1. In Silico Investigation against Inhibitors of Alpha-Amylase Using Structure-based Screening, Molecular Docking, and Molecular Simulations Studies.
- Author
-
Khan, Fariya, Shah, Altaf Ahmad, Kumar, Ajay, and Akhtar, Salman
- Abstract
Type-II diabetes mellitus is a chronic disorder that results from fluctuations in the glucose level leading to hyperglycemia with severe adverse effects increasing worldwide. Alpha-Amylase is the key enzyme involved in the mechanism of glucose formation therefore Alpha-Amylase inhibitors have become a therapeutic target in the development of new leads as they have the potential to suppress glucose levels. Existing drugs targeting Alpha-Amylase highlight major drawbacks in terms of poor absorption rate that causes several gastrointestinal issues. So, this research is aimed to develop novel inhibitors interacting with Alpha-Amylase's active site using structural-based screening, binding pattern analysis, and molecular dynamic simulation. Hence, to search for a potential lead, we analyzed a total of 133 valiolamine derivatives and 535 desoxynojirimycin derivatives that exhibited drug-like properties screened through Lipinski filters. Virtual screening followed by binding interaction analysis we identified ten compounds that exhibited better binding energy scores compared to the standard drugs voglibose and miglitol, used in our study. The docking analysis, ADMET and metabolic site prediction estimated the best top two compounds with good drug profiles. Further, top compounds VG9 and VG15 were promoted to simulation study using the Biovia Discovery study to access the stability at a time interval of 100 ns. MD simulation results revealed that our compound VG9 possesses better conformational stability in the complex to the active site residues of Alpha-Amylase target protein than standard drug voglibose. Thus, our investigation revealed that compound VG9 also exhibits the best pharmacokinetic as well as binding affinity results and could act as a potential lead compound targeting Alpha-Amylase for Type II diabetes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF