1. Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: the Lower Llobregat River basin case study (Barcelona, Spain)
- Author
-
Maria Vittoria Barbieri, Anna Casanovas, Damià Barceló, Enric Queralt, M.R. Boleda, Antoni Ginebreda, Jordi Martín-Alonso, Agustina de la Cal, Miren López de Alda, Vinyet Solà, Raúl Carrey, Cristina Postigo, Neus Otero, Elena Isla, Gemma Frances, European Commission, Ministerio de Ciencia e Innovación (España), Postigo, Cristina, Barceló, Damià, López De Alda, Miren, Postigo, Cristina [0000-0002-7344-7044], Barceló, Damià [0000-0002-8873-0491], and López De Alda, Miren [0000-0002-9347-2765]
- Subjects
Pollution ,Physics - Physics and Society ,Environmental Engineering ,010504 meteorology & atmospheric sciences ,media_common.quotation_subject ,FOS: Physical sciences ,Aquifer ,Physics and Society (physics.soc-ph) ,010501 environmental sciences ,Nitrate ,01 natural sciences ,chemistry.chemical_compound ,Environmental Chemistry ,Water pollution ,Waste Management and Disposal ,0105 earth and related environmental sciences ,media_common ,Stable isotopes ,Plant protection products ,geography ,geography.geographical_feature_category ,Agriculture ,15. Life on land ,6. Clean water ,Water resources ,Physics - Atmospheric and Oceanic Physics ,Water Framework Directive ,chemistry ,13. Climate action ,Nutrient pollution ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Environmental science ,Water resource management ,Groundwater ,Ammonium - Abstract
The management of the anthropogenic water cycle must ensure the preservation of the quality and quantity of water resources and their careful allocation to the different uses. Protection of water resources requires the control of pollution sources that may deteriorate them. This is a challenging task in multi-stressed catchments. This work presents an approach that combines pesticide occurrence patterns and stable isotope analyses of nitrogen (δ15N-NO3−, δ15N-NH4+), oxygen (δ18O-NO3−), and boron (δ11B) to discriminate the origin of pesticides and nitrogen-pollution to tackle this challenge. The approach has been applied to a Mediterranean sub-catchment subject to a variety of natural and anthropogenic pressures. Combining the results from both analytical approaches in selected locations of the basin, the urban/industrial activity was identified as the main pressure on the quality of the surface water resources, and to a large extent also on the groundwater resources, although agriculture may play also an important role, mainly in terms of nitrate and ammonium pollution. Total pesticide concentrations in surface waters were one order of magnitude higher than in groundwaters and believed to originate mainly from soil and/or sediments desorption processes and urban and industrial use, as they were mainly associated with treated wastewaters. These findings were supported by the stable isotope results that pointed to an organic origin of nitrate in surface waters and most groundwater samples. Ammonium pollution observed in some aquifer locations is probably generated by nitrate reduction. Overall, no significant attenuation processes could be inferred for nitrate pollution. The approach presented here exemplifies the investigative monitoring envisioned in the Water Framework Directive., This work has received funding from the EU Horizon 2020 Research and Innovation Programme through the WaterProtect project (grant agreement No. 727450), the Spanish Ministry of Science and Innovation (Project CEX2018-000794-S), and the Generalitat de Catalunya (Consolidated Research Group 2017 SGR 01404-Water and Soil Quality Unit).
- Published
- 2021
- Full Text
- View/download PDF