40 results on '"Vinod Kasam"'
Search Results
2. DockFlow - a prototypic PharmaGrid for Virtual Screening Integrating Four Different Docking Tools.
- Author
-
Antje Wolf, Martin Hofmann-Apitius, Moustafa Ghanem, Nabeel Azam, Dimitrios Kalaitzopoulos, Kunqian Yu, and Vinod Kasam
- Published
- 2009
- Full Text
- View/download PDF
3. Virtual High Throughput Screening (vHTS) on an Optical High Speed Testbed.
- Author
-
Mohammad Shahid, Wolfgang Ziegler, Vinod Kasam, Marc Zimmermann 0001, and Martin Hofmann-Apitius
- Published
- 2008
4. WISDOM-II: a large in silico docking effort for finding novel hits against malaria using computational grid infrastructure.
- Author
-
Vinod Kasam, Jean Salzemann, Vincent Breton, and Nicolas Jacq
- Published
- 2007
5. Large Scale Deployment of Molecular Docking Application on Computational Grid infrastructures for Combating Malaria.
- Author
-
Vinod Kasam, Jean Salzemann, Nicolas Jacq, Astrid Maaß, and Vincent Breton
- Published
- 2007
- Full Text
- View/download PDF
6. Grid Enabled High Throughput Virtual Screening Against Four Different Targets Implicated in Malaria.
- Author
-
Jean Salzemann, Vinod Kasam, Nicolas Jacq, Astrid Maaß, Horst Schwichtenberg, and Vincent Breton
- Published
- 2007
7. Grid-Enabled High Throughput Virtual Screening.
- Author
-
Nicolas Jacq, Vincent Breton, Hsin-Yen Chen, Li-Yung Ho, Martin Hofmann 0009, Hurng-Chun Lee, Yannick Legré, Simon C. Lin, Astrid Maaß, Emmanuel Medernach, Ivan Merelli, Luciano Milanesi, Giulio Rastelli, Matthieu Reichstadt, Jean Salzemann, Horst Schwichtenberg, Mahendrakar Sridhar, Vinod Kasam, Ying-Ta Wu, and Marc Zimmermann 0001
- Published
- 2006
- Full Text
- View/download PDF
8. Computational Method To Identify Druggable Binding Sites That Target Protein-Protein Interactions.
- Author
-
Hubert Li, Vinod Kasam, Christofer S. Tautermann, Daniel Seeliger, and Nagarajan Vaidehi
- Published
- 2014
- Full Text
- View/download PDF
9. DockFlow: Achieving interoperability of protein docking tools across heterogeneous Grid middleware.
- Author
-
Nabeel Azam, Moustafa Ghanem, Dimitrios Kalaitzopoulos, Antje Wolf, Vinod Kasam, Yongjian Wang, and Martin Hofmann-Apitius
- Published
- 2010
- Full Text
- View/download PDF
10. Direct use of information extraction from scientific text for modeling and simulation in the life sciences.
- Author
-
Martin Hofmann-Apitius, Erfan Younesi, and Vinod Kasam
- Published
- 2009
- Full Text
- View/download PDF
11. Grid-Added Value to Address Malaria.
- Author
-
Vincent Breton, Nicolas Jacq, Vinod Kasam, and Martin Hofmann-Apitius
- Published
- 2008
- Full Text
- View/download PDF
12. Grid-enabled Virtual Screening Against Malaria.
- Author
-
Nicolas Jacq, Jean Salzemann, Florence Jacq, Yannick Legré, Emmanuel Medernach, Johan Montagnat, Astrid Maaß, Matthieu Reichstadt, Horst Schwichtenberg, Mahendrakar Sridhar, Vinod Kasam, Marc Zimmermann 0001, Martin Hofmann 0009, and Vincent Breton
- Published
- 2008
- Full Text
- View/download PDF
13. Virtual screening on large scale grids.
- Author
-
Nicolas Jacq, Vincent Breton, Hsin-Yen Chen, Li-Yung Ho, Martin Hofmann 0009, Vinod Kasam, Hurng-Chun Lee, Yannick Legré, Simon C. Lin, and Astrid Maaß
- Published
- 2007
- Full Text
- View/download PDF
14. Design of New Plasmepsin Inhibitors: A Virtual High Throughput Screening Approach on the EGEE Grid.
- Author
-
Vinod Kasam, Marc Zimmermann 0001, Astrid Maaß, Horst Schwichtenberg, Antje Wolf, Nicolas Jacq, Vincent Breton, and Martin Hofmann-Apitius
- Published
- 2007
- Full Text
- View/download PDF
15. Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?
- Author
-
L.-M. Birkholtz, Olivier Bastien, Gordon Wells, D. Grando, F. Joubert, Vinod Kasam, Marc Zimmermann 0001, Philippe Ortet, Nicolas Jacq, Sylvaine Roy, Martin Hofmann-Apitius, Vincent Breton, A. I. Louw, and Eric Maréchal
- Published
- 2006
16. Grid enabled virtual screening against malaria
- Author
-
Nicolas Jacq, Jean Salzemann, Florence Jacq, Yannick Legré, Emmanuel Medernach, Johan Montagnat, Astrid Maaß, Matthieu Reichstadt, Horst Schwichtenberg, Mahendrakar Sridhar, Vinod Kasam, Marc Zimmermann 0001, Martin Hofmann 0009, and Vincent Breton
- Published
- 2006
17. Large Scale In Silico Screening on Grid Infrastructures
- Author
-
Nicolas Jacq, Vincent Breton, Hsin-Yen Chen, Li-Yung Ho, Martin Hofmann 0009, Hurng-Chun Lee, Yannick Legré, Simon C. Lin, Astrid Maaß, Emmanuel Medernach, Ivan Merelli, Luciano Milanesi, Giulio Rastelli, Matthieu Reichstadt, Jean Salzemann, Horst Schwichtenberg, Mahendrakar Sridhar, Vinod Kasam, Ying-Ta Wu, and Marc Zimmermann 0001
- Published
- 2006
18. Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches
- Author
-
Véronique Roussel, Bastien Touquet, Isabelle Tardieux, Emmanuelle Soleilhac, Caroline Barette, Dragos Horvath, Laurence Lafanechère, Eric Maréchal, Loraine Brillet-Guéguen, Renaud Prudent, Sylvaine Roy, Marylin Vantard, Cyrille Y. Botté, Vinod Kasam, Samia Aci-Sèche, Sheena Dass, Vincent Breton, Anne Imberty, Genetics and Chemogenomics (GenChem), Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ABiMS - Informatique et bioinformatique = Analysis and Bioinformatics for Marine Science (ABIMS), Fédération de recherche de Roscoff (FR2424), Station biologique de Roscoff (SBR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff (SBR), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Physiologie cellulaire et végétale (LPCV), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Dynamique cellulaire et membranaire des interactions hôte-parasite (Equipe de recherche), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Organique et Analytique (ICOA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur les Macromolécules Végétales (CERMAV ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Atip-Avenir and Finovi programs (CNRS-INSERM-Finovi Atip-Avenir Apicolipid projects), ANR-05-CIGC-0008,DOCK,Conformation Sampling and Docking on Girds(2005), ANR-12-PDOC-0028,ApicoLipid,ApicoLipid: Etude du rôle de l'apicoplaste dans la synthèse lipidique et la biogénèse des parasites Apicomplexa(2012), ANR-11-LABX-0024,ParaFrap,Alliance française contre les maladies parasitaires(2011), [GIN] Grenoble Institut des Neurosciences (GIN), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ABiMS - Informatique et bioinformatique = Analysis and Bioinformatics for Marine Science (FR2424), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Mutations des activités, des espaces et des formes d'organisation dans les territoires ruraux (METAFORT), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF)-ENITA Clermont-AgroParisTech-Institut National de la Recherche Agronomique (INRA), Transduction du signal : signalisation calcium, phosphorylation et inflammation, Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Institut Cochin (UMR_S567 / UMR 8104), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Institut d'oncologie/développement Albert Bonniot de Grenoble (INSERM U823), Université Joseph Fourier - Grenoble 1 (UJF)-CHU Grenoble-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA), Université Grenoble Alpes (UGA)-Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Grenoble-Université Joseph Fourier - Grenoble 1 (UJF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), ANR-11-LABX-0024/11-LABX-0024,ParaFrap,Alliance française contre les maladies parasitaires(2011), Imberty, Anne, Programme de recherche 'Calcul Intensif et Grilles de Calcul' - Conformation Sampling and Docking on Girds - - DOCK2005 - ANR-05-CIGC-0008 - CIGC - VALID, Retour Post-Doctorant - ApicoLipid: Etude du rôle de l'apicoplaste dans la synthèse lipidique et la biogénèse des parasites Apicomplexa - - ApicoLipid2012 - ANR-12-PDOC-0028 - PDOC - VALID, and Laboratoires d'excellence - Alliance française contre les maladies parasitaires - - ParaFrap2011 - ANR-11-LABX-0024 - LABX - VALID
- Subjects
Models, Molecular ,0301 basic medicine ,tubuline ,cell-based assays ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,Dinitroaniline ,Microtubules ,lcsh:Chemistry ,chemistry.chemical_compound ,Tubulin ,[CHIM] Chemical Sciences ,Arabidopsis thaliana ,Photosynthesis ,lcsh:QH301-705.5 ,ComputingMilieux_MISCELLANEOUS ,Spectroscopy ,biology ,cellule végétale ,food and beverages ,General Medicine ,Plants ,dinitroanilines ,plant cells ,Toxoplasma gondii ,Plasmodium falciparum ,virtual screening ,small molecules ,3. Good health ,Computer Science Applications ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Biochemistry ,In silico ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Article ,Catalysis ,Inorganic Chemistry ,Apicomplexa ,03 medical and health sciences ,Microtubule ,parasitic diseases ,Animals ,Humans ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,[SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology ,Molecular Biology ,Virtual screening ,fungi ,Organic Chemistry ,dinitroaniline ,biology.organism_classification ,030104 developmental biology ,chemistry ,lcsh:Biology (General) ,lcsh:QD1-999 ,biology.protein ,HeLa Cells - Abstract
Dinitroanilines are chemical compounds with high selectivity for plant cell &alpha, tubulin in which they promote microtubule depolymerization. They target &alpha, tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.
- Published
- 2018
- Full Text
- View/download PDF
19. Proteasome Inhibitors with Pyrazole Scaffolds from Structure-Based Virtual Screening
- Author
-
Dong-Eun Kim, Na Ra Lee, Vinod Kasam, Shou Zhou, Do Min Lee, Yujin Jang, Kyung Bo Kim, Chang-Guo Zhan, Lin Ao, Qingquan Zhao, Kwanghyun Lee, Yan Yan Zhang, Wooin Lee, Hyunyoung Jeong, Keun Sik Kim, Si Eun Baek, Zachary Miller, and Kimberly Cornish Carmony
- Subjects
Male ,Models, Molecular ,Proteasome Endopeptidase Complex ,Drug Evaluation, Preclinical ,Mice, Nude ,Antineoplastic Agents ,Pyrazole ,Small Molecule Libraries ,Mice ,Structure-Activity Relationship ,chemistry.chemical_compound ,Catalytic Domain ,Drug Discovery ,Tumor Cells, Cultured ,medicine ,Animals ,Humans ,Structure–activity relationship ,Computer Simulation ,Cell Proliferation ,Mice, Inbred BALB C ,Virtual screening ,Dose-Response Relationship, Drug ,Molecular Structure ,Chemistry ,Bortezomib ,Neoplasms, Experimental ,Carfilzomib ,Small molecule ,Biochemistry ,Proteasome ,Proteasome inhibitor ,Pyrazoles ,Molecular Medicine ,Proteasome Inhibitors ,Injections, Intraperitoneal ,medicine.drug - Abstract
We performed a virtual screen of ∼340 000 small molecules against the active site of proteasomes followed by in vitro assays and subsequent optimization, yielding a proteasome inhibitor with pyrazole scaffold. The pyrazole-scaffold compound displayed excellent metabolic stability and was highly effective in suppressing solid tumor growth in vivo. Furthermore, the effectiveness of this compound was not negatively impacted by resistance to bortezomib or carfilzomib.
- Published
- 2015
- Full Text
- View/download PDF
20. Selective immunoproteasome inhibitors with non-peptide scaffolds identified from structure-based virtual screening
- Author
-
Vinod Kasam, Chang-Guo Zhan, Kyung Bo Kim, and Na-Ra Lee
- Subjects
Models, Molecular ,Proteasome Endopeptidase Complex ,Cell type ,Clinical Biochemistry ,Drug Evaluation, Preclinical ,Molecular Conformation ,Pharmaceutical Science ,Drug design ,Protein degradation ,Biochemistry ,Article ,Structure-Activity Relationship ,Immune system ,Drug Discovery ,Humans ,Structure–activity relationship ,Molecular Biology ,Virtual screening ,Dose-Response Relationship, Drug ,Chemistry ,Organic Chemistry ,Proteasome ,Cancer research ,Molecular Medicine ,Pharmacophore ,Proteasome Inhibitors - Abstract
As a major component of the crucial nonlysosomal protein degradation pathway in the cells, the proteasome has been implicated in many diseases such as Alzheimer's disease, Huntington's disease, inflammatory bowel diseases, autoimmune diseases, multiple myeloma (MM) and other cancers. There are two main proteasome subtypes: the constitutive proteasome which is expressed in all eukaryotic cells and the immunoproteasome which is expressed in immune cells and can be induced in other cell types. Majority of currently available proteasome inhibitors are peptide backbone-based, having short half-lives in the body. It is highly desirable to identify novel, immunoproteasome-selective inhibitors with non-peptide scaffolds for development of novel therapeutics. Through combined virtual screening and experimental studies targeting the immunoproteasome, we have identified a set of novel immunoproteasome inhibitors with diverse non-peptide scaffolds. Some of the identified inhibitors have significant selectivity for the immunoproteasome over the constitutive proteasome. Unlike most of the currently available proteasome inhibitors, these new inhibitors lacking electrophilic pharmacophores are not expected to form a covalent bond with proteasome after the binding. These non-peptide scaffolds may provide a new platform for future rational drug design and discovery targeting the immunoproteasome.
- Published
- 2014
- Full Text
- View/download PDF
21. 5-((1-Aroyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-diones as potential anticancer agents with anti-inflammatory properties
- Author
-
Narsimha Reddy Penthala, Purushothama Rao Ponugoti, Peter A. Crooks, and Vinod Kasam
- Subjects
Stereochemistry ,medicine.drug_class ,Clinical Biochemistry ,Anti-Inflammatory Agents ,Pharmaceutical Science ,Antineoplastic Agents ,Biochemistry ,Article ,Anti-inflammatory ,chemistry.chemical_compound ,Cell Line, Tumor ,Drug Discovery ,medicine ,Humans ,Sulfhydryl Compounds ,Molecular Biology ,biology ,Chemistry ,Melanoma ,Organic Chemistry ,Active site ,medicine.disease ,Molecular biology ,Pyrimidines ,Cell culture ,Docking (molecular) ,Cancer cell ,biology.protein ,Molecular Medicine ,Drug Screening Assays, Antitumor ,Growth inhibition ,Ovarian cancer - Abstract
A series of novel 5-((1-aroyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-diones (3a-z) have been evaluated for in vitro cytotoxicity against a panel of 60 human tumor cell lines. Compound 3k exhibited the most potent growth inhibition against melanoma MDA-MB-435 cells (GI(50)=850 nM), against leukemia SR cancer cells (GI(50)=1.45 μM), and OVCAR-3 (GI(50)=1.26 μM) ovarian cancer cell lines. The structurally related compound 3s had a GI(50) value of 1.77 μM against MDA-MB-435 cells. The N-naphthoyl analogue 3t had GI(50) values of 1.30 and 1.91 μM against HOP-92 non-small cell lung cancer and MDA-MB-435 melanoma cell lines, respectively. The related analogue 3w had GI(50) values of 1.09 μM against HOP-92 non-small cell lung cancer cell lines. Interestingly, docking of the two active molecules 3k and 3w into the active site of COX-2 indicates that these compounds are COX-2 ligands with strong hydrophobic and hydrogen bonding interactions. Thus, compounds 3k, 3t, 3s, and 3w constitute a new class of anticancer/anti-inflammatory agents that may have unique potential for cancer therapy.
- Published
- 2013
- Full Text
- View/download PDF
22. An Improved Weighted-Residue Profile Based Method of Using Protein-Ligand Interaction Information in Increasing Hits Selection from Virtual Screening: A Study on Virtual Screening of Human GPCR A2A Receptor Antagonists
- Author
-
Vinod Kasam, Mohammad Shahid, and Martin Hofmann-Apitius
- Subjects
Virtual screening ,Computer science ,Organic Chemistry ,Computational biology ,Computer Science Applications ,Interaction information ,Protein–ligand docking ,Structural Biology ,Docking (molecular) ,Drug Discovery ,Molecular Medicine ,Simulation ,Protein ligand ,G protein-coupled receptor - Abstract
The use of protein-ligand interaction information has been reported to improve and optimize the docking results in virtual screening experiments. Here we propose an improved weighted-residue profile based method to profile the protein-ligand interactions based on the available dataset of known actives and utilize this weighted residue profile information, together with the scoring function, as selection criteria to increase hit rates in virtual screening experiments. The generated fingerprint data is not directly based on the protein-ligand complexes but taken from the available interaction data derived from the docking results. The ability of the method to recover the active compounds was tested on two data sets of a compound library designed for antagonists of the A2A receptor. The results show better hits enrichments by using the weighted-residue based profiles of protein-ligand interactions as compared to the normal binding energy based scoring schemes of the two docking programs.
- Published
- 2010
- Full Text
- View/download PDF
23. Predicting Druggable Sites in Protein-Protein Interfaces using FindBindSite
- Author
-
Hubert Li, Nagarajan Vaidehi, and Vinod Kasam
- Subjects
Template ,Chemistry ,Protein protein ,Hit rate ,Druggability ,Biophysics ,Computational biology ,Binding site ,Combinatorial chemistry ,Sequence identity ,Therapeutic strategy ,Ligand molecule - Abstract
Significance: Aberrant protein-protein interactions are a hallmark of disease and many cancers. Disrupting these interactions is a current therapeutic strategy. However, developing inhibitors for protein-protein interfaces (PPI) remains challenging due to large surface area over which these interactions occur. Computational methods can greatly aid in identifying druggable sites on the PPI enabling rational inhibitor design for PPI.Approach: We have developed a computational method termed FindBindSite (FBS), to identify druggable sites in the PPI starting from free monomer structures. Our method virtually screens a small database of compounds or dipeptides over the entire protein surface and identifies regions with high docked ligand atom density. Densely populated regions are then clustered and scored based on cluster size. The clustering allows us to identify binding surfaces in the interface regions.Results: FBS was validated 41 protein-protein structures crystallized in complex form. Structures were selected giving preference to free, protein-inhibitor, and then protein-protein complex when structures were not available. We predicted binding sites in interface regions of 71% with a high confidence and 90% with a low confidence using our test set. We tested the performance of FBS on homology models of free monomers achieving a hit rate of 68% when using templates with sequence identity between 20-97%. Applying a 60% sequence identity cutoff we achieved a hit rate of 86%. Using a library of dipeptides we were able to achieve 85% hit rate. We demonstrate that FBS is a useful computational method to predict binding sites in protein-protein interfaces because it uses the probe molecule diversity to span beyond well formed pockets and identify regions where one could likely disrupt any PPIs are likely to occur.
- Published
- 2014
- Full Text
- View/download PDF
24. In silico drug discovery approaches on grid computing infrastructures
- Author
-
Mohammad Shahid, Vinod Kasam, Antje Wolf, Wolfgang Ziegler, Martin Hofmann-Apitius, and Publica
- Subjects
in silico drug discovery ,Drug Industry ,Computer science ,In silico ,computer.software_genre ,Ligands ,grid computing ,Drug Delivery Systems ,Drug Discovery ,Humans ,Pharmacology (medical) ,Computer Simulation ,General Pharmacology, Toxicology and Pharmaceutics ,computer-aided drug design ,Pharmaceutical industry ,Virtual screening ,business.industry ,Drug discovery ,Proteins ,General Medicine ,Grid ,virtual screening ,Data science ,Identification (information) ,Workflow ,Grid computing ,Drug Design ,Computer-Aided Design ,business ,computer - Abstract
The first step in finding a "drug" is screening chemical compound databases against a protein target. In silico approaches like virtual screening by molecular docking are well established in modern drug discovery. As molecular databases of compounds and target structures are becoming larger and more and more computational screening approaches are available, there is an increased need in compute power and more complex workflows. In this regard, computational Grids are predestined and offer seamless compute and storage capacity. In recent projects related to pharmaceutical research, the high computational and data storage demands of large-scale in silico drug discovery approaches have been addressed by using Grid computing infrastructures, in both; pharmaceutical industry as well as academic research. Grid infrastructures are part of the so-called eScience paradigm, where a digital infrastructure supports collaborative processes by providing relevant resources and tools for data- and compute-intensive applications. Substantial computing resources, large data collections and services for data analysis are shared on the Grid infrastructure and can be mobilized on demand. This review gives an overview on the use of Grid computing for in silico drug discovery and tries to provide a vision of future development of more complex and integrated workflows on Grids, spanning from target identification and target validation via protein-structure and ligand dependent screenings to advanced mining of large scale in silico experiments.
- Published
- 2010
25. Direct Use of Information Extraction from Scientific Text for Modeling and Simulation in the Life Sciences
- Author
-
Martin Hofman‐Apitius, Erfan Younesi, and Vinod Kasam
- Subjects
Artikel ,in silico experiment ,DDC: 020 (Library and information sciences) ,Text mining ,Computer science ,Data discovery ,Scientific literature ,Library and Information Sciences ,computer.software_genre ,Data science ,grid computing ,drug discovery ,Modeling and simulation ,Information extraction ,Science research ,Knowledge extraction ,Order (exchange) ,information extraction ,computer ,Information Systems - Abstract
PurposeThe purpose of this paper is to demonstrate how the information extracted from scientific text can be directly used in support of life science research projects. In modern digital‐based research and academic libraries, librarians should be able to support data discovery and organization of digital entities in order to foster research projects effectively; thus the paper aims to speculate that text mining and knowledge discovery tools could be of great assistance to librarians. Such tools simply enable librarians to overcome increasing complexity in the number as well as contents of scientific literature, especially in the emerging interdisciplinary fields of science. This paper seeks to present an example of how evidences extracted from scientific literature can be directly integrated into in silico disease models in support of drug discovery projects.Design/methodology/approachThe application of text‐mining as well as knowledge discovery tools is explained in the form of a knowledge‐based workflow for drug target candidate identification. Moreover, an in silico experimentation framework is proposed for the enhancement of efficiency and productivity in the early steps of the drug discovery workflow.FindingsThe in silico experimentation workflow has been successfully applied to searching for hit and lead compounds in the World‐wide In Silico Docking On Malaria (WISDOM) project and to finding novel inhibitor candidates.Practical implicationsDirect extraction of biological information from text will ease the task of librarians in managing digital objects and supporting research projects. It is expected that textual data will play an increasingly important role in evidence‐based approaches taken by biomedical and translational researchers.Originality/valueThe proposed approach provides a practical example for the direct integration of text‐ and knowledge‐based data into life science research projects, with the emphasis on their application by academic and research libraries in support of scientific projects.
- Published
- 2009
26. Pharmaceutical composition for preventing and treating malaria containing compounds that inhibit Plasmepsin II activity, and method of treating malaria using the same
- Author
-
Doman, Kim, Hee Kyoung Kang, Do Won Kim, Rastelli, Giulio, Ana Lucia Da Costa, Vinod, Kasam, and Vincent, Breton
- Subjects
drug design ,malaria ,plasmepsin ,virtual screening - Published
- 2009
27. Life science application support in an interoperable e-science environment
- Author
-
Achim Streit, Sonja Holl, Mathilde Romberg, Vinod Kasam, Bastian Demuth, and Morris Riedel
- Subjects
Database ,Computer science ,business.industry ,Interoperability ,computer.file_format ,computer.software_genre ,Grid ,Grid computing ,Middleware (distributed applications) ,e-Science ,Executable ,User interface ,Reference implementation ,Software engineering ,business ,computer - Abstract
In the last decade, life science applications have become more and more integrated into e-Science environments, hence they are typically very demanding, both in terms of computational capabilities and data capacities. Especially the access to life science applications, embedded in such environments via Grid clients still constitutes a major hurdle for scientists that do not have an IT background. Life science applications often comprise a whole set of small programs instead of a single executable. Many of the graphical Grid clients are not perfectly suited for these types of applications, as they often assume that Grid jobs will run a single executable instead of a set of chained executions (i.e. sequences). This means that in order to execute a sequence of multiple programs on a single Grid resource, piping data from one program to the next, the user would have to run a hand-written shell script. Otherwise each program is independently scheduled as a Grid job, which causes unnecessary file transfers between the jobs, even if they are scheduled on the same resource. We present a generic solution to this problem and provide a reference implementation, which seamlessly integrates with the Grid middleware UNICORE. Our approach focuses on a comfortable user interface for the creation of such program sequences, validated in UNICORE-driven HPC-based Grids. Thus, we applied our approach in order to provide support for the usage of the AMBER package (a widely-used collection of programs for molecular dynamics simulations) within Grid workflows. We finally provide a scientific use case of our approach leveraging the interoperability of two different scientific infrastructures that represents an instance of the infrastructure interoperability reference model.
- Published
- 2009
- Full Text
- View/download PDF
28. WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures
- Author
-
Colin Peter Kenyon, Vinod Kasam, Giulio Rastelli, Doman Kim, Astrid Maass, Marli Botha, Ana Dacosta, Gianluca Degliesposti, Martin Hofmann-Apitius, Jean Salzemann, Raúl Isea, Vincent Breton, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Department of Bioinformatics [Sankt Augustin] (Fraunhofer SCAI), Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Fraunhofer (Fraunhofer-Gesellschaft)-Fraunhofer (Fraunhofer-Gesellschaft), WISDOM, and Publica
- Subjects
lcsh:Arctic medicine. Tropical medicine ,lcsh:RC955-962 ,drug design ,In silico ,RC955-962 ,Embarrassingly parallel ,Protozoan Proteins ,malaria ,Plasmepsin ,RC109-216 ,Infectious and parasitic diseases ,Computational biology ,Biology ,Ligands ,010402 general chemistry ,Bioinformatics ,grid ,01 natural sciences ,lcsh:Infectious and parasitic diseases ,03 medical and health sciences ,Drug Delivery Systems ,Arctic medicine. Tropical medicine ,Humans ,lcsh:RC109-216 ,virtual screening ,Glutathione Transferase ,030304 developmental biology ,0303 health sciences ,Virtual screening ,Drug discovery ,Research ,Computational Biology ,Matrix Attachment Regions ,Grid ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,3. Good health ,0104 chemical sciences ,Tetrahydrofolate Dehydrogenase ,WISDOM ,Infectious Diseases ,Pharmaceutical Preparations ,Drug development ,Docking (molecular) ,Drug Design ,Parasitology ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Medical Informatics ,Protein Binding - Abstract
Background Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Motivation Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. Methods In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. Results On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. Conclusion The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.
- Published
- 2009
- Full Text
- View/download PDF
29. Design and Discovery of Plasmepsin II Inhibitors Using an Automated Workflow on Large-Scale Grids
- Author
-
Doman Kim, Giulio Rastelli, Gianluca Degliesposti, Do-Won Kim, Vincent Breton, Nahyun Kim, Vinod Kasam, Ana Lucia da Costa, Hee-Kyoung Kang, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Department of Bioinformatics [Sankt Augustin] (Fraunhofer SCAI), Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Fraunhofer (Fraunhofer-Gesellschaft)-Fraunhofer (Fraunhofer-Gesellschaft), and Publica
- Subjects
drug design ,Plasmodium falciparum ,malaria ,Plasmepsin ,Protozoan Proteins ,plasmepsin ,01 natural sciences ,Biochemistry ,Substrate degradation ,03 medical and health sciences ,Plasmepsin II ,Drug Discovery ,Animals ,Aspartic Acid Endopeptidases ,Combinatorial Chemistry Techniques ,Computer Simulation ,General Pharmacology, Toxicology and Pharmaceutics ,Enzyme Inhibitors ,030304 developmental biology ,Pharmacology ,0303 health sciences ,Virtual screening ,biology ,010405 organic chemistry ,Chemistry ,Organic Chemistry ,virtual screening ,molecular modelling ,Active site ,biology.organism_classification ,Combinatorial chemistry ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Recombinant Proteins ,0104 chemical sciences ,Förster resonance energy transfer ,Docking (molecular) ,Drug Design ,biology.protein ,Molecular Medicine ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Software - Abstract
Novel and potent inhibitors of Plasmodium falciparum plasmepsin II were identified by post-processing the results of a docking screening with BEAR, a recently reported procedure for the refinement and rescoring of docked ligands in virtual screening. FRET substrate degradation assays performed on the 30 most promising compounds resulted in 26 inhibitors with IC(50) values ranging from 4.3 nM to 1.8 microM.Herein we report the discovery of novel and potent inhibitors of Plasmodium falciparum plasmepsin II using GRID computing infrastructures. These compounds were identified by post-processing the results of a large docking screen of commercially available compounds using an automated procedure based on molecular dynamics refinement and binding free-energy estimation using MM-PBSA and MM-GBSA. Among the best-scored compounds, four highly populated and promising chemical classes were identified: N-alkoxyamidines, guanidines, amides, and ureas and thioureas. Thirty hit compounds representative of each class were selected on the basis of their favourable binding free energies and molecular interactions with key active site residues. These were experimentally validated using an inhibition assay based on FRET substrate degradation. Remarkably, 26 of the 30 tested compounds proved to be active as plasmepsin II inhibitors, with IC(50) values ranging from 4.3 nM to 1.8 microM.
- Published
- 2009
- Full Text
- View/download PDF
30. PDB_REDO: automated re-refinement of X-ray structure models in the PDB
- Author
-
G. Fettahi, Andreas Gisel, K. Mattila, Roberto Fabbretti, Volker Flegel, C. Blanchet, T. Kervinen, Marco Pagni, A.-C. Berglund, Ian J. Tickle, Gert Vriend, Heinz Stockinger, A.L. Da Costa, M. Diarena, Christophe Combet, Eija Korpelainen, V. Bloch, Erik Bongcam-Rudloff, Vincent Breton, Jean Salzemann, Matthieu Reichstadt, Gilbert Deléage, Vinod Kasam, Robbie P. Joosten, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Publica
- Subjects
Chemical and physical biology [NCMLS 7] ,Genetics and epigenetic pathways of disease [NCMLS 6] ,Computer science ,Protein Data Bank (RCSB PDB) ,010402 general chemistry ,computer.software_genre ,01 natural sciences ,grid computing ,grid ,General Biochemistry, Genetics and Molecular Biology ,Computational science ,03 medical and health sciences ,PDB-REDO ,Protein Data Bank ,refinement ,Biological sciences ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,030304 developmental biology ,X-ray crystallography ,0303 health sciences ,Structure validation ,computer.file_format ,Research Papers ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,0104 chemical sciences ,Grid computing ,structure validation ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,computer - Abstract
The majority of previously deposited X-ray structures can be improved by applying current refinement methods., Structural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB. A large-scale benchmark with 16 807 PDB entries showed that they can be improved in terms of fit to the deposited experimental X-ray data as well as in terms of geometric quality. The re-refinement protocol uses TLS models to describe concerted atom movement. The resulting structure models are made available through the PDB_REDO databank (http://www.cmbi.ru.nl/pdb_redo/). Grid computing techniques were used to overcome the computational requirements of this endeavour.
- Published
- 2009
- Full Text
- View/download PDF
31. Virtual high throughput screening (vHTS) on an optical high speed testbed
- Author
-
Mohammad, Shahid, Wolfgang, Ziegler, Vinod, Kasam, Marc, Zimmermann, and Martin, Hofmann-Apitius
- Subjects
User-Computer Interface ,Databases as Topic ,Computer Systems ,Medical Informatics Computing ,Germany ,Computational Biology ,Humans ,Malaria - Abstract
Malaria remains a global health concern, which kills over a million people each year. In this paper we present work extending the approach of the WISDOM initiative by focusing on the problems noticed during the first WISDOM challenge against malaria and test the newly established, high bandwidth optical Grid environment VIOLA for advanced bioinformatics applications using the UNICORE middleware service. In addition we present an approach to reduce the size of the compound database to improve the efficiency of the screening.
- Published
- 2008
32. Deployment of Grid Life Sciences Applications
- Author
-
Nicolas Jacq, Jean Salzemann, Vinod Kasam, Vincent Breton, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Communication & Systèmes [Toulouse] (C-S), Communication & Systèmes-CS-SI France, Department of Bioinformatics [Sankt Augustin] (Fraunhofer SCAI), Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Fraunhofer (Fraunhofer-Gesellschaft)-Fraunhofer (Fraunhofer-Gesellschaft), and El-Ghazali Talbi, Albert Y. Zomaya
- Subjects
Web standards ,medicine.medical_specialty ,Web 2.0 ,WS-I Basic Profile ,Computer science ,Web Services Resource Framework ,computer.software_genre ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Devices Profile for Web Services ,World Wide Web ,medicine ,Web service ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,computer ,Semantic Web ,Web modeling - Published
- 2008
- Full Text
- View/download PDF
33. WISDOM-II
- Author
-
Vincent Breton, Vinod Kasam, Jean Salzemann, and N. Jacq
- Subjects
Development environment ,Computer science ,business.industry ,Distributed computing ,Zinc database ,medicine.disease ,Grid ,computer.software_genre ,In silico docking ,Software ,Software deployment ,DOCK ,medicine ,Data mining ,business ,computer ,Malaria - Abstract
After having deployed a first data challenge on malaria and a second one on avian flu, respectively in summer 2005 and spring 2006, we are demonstrating here again how efficiently the computational grids can be used to produce massive docking data at a high-throughput. During more than 2 months and a half, we have achieved at least 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tools; in this case it is the FlexX commercial docking software which is used to dock the whole ZINC database against 4 different targets.
- Published
- 2007
- Full Text
- View/download PDF
34. Large scale deployment of molecular docking application on computational grid infrastructures for combating malaria
- Author
-
A. Mass, J. Salzemann, Vinod Kasam, Vincent Breton, N. Jacq, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), and Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0303 health sciences ,Virtual screening ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Computer science ,Computer Applications ,Distributed computing ,Scale (chemistry) ,030231 tropical medicine ,Embarrassingly parallel ,computer.software_genre ,Grid ,3. Good health ,Computational science ,03 medical and health sciences ,0302 clinical medicine ,Grid computing ,Software deployment ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,computer ,Throughput (business) ,030304 developmental biology - Abstract
PCSV; International audience; Computational grids are solutions for several biological applications like virtual screening or molecular dynamics where large amounts of computing power and storage are required. The WISDOM project successfully deployed virtual screening at large scale on EGEE grid infrastructures in the summer 2005 and achieved 46 million dockings in 45 days, which is equivalent to 80 CPU years. WISDOM is one good example of a successful deployment of an embarrassingly parallel application. In this paper, we describe the improvements in our deployment. We screened ZINC database against four targets implicated in malaria. During more than 2 months and a half, we have achieved 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tools
- Published
- 2007
35. Grid enabled high throughput virtual screening against four different targets implicated in malaria
- Author
-
Jean, Salzemann, Vinod, Kasam, Nicolas, Jacq, Astrid, Maass, Horst, Schwichtenberg, and Vincent, Breton
- Subjects
User-Computer Interface ,Drug Delivery Systems ,Drug Design ,Humans ,Medical Informatics ,Malaria - Abstract
After having deployed a first data challenge on malaria and a second one on avian flu, respectively in summer 2005 and spring 2006, we are demonstrating here again how efficiently the computational grids can be used to produce massive docking data at a high-throughput. During more than 2 months and a half, we have achieved at least 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tools; in this case it is the FlexX commercial docking software which is used to dock the whole ZINC database against 4 different targets.
- Published
- 2007
36. Virtual screening on large scale grids
- Author
-
Hurng-Chun Lee, Horst Schwichtenberg, Ivan Merelli, Luciano Milanesi, Astrid Maaí, Giulio Rastelli, Vinod Kasam, Martin Hofmann, Vincent Breton, Nicolas Jacq, Yannick Legré, Matthieu Reichstadt, Hsin-Yen Chen, Jean Salzemann, Ying-Ta Wu, Li-Yung Ho, Marc Zimmermann, Emmanuel Medernach, Simon Lin, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand ( LPC ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), and Université Blaise Pascal - Clermont-Ferrand 2 (UBP) - Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3) - Centre National de la Recherche Scientifique (CNRS)
- Subjects
genetic structures ,Computer Networks and Communications ,Computer science ,malaria ,02 engineering and technology ,Theoretical Computer Science ,03 medical and health sciences ,[ INFO.INFO-DC ] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Artificial Intelligence ,[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM] ,parasitic diseases ,[INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,Simulation ,large scale grids ,[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] ,030304 developmental biology ,0303 health sciences ,Virtual screening ,drug deisgn ,medicinal chemistry ,021001 nanoscience & nanotechnology ,Grid ,virtual screening ,Computer Graphics and Computer-Aided Design ,Data science ,3. Good health ,Hardware and Architecture ,Software deployment ,avian influenza ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,0210 nano-technology ,Software - Abstract
PCSV, article in press in Parallel Computing; Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment.
- Published
- 2007
- Full Text
- View/download PDF
37. Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?
- Author
-
Lyn-Marie Birkholtz, Olivier Bastien, Gordon Wells, Delphine Grando, Fourie Joubert, Vinod Kasam, Marc Zimmermann, Philippe Ortet, Nicolas Jacq, Nadia Saïdani, Sylvaine Roy, Martin Hofmann-Apitius, Vincent Breton, Abraham I Louw, Eric Maréchal, African Centre for Gene Technologies, Faculty of Natural and Agricultural Sciences-University of Pretoria [South Africa], Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Bioinformatics and Computational Biology Unit, Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Fraunhofer (Fraunhofer-Gesellschaft), Protéines de Protection des Végétaux (PPV), Institut de Biosciences et Biotechnologies d'Aix-Marseille (ex-IBEB) (BIAM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Dynamique moléculaire des interactions membranaires (DMIM), Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Biologie-Informatique-Mathématique (LBIM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Fraunhofer Institute for Algorithms and Scientific Computing, Department of Bioinformatics, Laboratoire d'Ecophysiologie Moléculaire des Plantes (LEMP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2), Publica, Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] ( LAPM ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de physiologie cellulaire végétale ( LPCV ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut National de la Recherche Agronomique ( INRA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Corpusculaire - Clermont-Ferrand ( LPC ), Université Blaise Pascal - Clermont-Ferrand 2 ( UBP ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Département d'Ecophysiologie Végétale et de Microbiologie, Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Dynamique moléculaire des interactions membranaires ( DMIM ), Université Montpellier 2 - Sciences et Techniques ( UM2 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Biologie-Informatique-Mathématique ( LBIM ), Faculty of Natural and Agricultural Sciences - University of Pretoria [South Africa], Université Joseph Fourier - Grenoble 1 (UJF) - Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF) - Institut National de la Recherche Agronomique (INRA) - Commissariat à l'énergie atomique et aux énergies alternatives (CEA) - Centre National de la Recherche Scientifique (CNRS), Université Blaise Pascal - Clermont-Ferrand 2 (UBP) - Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3) - Centre National de la Recherche Scientifique (CNRS), and Université Montpellier 2 - Sciences et Techniques (UM2) - Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,Plasmodium ,Knowledge space ,Computer science ,Data management ,RC955-962 ,Protozoan Proteins ,RC109-216 ,Review ,Infectious and parasitic diseases ,Ligands ,Quantitative Biology - Quantitative Methods ,drug target ,Arctic medicine. Tropical medicine ,Phylogeny ,Quantitative Methods (q-bio.QM) ,[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM] ,0303 health sciences ,biology ,3. Good health ,Infectious Diseases ,Computer Science - Distributed, Parallel, and Cluster Computing ,statistics ,Bio-informatique ,malaria ,Plasmodium falciparum ,genome ,data mining ,protein sequence comparison ,molecular phylogeny ,metabolic pathway ,protein structure prediction ,chemogenomics ,lcsh:Arctic medicine. Tropical medicine ,lcsh:RC955-962 ,Bioinformatics ,Context (language use) ,Computational biology ,lcsh:Infectious and parasitic diseases ,03 medical and health sciences ,Antimalarials ,[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM] ,SDV:BBM ,medicine ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Animals ,lcsh:RC109-216 ,Quantitative Biology - Genomics ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,Genomics (q-bio.GN) ,030306 microbiology ,Drug candidate ,business.industry ,biology.organism_classification ,medicine.disease ,Chemical space ,FOS: Biological sciences ,Parasitology ,Functional profiling ,Distributed, Parallel, and Cluster Computing (cs.DC) ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,business ,Genome, Protozoan ,Malaria - Abstract
The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed., Comment: 43 pages, 4 figures, to appear in Malaria Journal
- Published
- 2006
- Full Text
- View/download PDF
38. Identifying Transient Binding Pockets in Protein Dynamics for Allosteric Drug Design
- Author
-
Supriyo Bhattacharya, Vinod Kasam, Hubert Li, and Nagarajan Vaidehi
- Subjects
biology ,Chemistry ,Stereochemistry ,Protein dynamics ,Allosteric regulation ,Biophysics ,Druggability ,Computational biology ,Nmr data ,Molecular dynamics ,Allosteric enzyme ,biology.protein ,Homology modeling ,G protein-coupled receptor - Abstract
Allosteric modulators that regulate the activity of the orthosteric ligands are emerging as cutting-edge strategies in drug design. Unlike orthosteric ligands, allosteric modulators bind to topographically distinct domains from those utilized by orthosteric ligands. Allosteric modulators offer unique therapeutic advantages such as high selectivity thereby causing reduced side effects. However, allosteric pockets are difficult to find since they are often formed transiently during the protein dynamics and hence could be absent in the crystal structures. This poses a challenge in designing allosteric modulators using structure based drug design methods that rely solely on crystal structures or homology models. Moreover not all transient pockets are suitable for allosteric modulation, since the allosteric pocket must communicate with the orthosteric site for functional modulation. Thus there is a dire need for novel techniques that utilize information from protein dynamics to detect allosteric sites for drug design. We present here a comprehensive method for designing allosteric modulators using protein dynamics trajectories or NMR data. We have developed a method, VoidVol, to identify transient binding cavities during protein dynamics. Next, using mutual information calculated from the dynamics trajectories, we map the allosteric pipelines communicating with the orthosteric site. The transient pockets having strong allosteric communication with the orthosteric site can be used for screening allosteric modulators. These sites can be further tested for druggability using the program FindBindSite, also developed in our laboratory. The resulting druggable sites can then be used for high-throughput screening of small-molecule database. We have validated this approach using several kinases and GPCRs with known allosteric modulators. The above methodology demonstrates how molecular dynamics can be useful for allosteric drug design. Our method is applicable to any water-soluble or membrane protein with an available crystal structure or homology model.
- Published
- 2015
- Full Text
- View/download PDF
39. DockFlow: Achieving interoperability of protein docking tools across heterogeneous Grid middleware
- Author
-
Antje Wolf, Martin Hofmann-Apitius, Vinod Kasam, Yongjian Wang, Nabeel Azam, Dimitrios Kalaitzopoulos, Moustafa Ghanem, and Publica
- Subjects
Computer Networks and Communications ,Computer science ,Distributed computing ,Interoperability ,Context (language use) ,Grid ,computer.software_genre ,Semantic grid ,Workflow ,Grid computing ,Hardware and Architecture ,Middleware ,Middleware (distributed applications) ,computer ,Software ,Workflow management system - Abstract
Enabling the seamless integration between applications executing on heterogeneous Grid middleware poses a number of challenges to both application scientists and middleware developers. We highlight some of these challenges in the context of designing and implementing DockFlow. DockFlow is a virtual screening environment integrating four Grid-based protein docking tools that execute on different Grid middleware technologies at different locations. We propose extensions that can be applied to any Grid-based workflow system to support the run-time interoperability between the available tools. The extensions are generic, and as an example we describe how they have been implemented in the InforSense workflow system. We also present experimental results that evaluate the tradeoffs between performance and usability of the proposed methods.
- Published
- 2010
- Full Text
- View/download PDF
40. Grid-enabled high throughput virtual screening
- Author
-
Jean Salzemann, Luciano Milanesi, Vincent Breton, Nicolas Jacq, Horst Schwichtenberg, Ivan Merelli, Vinod Kasam, Simon Lin, Martin Hofmann, Yannick Legré, Matthieu Reichstadt, Mahendrakar Sridhar, Giulio Rastelli, Hsin-Yen Chen, Li-Yung Ho, Marc Zimmermann, Ying-Ta Wu, Emmanuel Medernach, Astrid Maaß, H. Lee, Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), and Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
genetic structures ,drug design ,Computer science ,Distributed computing ,malaria ,02 engineering and technology ,grid ,03 medical and health sciences ,parasitic diseases ,virtual screening ,Simulation ,ComputingMilieux_MISCELLANEOUS ,large scale grids ,030304 developmental biology ,0303 health sciences ,Virtual screening ,Drug discovery ,021001 nanoscience & nanotechnology ,Grid ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,3. Good health ,Software deployment ,avian influenza ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] ,0210 nano-technology - Abstract
Large scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.