vaccine treatment, with most mice surviving past 80 weeks. Prostates in the treated mice were heavily infiltrated with T cells and iNKT cells, which both secreted IFNγ in response to tumor cells. The vaccine was not effective if the αGC, IL-12, or GM-CSF secretion was eliminated. Finally, immunized mice were fully resistant to challenge with TRAMP-C2 cells. Together these findings support further development of therapeutic vaccines that exploit iNKT cell activation., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF