1. Modeling the bystander effect during viral coinfection.
- Author
-
Noffel Z and Dobrovolny HM
- Subjects
- Humans, Virus Diseases immunology, Models, Biological, Immunity, Innate, Influenza, Human immunology, Influenza, Human virology, Bystander Effect, Coinfection immunology, Coinfection virology
- Abstract
Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF