52 results on '"Vincent Rinterknecht"'
Search Results
2. List of contributors
- Author
-
Naki Akçar, Lis Allaart, James L. Allard, Nuria Andrés, Florina Ardelean, Mircea Ardelean, Lovísa Ásbjörnsdóttir, Rachael S. Avery, Ívar Örn Benediktsson, Oana Berzescu, Albertas Bitinas, Andreas Börner, Skafti Brynjólfsson, Mirosław Błaszkiewicz, Marc Calvet, Chris D. Clark, Magali Delmas, Mariana Esteves, Marcelo Fernandes, José M. Fernández-Fernández, José M. García-Ruiz, Philip L. Gibbard, Carlo Giraudi, Neil F. Glasser, Sarah L. Greenwood, Yanni Gunnell, Rimante Guobyte, Berit Oline Hjelstuen, Anna L.C. Hughes, Philip D. Hughes, Susan Ivy-Ochs, Mark D. Johnson, Olga Korsakova, Piotr Kłapyta, Amaelle Landais, Juha Pekka Lunkka, Michał Makos, Jan Mangerud, Leszek Marks, Giovanni Monegato, Filipa Naughton, Dmitry Nazarov, Olga Nosova, Marc Oliva, Alexandru Onaca, David Palacios, Henry Patton, Richard J.J. Pope, Carl Regnéll, Jürgen M. Reitner, Théo Reixach, Adriano Ribolini, Vincent Rinterknecht, Natalia Vazquez Riveiros, Teresa Rodrigues, María F. Sánchez-Goñi, Hans Petter Sejrup, Matteo Spagnolo, John Inge Svendsen, Matt D. Tomkins, Samuel Toucanne, Anna Tołoczko-Pasek, Karol Tylmann, Petru Urdea, Andrey Vashkov, Monica C.M. Winsborrow, Jamie C. Woodward, and Jerzy Zasadni
- Published
- 2023
- Full Text
- View/download PDF
3. Northern Central Europe: glacial landforms during deglaciation (18.9–14.9 ka)
- Author
-
Leszek Marks, Albertas Bitinas, Mirosław Błaszkiewicz, Andreas Börner, Rimante Guobyte, Vincent Rinterknecht, and Karol Tylmann
- Published
- 2023
- Full Text
- View/download PDF
4. Northern Central Europe: glacial landforms from the Bølling–Allerød Interstadial
- Author
-
Leszek Marks, Albertas Bitinas, Mirosław Błaszkiewicz, Andreas Börner, Rimante Guobyte, Vincent Rinterknecht, and Karol Tylmann
- Published
- 2023
- Full Text
- View/download PDF
5. Northern Central Europe: glacial landforms from the Younger Dryas Stadial
- Author
-
Leszek Marks, Albertas Bitinas, Mirosław Błaszkiewicz, Andreas Börner, Rimante Guobyte, Vincent Rinterknecht, and Karol Tylmann
- Published
- 2023
- Full Text
- View/download PDF
6. Reducing Uncertainty in Source Area Exploration of Mineralized Glacial Erratics Using Terrestrial Cosmogenic Radionuclide Dating
- Author
-
Veikko Peltonen, Seija Kultti, Niko Putkinen, Vincent Rinterknecht, Adrian Hall, and David Whipp
- Published
- 2023
- Full Text
- View/download PDF
7. Age and recurrence of coseismic rock avalanches in sierra de la sobia (Cantabrian mountains, Spain)
- Author
-
Laura Rodríguez-Rodríguez, Francisco José Fernández, Rosana Menéndez-Duarte, Valery Guillou, Beatriz Puente-Berdasco, Vincent Rinterknecht, and ASTER Team
- Subjects
Earth-Surface Processes - Abstract
This research has been funded by the Spanish Ministry of Science and Innovation (Projects: CGL2015-66997-R and PID2021-126357NB-100), and by the European Regional Development Fund (FEDER) and Plan de Ciencia Tecnología e Innovación del Principado de Asturias (PCTI) (Grant reference: FC-GRUPIN-IBI/2018/00076/040). The ASTER AMS national facility (CEREGE, Aix-en-Provence) is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” program for the “Equipements d’excellence” ASTER- CEREGE action and IRD.
- Published
- 2023
8. Glacial evolution in the Asturian area of the Puerto de Ventana (Cantabrian Mountains, NW Spain) based on 10Be Cosmic-Ray Exposure dating
- Author
-
Benjamín González Díaz, Jesús Ruiz-Fernández, Vincent Rinterknecht, José Antonio González Díaz, Cristina García-Hernández, and Aster Team
- Abstract
Scientific knowledge of the glacial evolution of the Cantabrian Mountains (NW Spain) has experienced important advances in the last four decades. There are numerous works focused on the description and mapping of glacial landforms, as well as on the application of age models based on relative chronologies and correlations with other Iberian mountain areas. However, the application of dating techniques to obtain absolute ages is very recent here, and has focused mainly on the highest altitude mountain ranges. In contrast, areas such as the Central-Western Asturian Mountains, with lower altitudes and less evident glacial footprints, have received scarce scientific attention. With the aim of establishing a solid geochronological framework of the deglaciation pattern, this study is focused on the northern slope of Puerto de Ventana. It is a paradigmatic example of the glacial evolution that occurred during the Last Glacial Cycle in the Central-Western Asturian Mountains due to its altimetric and lithostatigraphic characteristics: moderate altitudes (Ferreirúa Peak, 1977 m a.s.l.) and predominance of quartzites, sandstones and slates of Paleozoic age. During the summer of 2021 we carried out an exhaustive fieldwork campaign, from which a detailed geomorphological mapping was carried out, and a total of 17 samples for 10Be Cosmic-Ray Exposure dating purposes were collected. Sampling strategy has been based on the in situ evaluation of each of the glacial landforms identified, and the search for the most suitable glacial boulders and surfaces. Specifically, two moraines belonging to the outermost moraine complex have been dated, obtaining age ranges from 64 to 34 ky (MIS 4-3). This shows that there is an asynchrony between the Maximum Ice Extend (MIE) of the Ventana Glacier and the global Last Glacial Maximum (gLGM), as has been confirmed in other Cantabrian and Iberian Mountain areas. In the internal moraine complexes, eight samples have been obtained, which provide ages of 25-18 ky, indicating their correlation with the gLGM (MIS 2). Therefore, it would be the second glacial stage in the evolution of the Ventana Glacier. Regarding the moraine complexes located at the foot of glacial cirques, two blocks belonging to a frontal moraine arch were dated, as well as three belonging to a rock glacier. Both the chronologies of the above-mentioned moraine complex and the rock glacier, seem to indicate that they are contemporary to the interstadial warm period known as Bølling-Allerød, in which the last stages of glacial retreat would take place, as well as the stabilization of the rock glacier. Acknowledgment:Benjamín González Díaz appreciates the support of the Spanish FPU program (reference: FPU19/06583). This contribution studies the research topics addressed in the project PID2020-115269GB-I00 (MICINN, Government of Spain).
- Published
- 2022
- Full Text
- View/download PDF
9. Glacial evolution of La Seara Valley (Courel Mountains, NW Spain) based on 36Cl Cosmic-Ray Exposure dating
- Author
-
Benjamín González Díaz, Augusto Pérez-Alberti, Jesús Ruiz-Fernández, Vincent Rinterknecht, Laura Rodríguez-Rodríguez, Cristina García-Hernández, and Aster Team
- Abstract
The glacial history of the Iberian Peninsula, both glacial landforms and associated deposits, as well as the geochronology framework of the successive glacial stages within the Last Glaciation (LG), is now better understood. In turn, there is a growing body of evidence on glacial stages prior to LG. The increased use of absolute dating techniques has made these advances possible. However, some issues should be addressed to fully understand the extent and significance of past glacial processes in the Iberian Mountains. Those areas that were marginally affected by the ice during the LG (that is, located in low or moderate altitude sectors) remain unexamined in depth, with few geochronological contributions. These are more distant areas and often far from the main research focus. Moreover, the finding of glacial evidence (generally scarcer) is hindered by a dense vegetation cover. This is the case of A Seara Valley (Courel Mountains), located in the NW edge of the Iberian Peninsula, where several boulders and erosion surfaces of glacial origin were sampled for 36Cl Cosmic-Ray Exposure (CRE) dating. Nine samples were collected during the spring2019 fieldwork campaign. Additionally, the paleoglacier was reconstructed and the associated landforms were mapped. Sampling strategy was challenging because only few moraines are well-preserved, and suitable boulders for CRE dating are scarce due to the predominant outcropping of slates. Only one moraine ridge was located at the bottom of A Seara Valley (1113 m a.s.l.), in which seven samples were collected. It is a polygenic moraine, dismantled by postglacial processes. Besides, the discrepant ages obtained in some boulders show that they were probably covered by sediments. The oldest geochronological data indicates that, at least, the glacier connected with this moraine at 21 ka (MIS-2). Additionally, two samples were collected on a glacial polished threshold located in an intermediate sector of the valley, at 1243 m a.s.l. Here, the result of 19 ka points to an accelerated retreat of this glacier to its headwater (as in other glaciated areas of NW Spain), i.e., a very quick deglaciation process. Acknowledgments:Benjamín González Díaz appreciates the support of the Spanish FPU program (reference: FPU19/06583). This contribution studies the research topics addressed in the project FUO-19-112 (Courel Mountains UNESCO Global Geopark; Ribeira Sacra-Courel Local Action Group, LEADER Program of the European Union).
- Published
- 2022
- Full Text
- View/download PDF
10. Reconstructions of the last deglaciation in the Cantal and the Aubrac mountains (Massif Central, France) and paleoclimatic implications
- Author
-
Arthur Ancrenaz, Emmanuelle Defive, Stéphane Pochat, Vincent Rinterknecht, Laura Rodrìguez-Rodrìguez, Alexandre Poiraud, Irene Schimmelpfennig, Régis Braucher, Vincent Jomelli, Olivier Bourgeois, and Johannes Steiger
- Abstract
During the 20th century, the last glaciation in the Massif Central, France, was documented by several geomorphologists based on intensive field investigations. Seven paleoglaciers were identified, ranging from cirque glaciers in the Velay (4 km2) to coalescent ice caps (3500 km2) covering the Cantal, Cézallier and Monts Dore mountains. The associated glacial chronology relied mainly on morphostratigraphic observations and indirect age determination, such as radiocarbon ages from organic sediments in freshly deglaciated landscapes. Our study aims to improve this incomplete glacial chronology in order to reconstruct the paleoclimatic conditions that controlled these glaciations. We focused on the Cantal Mounts (45.0°N, 2.7°E) and Aubrac Mounts (44.6°N, 3.0°E) in the western Massif Central. Glacial landform assemblages and associated morphostratigraphy were re-investigated in the field and updated by new observations, e.g. the identification of end moraines. Three glacial stadials were recognized: the Local Last Glacier Maximum (LLGM) and two glacier re-advances. A final cirque glaciation was identified in the Cantal. We obtained an original set of exposure ages from erratic boulders and depth profiles in till at key sites using in situ produced Terrestrial Cosmogenic Nuclides 10Be, 26Al and 36Cl. Our results show comparable glacial chronologies for the Cantal ice cap and the Aubrac plateau icefield suggesting that the majority of glacial landforms and sediments were deposited during the global Last Glacial Maximum (LGM; 26.5 to 19.5 ka) and the Last Glacial-to-Interglacial Transition (LGIT; 19.5 to 11.7 ka). Advances and retreats of these two paleoglaciers were synchronous with regional climatic events reported from independant paleoclimatic proxies, especially the Heinrich Stadial 2 and the Heinrich Stadial 1. We combined two glacier modelling procedures, the theoretical glacier surface profiles and the Positive Degree-Day method, to constrain the paleoclimatic conditions (i.e. paleotemperatures and paleoprecipitations) that controlled these glacial fluctuations. The results showed changes between past and current climatic gradients with a probable enhancement of southerly moisture advection from the Mediterranean during the Heinrich Stadial 2 and drier conditions during the Heinrich Stadial 1.
- Published
- 2022
- Full Text
- View/download PDF
11. Temporal recurrence of hazardous rock avalanches in Sierra de La Sobia (Cantabrian Mountains, Spain)
- Author
-
Laura Rodríguez-Rodríguez, Francisco José Fernández-Rodríguez, Rosana Menéndez-Duarte, Valery Guillou, Beatriz Puente-Berdasco, Vincent Rinterknecht, Georges Aumaître, Karim Keddadouche, and Didier Bourlès
- Abstract
Rock avalanches are voluminous debris instabilities originated from a fallen portion of bedrock that suffers pervasive disintegration [1]. Tough rock avalanches are foreseen as low-frequency events, their volume (>106 m3) and runout distance (kilometric scale) make them extremely hazardous processes in populated mountain settings and key contributors to landscape denudation [2]. Deciphering the timing of recurrent rock avalanches is crucial to understand the triggering factors involved in their origin (e.g., role of seismicity) and for risk assessment.This study focuses on a rock avalanche cluster preserved in the southern flank of Sierra de la Sobia; a limestone massif located in the Cantabrian Mountains (North Spain). The rock avalanche cluster analyzed is spatially related to the Marabio Fault trace, which shows unequivocal evidence of Quaternary activity [3]. Rock avalanches in this area have been interpreted as coseismic based on the following evidence [4]: (i) boulder populations show fractal block-size distributions consistently with dynamic fragmentation; (ii) the kinematic analysis of local minor transverse and parallel faults points to a horizontal N-S compression consistent with the regional stress field; and (iii) slope stability analysis indicates that headscarps will turn unstable if ground acceleration peak rises to 0.10–0.15 g during an earthquake, which is within the values expected according to the 2013 European Seismic Hazard Map. A first attempt of numerical dating was performed through the U-Th technique on calcite cements found in the oldest rock avalanches. Results suggest multiple episodes of cementation during the last ~280 ka, but age dispersion hinders the age bracketing of instability events4. Here we present a collection of twenty cosmic ray exposure ages relying on the isotope Cl-36 obtained from limestone boulders sampled in the youngest accumulation bodies of the Entrago and Carrea rock avalanches. Results allow to constrain up to 5 instability events spanning the last ~22 ka and occurring at average recurrence intervals of ~3.6 ka. The youngest rock avalanche event took place 8.5 ka ago and left boulder accumulations close to the headscarp of both rock avalanches. Boulder age dispersion increases accordingly with the increase in runout distance from the headscarp, possibly due to the spatial overlapping of accumulation bodies resulting from different instability events of seismic origin. These preliminary results are promising, because if extended to other rock avalanche clusters of the Cantabrian Mountains, they could help to decipher the recurrence time of severe earthquakes in mountain settings where tectonic deformation occurs at low to moderate rates.[1] Hermanns, R. L. Encyclopedia of Natural Hazards. vol. 2 (2013).[2] Davies, T. Rock Avalanches. In Oxford Research Encyclopedia of Natural Hazard Science 58 (Oxford University Press, 2018). doi:10.1093/acrefore/9780199389407.013.326.[3] Fernández, F. J., Alonso, J. L. & Pando, L. Evidence for quaternary tectonic activity in the western cantabrian Zone (Passes of Marabio, Sobia nappe). Geogaceta 64, 1–3 (2018).[4] Fernández, F. J., Menéndez-Duarte, R., Pando, L., Rodríguez-Rodríguez, L. & Iglesias, M. Gravitational slope processes triggered by past earthquakes on the Western Cantabrian Mountains (Sierra de la Sobia, Northern Spain ). Geomorphology 390, 107867 (2021).
- Published
- 2022
- Full Text
- View/download PDF
12. Asynchronous dynamics of the last Scandinavian Ice Sheet along the Pomeranian Phase ice-marginal belt: a new scenario inferred from surface exposure 10Be dating
- Author
-
Karol Tylmann, Piotr P. Woźniak, Vincent Rinterknecht, Valery Guillou, and ASTER Team
- Abstract
We present a new set of 25 10Be surface exposure ages of boulders located on the Pomeranian moraines and of erratic boulders located directly upstream of the Pomeranian moraines in northern Poland. Together with recalculated 10Be surface exposure ages along the Pomeranian Phase ice-marginal belt from Denmark to the west to Lithuania and Belarus to the east, the full data set (n = 86) enabled us to constrain the timing of the ice front standstill and its subsequent retreat. The investigated area consists of geomorphological record along ~2000 km of the ice margin associated with the ice sheet limit correlated so far with the Late Weichselian Pomeranian Phase (Bælthav in Denmark, Baltija in Lithuania and Braslav in Belarus).We constrained the age of the ice margin position in the area occupied by the Baltic Ice Stream to ~20–19 ka, in the area occupied by the Odra Ice Stream to ~19–18 ka, in the interstream area between the Odra and the Vistula Ice Streams to ~20–19 ka, in the area occupied by the Vistula Ice Stream to ~19–18 ka, in the area occupied by the Mazury Ice Stream to ~18–17 ka, in the area occupied by the Riga Ice Stream to ~17–16 ka, and in the area occupied by the Novgorod Ice Stream to ~16–15 ka. Our best age estimates are based on: (1) a minimum age of the ice margin retreat inferred from new and recalculated 10Be ages of boulders as well as interpretation of available radiocarbon ages from organic deposits and OSL ages from sediments overlying tills, and (2) a maximum age of the ice margin stillstand and retreat inferred from interpretation of available OSL ages from sandur sediments deposited in front of the ice sheet. The asynchrony of the ice margin positions along the Pomeranian Phase ice-marginal belt shows about 3–5 ka difference between the Bælthav ice margin in Denmark and the Braslav ice margin in Belarus. We propose a new scenario of the Pomeranian Phase ice sheet evolution and a time-slice reconstruction of the last Scandinavian Ice Sheet’s southern fringe for the period ~20–15 ka.
- Published
- 2022
- Full Text
- View/download PDF
13. Major deglaciation during the Late Glacial in coastal regions of Greenland
- Author
-
Julia Nieves Garcia de Oteyza de Ciria, Marc Oliva, David Palacios, Jose Maria Fernández-Fernández, Irene Schimmelpfennig, Nuria Andrés, Dermot Antoniades, Laetitia Léanni, Vincent Jomelli, Vincent Rinterknecht, Tim Lane, and Aster Team
- Abstract
The Greenland Ice Sheet (GrIS) is a key component of the global climate system. However, our current understanding of the spatio-temporal oscillations and landscape transformation of the GrIS margins since the last glacial cycle is still incomplete. This work aims to study the deglaciation in the Zackenberg Valley, Greenland, and the origin of the derived glacial landforms. In order to reconstruct the spatial extent and geometry of past glacial phases we carried out extensive fieldwork and high-detailed geomorphological mapping, together with cosmic-ray exposure (CRE) dating to samples from erosive and depositional glacial landforms. Erratic boulders dispersed across the summits suggest that Late Quaternary glaciers filled the valleys and fjords during periods of maximum ice expansion. As glacier thickness decreased, the Zackenberg glacier was confined in the interior of the main valley, leaving several lateral moraine ridges along the slopes. The deglaciation started by ~13.7-12.5 ka and accelerated paraglacial slope processes (e.g. solifluction). By ca. 10.5 ka, the last remnants of glacial ice disappeared from the lower sections of the valley. This deglaciation chronology broadly agrees with what is observed in other sites across Greenland.
- Published
- 2022
- Full Text
- View/download PDF
14. Evidence of the largest Late Holocene mountain glacier extent insouthern and southeastern Greenland during the middle Neoglacial fromBe-10 moraine dating
- Author
-
Marie Chenet, Vincent Jomelli, Laurie Menviel, Régis Braucher, Vincent Rinterknecht, Melody Biette, Didier Swingedouw, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris 1 Panthéon-Sorbonne (UP1), Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA Research Centre), School of Biological, Earth and Environmental Sciences [Sydney] (BEES), University of New South Wales [Sydney] (UNSW)-University of New South Wales [Sydney] (UNSW), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)
- Subjects
010506 paleontology ,Archeology ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geology ,Glacier ,01 natural sciences ,13. Climate action ,Moraine ,Physical geography ,Ecology, Evolution, Behavior and Systematics ,Holocene ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
National audience
- Published
- 2022
- Full Text
- View/download PDF
15. Northern Central Europe: glacial landforms from the Last Glacial Maximum
- Author
-
Mirosław Błaszkiewicz, Albertas Bitinas, Karol Tylmann, Vincent Rinterknecht, Leszek Marks, Rimante Guobyte, and Andreas Börner
- Subjects
Glacial landform ,Last Glacial Maximum ,Physical geography ,Geology - Published
- 2022
- Full Text
- View/download PDF
16. Glacial landscapes of Northern Central Europe
- Author
-
Karol Tylmann, Albertas Bitinas, Andreas Börner, Mirosław Błaszkiewicz, Leszek Marks, Vincent Rinterknecht, and Rimante Guobyte
- Subjects
Geography ,Glacial period ,Physical geography - Published
- 2022
- Full Text
- View/download PDF
17. New Late Glacial and Holocene 36Cl and 10Be moraine chronologies from sub-Antarctic Kerguelen Archipelago
- Author
-
Didier Bourlès, Irene Schimmelpfennig, Vincent Favier, Léo Chassiot, Pierre-Henri Blard, Deborah Verfaillie, Joanna Charton, Vincent Jomelli, Georges Aumaître, Régis Braucher, Guillaume Delpech, Vincent Rinterknecht, Karim Keddadouche, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Earth and Life Institute [Louvain-La-Neuve] (ELI), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Géosciences Paris Saclay (GEOPS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Laval [Québec] (ULaval), Plateforme de géochimie isotopique ASTER-CEREGE, Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
geography ,geography.geographical_feature_category ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,15. Life on land ,Sub antarctic ,Paleontology ,13. Climate action ,Moraine ,Archipelago ,14. Life underwater ,Glacial period ,Geology ,Holocene ,ComputingMilieux_MISCELLANEOUS - Abstract
The Kerguelen Archipelago (49°S, 69°E) is an excellent location for the study of multi-millennial glacier fluctuations, since it is the largest still glaciated emerged area (552 km2 in 2001) in the sub-Antarctic sector of the Indian Ocean, where many glacio-geomorphological formations such as moraines may be dated. To investigate the so-far little-known Late Glacial and the Holocene glacier fluctuations in Kerguelen, we apply cosmogenic nuclide dating of moraines in 3 glacial valleys: Val Travers valley, Ampere glacier valley and Arago glacier valley. We use in situ 36Cl dating of the basaltic moraine boulders at the first two sites, and 10Be dating of the quartz-bearing syenite boulders at the third site. The new 36Cl and 10Be exposure ages provide time constraints over the last 17,000 years. A glacial advance was highlighted during the Late Glacial at 14.4 ± 1.4 ka ago, probably linked to the Antarctic Cold Reversal event. These results are consistent with those previously obtained on the archipelago (Jomelli et al., 2017, 2018; Charton et al., 2020) and more generally those from other the sub-Antarctic regions (e.g. Sagredo et al., 2018). This suggests that all glaciers at this latitude were broadly sensitive to this specific climatic signal. No Early nor Mid Holocene advances were evidenced in Kerguelen glacier evolution during the Holocene due to missing moraines that may have formed in these specific periods. Radiocarbon-dated peat, published in the 1990s, provides evidence of less extensive glacier extents during the Early Holocene than during the Late Holocene (Frenot et al., 1997). Finally, glaciers seem to have re-advanced only during the Late Holocene, especially within the last millennium, at ⁓1 ka, ⁓620 years and ⁓390 years (Verfaillie et al., submitted). A comparison of this new dataset with the available 10Be ages from other sub-Antarctic regions allows for the identification of 3 different glacier evolution patterns during the Holocene. The glacial fluctuations experienced by Kerguelen glaciers seems particularly uncommon, and are likely due to its singular location in the Southern Indian Ocean. Finally, climatic factors that may explain the Kerguelen glacier evolution (temperature, precipitation) are discussed. To this end, we investigate the chronology of glacier advance/retreat periods with (i) the variation in atmospheric temperatures recorded in ice cores in Antarctica and (ii) the variation in precipitation (Southern Westerly Winds, Southern Annular Mode).Charton et al., 2020 : Ant. Sci. 1-13Frenot et al., 1997 : C.R. Acad. Sci. Paris Life Sciences 320, 567-573Jomelli et al., 2017 : Quat. Sci. Rev. 162, 128-144Jomelli et al., 2018 : Quat. Sci. Rev. 183, 110-123Sagredo et al., 2018 : Quat Sci. Rev. 188, 160-166Verfaillie et al., submitted
- Published
- 2021
- Full Text
- View/download PDF
18. Evolution of the Cook Ice Cap (Kerguelen Islands) between the last centuries and 2100 ce based on cosmogenic dating and glacio-climatic modelling
- Author
-
Etienne Berthier, Joanna Charton, François Bétard, Zoe Stroebele, Irene Schimmelpfennig, Claude Legentil, Didier Bourlès, Julien Cavero, Vincent Favier, Vincent Jomelli, Raphaelle Charrassin, Karim Keddadouche, Deborah Verfaillie, Hugues Goosse, Vincent Rinterknecht, Georges Aumaître, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Pôle de recherche pour l'organisation et la diffusion de l'information géographique (PRODIG (UMR_8586 / UMR_D_215 / UM_115)), Université Paris 1 Panthéon-Sorbonne (UP1)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Grenoble Alpes (UGA), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Catholic Univ Louvain, Appl Microbiol Earth & Life Inst, Louvain La Neuve, Belgium, Partenaires INRAE, Université Paris 1 Panthéon-Sorbonne (UP1)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris 1 Panthéon-Sorbonne (UP1), UCL - SST/ELI/ELIC - Earth & Climate, and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Ecology ,Evolution ,Context (language use) ,Glacier ,Geology ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Glacier mass balance ,Surface exposure dating ,Behavior and Systematics ,13. Climate action ,Moraine ,Deglaciation ,Physical geography ,Ice caps ,Glacial period ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences - Abstract
The Cook Ice Cap (CIC) on the sub-Antarctic Kerguelen Islands recently experienced extremely negative surface mass balance. Further deglaciation could have important impacts on endemic and invasive fauna and flora. To put this exceptional glacier evolution into a multi-centennial-scale context, we refined the evolution of the CIC over the last millennium, investigated the associated climate conditions and explored its potential evolution by 2100 ce. A glaciological model, constrained by cosmic ray exposure dating of moraines, historical documents and recent direct mass balance observations, was used to simulate the ice-cap extents during different phases of advance and retreat between the last millennium and 2100 ce. Cosmogenic dating suggests glacial advance around the early Little Ice Age (LIA), consistent with findings from other sub-Antarctic studies, and the rather cold and humid conditions brought about by the negative phase of the Southern Annular Mode (SAM). This study contributes to our currently limited understanding of palaeoclimate for the early LIA in the southern Indian Ocean. Glaciological modelling and observations confirm the recent decrease in CIC extent linked to the intensification of the SAM. Although affected by large uncertainties, future simulations suggest a complete disappearance of CIC by the end of the century.
- Published
- 2021
- Full Text
- View/download PDF
19. Moraine crest or slope: An analysis of the effects of boulder position on cosmogenic exposure age
- Author
-
Matt D. Tomkins, Iestyn D. Barr, Andrew G. Stimson, Didier Bourlès, Philip D. Hughes, Ángel Rodés, Jonny Huck, Ramon Copons, Christopher M. Darvill, Jason M. Dortch, Vincent Jomelli, James L. Allard, Thomas Bishop, Raimon Pallàs, Vincent Rinterknecht, Laura Rodríguez-Rodríguez, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), and Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
geography ,geography.geographical_feature_category ,Landform ,Context (language use) ,cosmogenic nuclides ,moraine ,Geophysics ,Schmidt hammer ,Space and Planetary Science ,Geochemistry and Petrology ,Moraine ,[SDE]Environmental Sciences ,weathering ,Earth and Planetary Sciences (miscellaneous) ,geologic uncertainty ,Physical geography ,Glacial period ,Cosmogenic nuclide ,Sedimentology ,Quaternary ,ComputingMilieux_MISCELLANEOUS ,Geology ,degradation - Abstract
Terrestrial cosmogenic nuclide dating of ice-marginal moraines can provide unique insights into Quaternary glacial history. However, pre- and post-depositional exposure histories of moraine boulders can introduce geologic uncertainty to numerical landform ages. To avoid geologic outliers, boulders are typically selected based on their depositional context and individual characteristics but while these criteria have good qualitative reasoning, many have not been tested quantitatively. Of these, boulder location is critical, as boulders located on moraine crests are prioritised, while those on moraine slopes are typically rejected. This study provides the first quantitative assessment of the relative utility of moraine crest and moraine slope sampling using new and published 10Be and 36Cl ages (n = 19) and Schmidt hammer sampling (SH; n = 635 moraine boulders, ∼19,050 SH R-values) in the northern and southern Pyrenees. These data show that for many of the studied moraines, the spatial distribution of “good” boulders is effectively random, with no consistent clustering on moraine crests, ice-proximal or -distal slopes. In turn, and in contrast to prior work, there is no clear penalty to either moraine crest or moraine slope sampling. Instead, we argue that landform stability exerts a greater influence on exposure age distributions than the characteristics of individual boulders. For the studied landforms, post-depositional stability is strongly influenced by sedimentology, with prolonged degradation of matrix-rich unconsolidated moraines while boulder-rich, matrix-poor moraines stabilised rapidly after deposition. While this pattern is unlikely to hold true in all settings, these data indicate that differences between landforms can be more significant than differences at the intra-landform scale. As ad hoc assessment of landform stability is extremely challenging based on geomorphological evidence alone, preliminary SH sampling, as utilised here, is a useful method to assess the temporal distribution of boulder exposure ages and to prioritise individual boulders for subsequent analysis.
- Published
- 2021
- Full Text
- View/download PDF
20. LOCAL RECORDS OF FORMER ICE-SHEET MARGINS: GEOMORPHOLOGICAL DYNAMICS AND SEA-LEVEL EVOLUTION IN THE NAIN ARCHIPELAGO (LABRADOR, ATLANTIC CANADA)
- Author
-
Tobias Lauer, Clément Recq, Anaïs Empereur Buisson, Vincent Rinterknecht, Dominique Todisco, Najat Bhiry, and Rinterknecht, Vincent
- Subjects
[SDE] Environmental Sciences ,geography ,geography.geographical_feature_category ,Oceanography ,Archipelago ,Ice sheet ,Sea level ,Geology - Abstract
Nain archipelago (Labrador, Canada) is located along the eastern edge of the former Laurentide Ice Sheet (LIS). The geomorphological dynamics during deglaciation stand at the confluence of eustatic, isostatic and topographic driving factors. Following the post-glacial marine transgression, glacio-isostatic adjustment led to the formation of successive raised marine beaches and deltas in addition to other formations.Our approach consists in developing a multiscale analysis that includes: 1) geomorphological mapping and morphometrical analysis based on satellite imagery derived DEM and bathymetry to document the history of the archipelago in larger context and 2) local studies, to compare and relate the dynamics of multiple independent toposequences, based on sequential stratigraphy and cross-dating methods(cosmonuclides, OSL, 14C) along two E/W and N/S transects.Several types of submarine and inland moraines (De Geer, ribbed, frontal moraine), glacial lineation, and quaternary surficial deposits have been mapped. Submarine glacial valleys in outer structural troughs associated with a palaeo-grounding line (-200 m) and a concomitant lateral extension limit of till cover on shoal have also been identified. On South Aulatsivik Island, a stratigraphic section revealed a deglacial sequence of glacio-marine rythmites at the outlet of a kettle-like lake embedded between two former grounding lines, deposited between 9438 and 9244 cal. BP at +35 m, while the marine limit was observed uphill at +76 m.The orientation of the lineation and the moraine suggests diverging glacial flows at the outlet of the Fraser River fjord during the glacial maximum and a possible topographic obstacle on Dog Island. The presence of important frontal moraines parallel from the continent suggests a stillstand during deglaciation. The availability of glacio-fluvial sedimentary stocks, the persistence of stagnant-ice masses and delayed deglaciation seems to have controlled the local configuration of raised beaches, along withshore-specific dynamics. The reconstruction of former shorelines and sea-level evolution will ultimately allow us to discuss the potential role of post-glacial tilting and neotectonics and will form the basis of a geoarchaeological framework for the analysis of prehistoric settlement patterns.
- Published
- 2020
- Full Text
- View/download PDF
21. Erratics selection for cosmogenic nuclide exposure dating – an optimization approach
- Author
-
Vincent Rinterknecht, Karol Tylmann, Piotr Paweł Woźniak, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), and Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Marine isotope stage ,010506 paleontology ,geography ,geography.geographical_feature_category ,Pleistocene ,[SDE.MCG]Environmental Sciences/Global Changes ,010502 geochemistry & geophysics ,01 natural sciences ,Paleontology ,Schmidt hammer ,13. Climate action ,Moraine ,Earth and Planetary Sciences (miscellaneous) ,Glacial period ,Cosmogenic nuclide ,Ice sheet ,Weichselian glaciation ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The paper presents a method for the selection of large erratics to be sampled for terrestrial cosmogenic nuclide exposure dating (TCNED) in areas previously covered by Pleistocene ice sheets. Our approach is based on (1) a GIS analysis of an extensive dataset of erratics, (2) field inspection of pre-selected boulders and (3) Schmidt hammer (SH) testing of erratics selected for sampling. An initial database of 491 erratic boulders in NW Poland was filtered using a GIS software, based on their characteristics, digital elevation and surface geology. The secondary data set of pre-selected erratics consisted of 135 boulders \textendash i.e. proper targets for field inspection. Ground-truthing in the field resulted in the final selection of 63 boulders suitable for sampling for TCNED. These erratics are located on moraine plateaux and hills formed during the Saalian glaciation (Marine Isotope Stage 6) as well as Leszno/Brandenburg, Poznań/Frankfurt and Pomeranian Phase ice marginal belts from the Weichselian glaciation (Marine Isotope Stage 2). The GIS desk-based analysis of erratics properties resulted in a 73% reduction of the initial dataset, which demonstrates the added value of this selection technique. The field inspection of pre-selected boulders resulted in a 53% reduction of the number of boulders suitable for TCNED. SH testing of the sampled erratics provided a quantitative proxy of their surface hardness. This allowed the quantification of their weathering degree and identification of erratics potentially affected by postglacial erosion. Our systematic approach to selecting erratics and their SH testing could be a useful tool for other researchers facing the problem of choosing appropriate erratics for TCNED in areas of continental Pleistocene glaciations.
- Published
- 2019
- Full Text
- View/download PDF
22. The Last Glacial Maximum extent of the Scandinavian Ice Sheet in the Valday Heights, western Russia: Evidence from cosmogenic surface exposure dating using 10Be
- Author
-
Aleksandr Gorlach, Didier Bourlès, Vincent Rinterknecht, Katrin Kalla, Tiit Hang, Volli Kalm, Aster Team, Dmitry Subetto, Valery Guillou, Laëtitia Léanni, Marko Kohv, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, University of Tartu, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,Ice stream ,Late weichselian ,01 natural sciences ,Natural (archaeology) ,LGM NW ,Scandinavian ice sheet ,Glacial period ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,Russia Valday ,geography.geographical_feature_category ,heights ,Geology ,Last Glacial Maximum ,Cosmogenic 10Be ,Ice-sheet model ,Surface exposure dating ,[SDU]Sciences of the Universe [physics] ,Physical geography ,Ice sheet ,Chronology - Abstract
International audience; Recent synoptic studies have summarized the former spatial extent and chronology of the last Scandinavian Ice Sheet (SIS) and provide exceptional compilations of empirical datasets. The latter represent the primary source of information for the modelling community to test and develop thermomechanical ice sheet model, which are then further embedded into climatic and general circulation models. The Last Glacial Maximum (LGM) extent and chronology of the SIS across continental Europe were highlighted as being the least well-known thus generating the biggest uncertainties in the reconstruction of the ice sheet. While early geomorphological studies of the ice sheet marginal belts are numerous and detailed in western Russia, geochronological data are virtually inexistent. In an attempt to fill in this gap, we conducted a series of sampling campaigns for surface exposure dating using 10Be in the western and northwestern regions of Russia. We present here the first results from the Valday Heights where glacial deposits constitute well-preserved margins of the SIS. A total of 16 samples firmly establish the timing of the LGM in the Valday Heights at 20.1 ± 0.4 ka. The Valday Heights acted as a natural wall for the last maximum advance of the SIS during MIS2, constraining the eastern flank of the Ladoga-Ilmen-Lovat ice stream to the west of the hills. The Valday Heights were only overran by previously more extensive glacial advances as suggested by older exposure ages obtain on erratic boulders (31.2 ± 1.4 to 47.1 ± 1.5 ka) located east of the LGM limit.
- Published
- 2018
- Full Text
- View/download PDF
23. Last Glacial Maximum and Lateglacial in the Polish High Tatra Mountains - Revised deglaciation chronology based on the 10 Be exposure age dating
- Author
-
Didier Bourlès, Vincent Rinterknecht, Maurice Arnold, Michał Makos, Régis Braucher, Anna Tołoczko-Pasek, Karim Keddadouche, Georges Aumaître, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,Oldest Dryas ,[SDE.MCG]Environmental Sciences/Global Changes ,01 natural sciences ,Deglaciation ,Stadial ,Glacial period ,Younger Dryas ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Ecology, Evolution, Behavior and Systematics ,Terminal moraine ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Glacier ,13. Climate action ,Moraine ,Physical geography - Abstract
Deglaciation chronology of the Polish High Tatra Mountains has been reconstructed based on 10Be exposure age dating. Fifty-seven rock samples were collected from boulders located on the terminal and lateral moraines that limit the horizontal extent of the LGM and the Lateglacial glaciers in the Biala Woda and Sucha Woda catchments. The uncertainty-weighted mean age of 21.5 ± 2.5 ka obtained for the maximum terminal moraine in the Sucha Woda Valley indicates that the oldest preserved moraines were formed during the global LGM. The age population ranges between 15.1 ± 1.0 and 28.3 ± 2.0 ka, and suggests that glaciers reached their maximum position (LGM I) as early as 28–25 ka and the final stabilization of the form occurred much later possibly after melting of buried dead ice. The younger glacial oscillation (LGM II) occurred no later than 20.5 ka and is represented by well-preserved termino-lateral moraine systems in the Panszczyca Valley. The first Lateglacial stage (LG1) in the study area is documented in the Rybi Potok Valley at the RP1 moraine (1300 m a.s.l.), which was stable at around 16.6 ± 0.3 ka. The younger LG2 stage has no defined absolute age, however, it is constrained between 16.5 and 15.5 ka by the timing of the LG3 stage. This cold event is represented by well-formed moraines in the Roztoka/Piec Stawow Polskich, Rybi Potok and Panszczyca valleys of which exposure age indicates their deposition between 15.0 ± 0.5 and 15.6 ± 0.1 ka. The LG1, LG2 and LG3 stages likely occurred during the Oldest Dryas cold stage (Greenland Stadial 2.1a) related to the North Atlantic cooling Heinrich Event 1. The youngest glacial oscillation is evidenced by moraines in the Pusta and Panszczyca valleys. These moraines are composed of very large granitic blocks of which exposure ages often exhibit isotope inheritance. This is reflected by the youngest P3 moraine in the Panszczyca Valley with a mean age of deposition close to the LGM. The R4 moraine system in the Pusta Valley, however, indicates two oscillations phases that occurred at around 13 ka and correlates well with the timing of RP5 moraine formation in the Za Mnichem Valley. The LG4 stage is related to the climate cooling during the Younger Dryas (Greenland Stadial 1). LGM ELAs reconstructed for the Biala Woda and Sucha Woda/Panszczyca glaciers were located at 1460–1480 m a.s.l. During the Oldest Dryas stages, the ELA in the High Tatras rose from 1600 to 1650 m a.s.l. in the Rybi Potok Valley and from 1700 to 1800 m a.s.l. in the Roztoka/Piec Stawow Polskich Valley. The Younger Dryas ELA, depending on glacier's exposition, was located between 1950 and 2000 m a.s.l. Climate modelling results show that the LGM glaciers (maximum advance) could have advanced in the High Tatras when the mean annual temperature was lower than today by 11–12 °C and precipitation was reduced by 40–60%. During the Lateglacial stages the temperature decrease in the study area changed from 10 °C during the Oldest Dryas to 6 °C during the Younger Dryas and precipitation lowering decreased from −50% to −30% or even −10%, respectively compare to modern conditions.
- Published
- 2018
- Full Text
- View/download PDF
24. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating
- Author
-
Vincent Favier, Amaelle Landais, Vincent Jomelli, Fatima Mokadem, Claude Legentil, Deborah Verfaillie, Didier Bourlès, Daniel Brunstein, Irene Schimmelpfennig, Georges Aumaître, Karim Keddadouche, Vincent Rinterknecht, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Lieux, Identités, eSpaces, Activités (LISA), Université Pascal Paoli (UPP)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Unité de Recherche Great Ice, Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), DEES, University of St Andrews [Scotland], Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Archeology ,010504 meteorology & atmospheric sciences ,MIS 2-4 ,Antarctic ice sheet ,010502 geochemistry & geophysics ,01 natural sciences ,Kerguelen ,Antarctic Cold Reversal ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,Deglaciation ,36Cl cosmic-ray exposure dating ,14. Life underwater ,Glacial period ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Glacier ,Last Glacial Maximum ,Glacier fluctuations ,13. Climate action ,Moraine ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,Archipelago ,Physical geography - Abstract
International audience; Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5–12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d’Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.
- Published
- 2018
- Full Text
- View/download PDF
25. Constraining the age of superimposed glacial records in mountain environments with multiple dating methods (Cantabrian Mountains, Iberian Peninsula)
- Author
-
Jorge Sanjurjo, Vincent Rinterknecht, Sergio Llana-Fúnez, Laëtitia Léanni, Aster Team, María José Domínguez-Cuesta, Daniel Ballesteros, Laura Rodríguez-Rodríguez, Saúl González-Lemos, Montserrat Jiménez-Sánchez, Pablo Valenzuela, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Universidad de Oviedo [Oviedo], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), University of A Coruña (UDC), Identités et Différenciation de l'Environnement des Espaces et des Sociétés (IDEES), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire Homme et Société (IRIHS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Identité et Différenciation de l’Espace, de l’Environnement et des Sociétés (IDEES), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire Homme et Société (IRIHS), Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Ministerio de Economia, Industria y Cornpetitividad - Gobierno de Espana, European Regional Development Fund through project CANDELA [CGL2012-31938], PCTI - Gobierno del Principado de Asturias (Spain), European Regional Development Fund (GEOCANTABRICA) [FC-15-GRUPIN14-044], INSU/CNRS, French MESR, CEA institute, Marie Curie-Clarin COFUND program by Gobierno del Principado de Asturias through FICYT, European Union/Marie Curie Actions [ACA-17-19], Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Institut de Recherche Interdisciplinaire Homme et Société (IRIHS), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Marine isotope stage ,010506 paleontology ,Archeology ,Cantabrian mountains ,010504 meteorology & atmospheric sciences ,Pleistocene ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,01 natural sciences ,Iberian peninsula ,law.invention ,[SHS]Humanities and Social Sciences ,Be-10 surface exposure dating ,Glaciation ,law ,luminescence ,Radiocarbon dating ,Glacial period ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Last glacial maximum ,Geology ,Last Glacial Maximum ,Glacier ,Optically stimulated ,Optically stimulated luminescence ,Radiocarbon ,Surface exposure dating ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,Physical geography ,Chronology - Abstract
International audience; Numerous cases of timing differences between glacier advances recorded in mountain environments have been documented over the last decade, usually suggesting potential age conflicts between the different dating techniques. The frequent use of a single technique to date numerically a given glacial sequence makes it difficult to address to what extent age differences can be an artifact related to biased numerical age results or a paleoclimate signature. Here we present a new set of 43 numerical ages based on three dating techniques -Be-10 surface exposure dating; radiocarbon; and optically stimulated luminescence-that complement the chronology of Pleistocene glacial advances in the Porma valley, in the central Cantabrian Mountains of Spain. Results compliment previous chronologies in the area, supporting an important glacial advance during Marine Isotope Stage 3 (Stage Ila: similar to 56 ka) that culminated with the Last Glacial Maximum advance (Stage llb: similar to 33-24 ka) of MIS 2 in response to increased rainfall and solar insolation minima. Glacier fronts reached elevations as low as 1130 m a.s.l. possibly without overriding evidence related to the previous Pleistocene glacial maximum extent. Glacier recession in the Cantabrian Mountains started at 21-20 ka ago, after the global LGM. We suggest that the recession was initiated by increased insolation followed by hyper-cool and dry conditions during Heinrich Stadial 1 in response to meltwater discharges in the North Atlantic.
- Published
- 2018
- Full Text
- View/download PDF
26. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10 Be exposure dating
- Author
-
Laura Rodríguez-Rodríguez, Georges Aumaître, Didier Bourlès, Vincent Rinterknecht, Karim Keddadouche, Raimon Pallàs, María José Domínguez-Cuesta, Montserrat Jiménez-Sánchez, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Departament de Geodinamica i Geofısica, Facultat de Geologia, Universitat de Barcelona (UB), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Archeology ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Tidewater glacier cycle ,Rock glacier ,Geology ,Glacier ,01 natural sciences ,Glacier mass balance ,Oceanography ,13. Climate action ,Moraine ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,Deglaciation ,Physical geography ,Glacial period ,Younger Dryas ,Ecology, Evolution, Behavior and Systematics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used 10Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km2) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant 10Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1–16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bolling/Allerod period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the Monasterio valley seems consistent with previous 10Be chronologies reported in other mountain ranges of the Iberian Peninsula, which have been recalculated according to a common production rate and scaling scheme. However, the re-evaluation of published 10Be chronologies has highlighted the fact that glacial evidence previously ascribed to the Younger Dryas might be more limited than previously thought and the need for additional studies to characterized the extent of glaciers during the Younger Dryas cooling.
- Published
- 2017
- Full Text
- View/download PDF
27. Freshwater influx, hydrographic reorganization and the dispersal of ice-rafted detritus in the sub-polar North Atlantic Ocean during the last deglaciation
- Author
-
Vincent Rinterknecht, William E. N. Austin, and David Small
- Subjects
010506 paleontology ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,δ18O ,Paleontology ,Detritus (geology) ,01 natural sciences ,Iceberg ,Sea surface temperature ,Oceanography ,Arts and Humanities (miscellaneous) ,13. Climate action ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,14. Life underwater ,Younger Dryas ,Ice sheet ,Hydrography ,Geology ,0105 earth and related environmental sciences - Abstract
A sediment core from the north-east North Atlantic contains high-resolution co-registered foraminiferal δ18O and ice-rafted detritus (IRD) records for the last deglaciation. These reveal a distinct ice-rafting event that occurred at the time of Greenland Interstade 1d (GI-1d), a feature also seen in other high-resolution cores from the North Atlantic. The occurrence of a geographically widespread peak in IRD at ice distal sites at a time when increased freshwater flux to the surface ocean is inferred to have caused rapid cooling suggests a mechanistic link between the processes, analogous to the Younger Dryas (GS-1) cooling episode. The general absence of IRD at southern locations at other times during GI-1 when the flux of icebergs from surviving ice sheets to northern locations continued suggests that the GI-1d IRD peak represents a time of hyrdrographic reorganization which changed IRD dispersal. While numerous studies have suggested freshwater flux as a major driver of rapid climate oscillations observed around the North Atlantic during the last deglaciation, the evidence presented here both supports that mechanism and highlights the potential for rapid and major reorganization of the North Atlantic's surface hydrography to explain changes in IRD flux independently of ice sheet calving dynamics.
- Published
- 2013
- Full Text
- View/download PDF
28. Deglaciation chronology of the Galloway Hills Ice Centre, southwest Scotland
- Author
-
Vincent Rinterknecht, Delia M. Gheorghiu, and Colin K. Ballantyne
- Subjects
010506 paleontology ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Paleontology ,Last Glacial Maximum ,01 natural sciences ,Archaeology ,Arts and Humanities (miscellaneous) ,Moraine ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,Physical geography ,Stadial ,Younger Dryas ,Ice divide ,Ice sheet ,Geology ,0105 earth and related environmental sciences ,Chronology - Abstract
During the last glacial maximum, the Galloway Hills in southwest Scotland acted as a major centre of ice dispersion within the last British–Irish Ice Sheet (BIIS). Six new or recalibrated 10Be exposure ages for samples obtained from boulders near the former ice divide yielded uncertainty-weighted mean ages of 15.15 ± 0.72 ka (Lm scaling), or 15.33 ± 0.74 ka (Du scaling). These ages indicate that the former ice dome centred over the Galloway Hills had almost (or completely) disappeared by ca. 15 ka, imply prior deglaciation of all of southwest Scotland and refute suggestions that ice cover persisted in this area during the Lateglacial Interstade. They strongly support recent models advocating extensive deglaciation of all areas occupied by the last BIIS (apart from the Scottish Highlands) prior to warming at the onset of the Lateglacial Interstade (ca. 14.7 ka). Three samples obtained from boulders on a large latero-terminal moraine (Tauchers moraine) near the former ice divide yielded a weighted mean age of 11.91 ± 0.77 ka (Lm scaling) or 12.01 ± 0.78 ka (Du scaling), confirming that the moraine is of Loch Lomond (Younger Dryas) Stadial age, and suggesting that the moraine was deposited 200–500 years before the end of the stade. Copyright © 2013 John Wiley & Sons, Ltd.
- Published
- 2013
- Full Text
- View/download PDF
29. Sub-Antartic glacier extensions in the Kerguelen region (49° S, Indian Ocean) over the past 24 000 years constrained by 36Cl moraine dating
- Author
-
Georges Aumaître, Irene Schimmelpfennig, Vincent Jomelli, Fatima Mokadem, Didier Bourlès, Didier Swingedouw, Karim Keddadouche, Vincent Favier, Claude Legentil, Emmanuel Chapron, Deborah Verfaillie, Vincent Rinterknecht, Elisabeth Michel, Alain Jaouen, Daniel Brunstein, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Géographie de l'environnement (GEODE), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Paléocéanographie (PALEOCEAN), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), L'Institut polaire français Paul-Emile Victor (IPEV), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), CNRS-INSU, ANR-10-EQPX-0024,ASTER-CEREGE,PLATEFORME DE GEOCHIMIE ISOTOPIQUE ASTER/CEREGE(2010), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), ANR-10-EQPX-0024/10-EQPX-0024,ASTER-CEREGE,PLATEFORME DE GEOCHIMIE ISOTOPIQUE ASTER/CEREGE(2010), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Université Toulouse - Jean Jaurès (UT2J)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)
- Subjects
Archeology ,010504 meteorology & atmospheric sciences ,36 cl cosmic-ray exposure dating ,Climate change ,010502 geochemistry & geophysics ,01 natural sciences ,Kerguelen ,Ice core ,Deglaciation ,36Cl cosmic-ray exposure dating ,14. Life underwater ,Glacial period ,[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Ecology, Evolution, Behavior and Systematics ,Holocene ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Last Glacial Maximum ,Glacier ,Glacier fluctuations ,[SHS.GEO]Humanities and Social Sciences/Geography ,Oceanography ,13. Climate action ,Moraine ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,[SDU]Sciences of the Universe [physics] ,late glacial - Abstract
International audience; Similar to many other regions in the world, glaciers in the southern sub-polar regions are currently retreating. In the Kerguelen Islands (49°S, 69°E), the mass balance of the Cook Ice Cap (CIC), the largest ice cap in the region, experimented dramatic shrinking between 1960 and 2013 with retreat rates among the highest in the world. This observation needs to be evaluated in a long-term context. However, data on the past glacier extents are sparse in the sub-Antartic regions. To investigate the deglaciation pattern since the Last Glacial Maximum (LGM) period, we present the first 13 cosmogenic 36Cl surface exposure ages from four sites in the Kerguelen Islands. The 36Cl ages from erratic and moraine boulders span from 24.4±2.7 ka to 0.3±0.1 ka. We combined these ages with extisting glacio-marine radiocarbon ages and bathymetric data to document the temporal and spatial changes of the island's glacial history. Ice began to retreat on the main island before 24.4±2.7 ka until around the time of the Antartic Cold Reversal (ACR) period (-14.5-12.9 ka), during which the Bontemps moraine was formed by the advance of a CIC outlet glacier. Deglacication continued during the Holocene probably until 3 ka with evidence of miror advances during the last millennium. This chronology is in pace with majeor changes in the ᵟ18O in a recent West Antartica ice core record, showing that Kerguelen Islands glaciers are particularly sensitive and relevant to document climate change in the southern polar regions.
- Published
- 2017
- Full Text
- View/download PDF
30. 10Be cosmic-ray exposure dating of moraines and rock avalanches in the Upper Romanche valley (French Alps): Evidence of two glacial advances during the Late Glacial/Holocene transition
- Author
-
Vincent Rinterknecht, Fatima Mokadem, Melody Biette, Laëtitia Léanni, Marie Chenet, V. Robert, Daniel Brunstein, Erwan Roussel, Vincent Jomelli, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géographie Physique et Environnementale (GEOLAB), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique des Sciences Avancées (IPSA), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Centre National de la Recherche Scientifique (CNRS)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université Clermont Auvergne (UCA), PSL Research University (PSL)-PSL Research University (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris 1 Panthéon-Sorbonne (UP1), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Clermont Auvergne (UCA)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)
- Subjects
010506 paleontology ,Archeology ,10Be cosmic-ray exposure dating ,010504 meteorology & atmospheric sciences ,01 natural sciences ,Allerød oscillation ,Paleontology ,Deglaciation ,Younger Dryas ,Glacial period ,French Alps ,Geomorphology ,Ecology, Evolution, Behavior and Systematics ,Holocene ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Glacier ,Glacier fluctuations ,[SHS.GEO]Humanities and Social Sciences/Geography ,U-shaped valley ,Late Glacial ,13. Climate action ,Moraine - Abstract
Cosmic-ray exposure (CRE) dating of moraines allow glacier fluctuations and past climate change reconstructions. In the French Alps, there is a lack of moraine dating for the Late Glacial/Holocene transition period. Here we present a chronology of glacier advances in the Upper Romanche valley (French Alps – Massif des Ecrins) based on 10 Be CRE dating. CRE ages of moraines of 13.0 ± 1.1 ka and 12.4 ± 1.5 ka provide evidence for two stages of glacial advance or standstill at the end of the Late Glacial. The CRE dating of a rock avalanche deposit at 12.2 ± 1.5 ka is attributed to post-glacial debuttressing and reveals rapid deglaciation at the end of the Late Glacial. A CRE age of 7.1 ± 0.7 ka of a second mass-wasting, whose triggering factor is unidentified so far, indicates that up to an altitude of 2300 m a.s.l., the valley was ice-free as of ∼7 kyr at the latest. The re-evaluation of 21 moraine 10 Be CRE ages from nine glacial valleys across the Alps shows multiple glacial advances occurring at the Late Glacial/Holocene transition. These results lead to a re-evaluation of the importance of cooling events during the Allerod and the Younger Dryas in the Alps.
- Published
- 2016
- Full Text
- View/download PDF
31. Atmospheric drying as the main driver of dramatic glacier wastage in the southern Indian Ocean
- Author
-
Yoann Malbeteau, Deborah Verfaillie, Vincent Rinterknecht, Jennifer E. Kay, Hubert Gallée, Vincent Jomelli, Etienne Berthier, Martin Ménégoz, Daniel Brunstein, Young-Hyang Park, Vincent Favier, L. Ducret, Laboratoire d'Ingénierie des Matériaux (LIM), Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géographie Physique, LGP, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département Milieux et Peuplements Aquatiques, Muséum national d'Histoire naturelle (MNHN), SUPA School of Physics and Astronomy [St Andrews], University of St Andrews [Scotland], University of St Andrews. Earth and Environmental Sciences, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Scottish Oceans Institute, Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC - CNS), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), Université Grenoble Alpes (UGA), Biogéochimie-Traceurs-Paléoclimat (BTP), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SUPA School of Physics and Astronomy [University of St Andrews], University of St Andrews [Scotland]-Scottish Universities Physics Alliance (SUPA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Atmospheric circulation ,[SDE.MCG]Environmental Sciences/Global Changes ,010502 geochemistry & geophysics ,01 natural sciences ,Article ,Latitude ,Glacier mass balance ,SDG 13 - Climate Action ,Precipitation ,General ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,GB ,geography ,GE ,Multidisciplinary ,geography.geographical_feature_category ,Glacier ,3rd-DAS ,Indian ocean ,13. Climate action ,Climatology ,[SDE]Environmental Sciences ,GB Physical geography ,Environmental science ,Climate model ,Storm track ,GE Environmental Sciences - Abstract
This study was funded by IPEV-1048 GLACIOCLIM-KESAACO and LEFE-INSU KCRuMBLE programs, and the Agence Nationale de la Recherche through contract ANR-14-CE01-0001-01 (ASUMA). The ongoing retreat of glaciers at southern sub-polar latitudes is particularly rapid and widespread. Akin to northern sub-polar latitudes, this retreat is generally assumed to be linked to warming. However, no long-term and well-constrained glacier modeling has ever been performed to confirm this hypothesis. Here, we model the Cook Ice Cap mass balance on the Kerguelen Islands (Southern Indian Ocean, 49°S) since the 1850s. We show that glacier wastage during the 2000s in the Kerguelen was among the most dramatic on Earth. We attribute 77% of the increasingly negative mass balance since the 1960s to atmospheric drying associated with a poleward shift of the mid-latitude storm track. Because precipitation modeling is very challenging for the current generation of climate models over the study area, models incorrectly simulate the climate drivers behind the recent glacier wastage in the Kerguelen. This suggests that future glacier wastage projections should be considered cautiously where changes in atmospheric circulation are expected. Publisher PDF
- Published
- 2016
- Full Text
- View/download PDF
32. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget
- Author
-
Vincent Rinterknecht, Barbara Wohlfarth, D. J. Ullman, Anders E. Carlson, Marc W. Caffee, Juha Pekka Lunkka, Peter U. Clark, Glenn A. Milne, Shaun A. Marcott, J. K. Cuzzone, Biology Department, Clark University, U.S. Army Medical Materiel Development Activity, Fort Detrick, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de Mécanique des Fluides et des Solides (IMFS), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Centre National de la Recherche Scientifique (CNRS), Department of Geology and Geochemistry [Stockholm], Stockholm University, and Lawrence Livermore National Laboratory (LLNL)
- Subjects
010504 meteorology & atmospheric sciences ,Antarctic ice sheet ,sea level ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,Younger Dryas ,Sea level ,Holocene ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,ice sheets ,Last Glacial Maximum ,[SHS.GEO]Humanities and Social Sciences/Geography ,Ice-sheet model ,Geophysics ,13. Climate action ,Space and Planetary Science ,Climatology ,Ice sheet ,Geology - Abstract
The last deglaciation of the Scandinavian Ice Sheet (SIS) from ∼ 21 , 000 to 13,000 yr ago is well-constrained by several hundred 10Be and 14C ages. The subsequent retreat history, however, is established primarily from minimum-limiting 14C ages and incomplete Baltic-Sea varve records, leaving a substantial fraction of final SIS retreat history poorly constrained. Here we develop a high-resolution chronology for the final deglaciation of the SIS based on 79 10Be cosmogenic exposure dates sampled along three transects spanning southern to northern Sweden and Finland. Combining this new chronology with existing 10Be ages on deglaciation since the Last Glacial Maximum shows that rates of SIS margin retreat were strongly influenced by deglacial millennial-scale climate variability and its effect on surface mass balance, with regional modulation of retreat associated with dynamical controls. Ice-volume estimates constrained by our new chronology suggest that the SIS contributed ∼ 8 m sea-level equivalent to global sea-level rise between ∼14.5 ka and 10 ka. Final deglaciation was largely complete by ∼10.5 ka, with highest rates of sea-level rise occurring during the Bolling–Allerod, a 50% decrease during the Younger Dryas, and a rapid increase during the early Holocene. Combining our SIS volume estimates with estimated contributions from other remaining Northern Hemisphere ice sheets suggests that the Antarctic Ice Sheet (AIS) contributed 14.4 ± 5.9 m to global sea-level rise since ∼13 ka. This new constraint supports those studies that indicate that an ice volume of 15 m or more of equivalent sea-level rise was lost from the AIS during the last deglaciation.
- Published
- 2016
- Full Text
- View/download PDF
33. Expression of the Younger Dryas cold event in the Carpathian Mountains, Ukraine?
- Author
-
A. Matoshko, Sheng Xu, Derek Fabel, Yuri Gorokhovich, and Vincent Rinterknecht
- Subjects
Archeology ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Glacier ,Surface exposure dating ,Moraine ,Ridge ,Glacial period ,Physical geography ,Younger Dryas ,Ice sheet ,Cosmogenic nuclide ,Geomorphology ,Ecology, Evolution, Behavior and Systematics - Abstract
Past glacial activity in the Ukrainian Carpathian Mountains is characterized by cirques, glacial valleys and moraine ridges at altitudes between 1350 and 1850 m a.s.l. Although the geomorphology of this area was extensively studied, the deposition time of these glacial forms, and specifically the moraines was never determined. We surveyed and mapped the geomorphology of the Pozhezhevs’ka glacial Valley, which is part of the Charnogora Ridge. We used surface exposure dating and developed a data base of this area using remote sensing and Geographic Information System to understand the timing and nature of glacial event in the eastern Carpathian Mountains. Well-developed continuous lateral-frontal moraines cross the valley floor at ∼1400 m a.s.l. Ten sandstone boulders were sampled from one of these to determine the deposition time of the moraine. Samples were prepared at the Glasgow University Cosmogenic Nuclide Laboratory and analyzed at the SUERC AMS Laboratory. Surface exposure ages were calculated using the CRONUS-Earth online 10Be exposure age calculator. Our exposure ages for nine samples (UKR-2 to UKR-10) range from 11.0 ± 0.4 10Be ka to 14.5 ± 0.5 10Be ka. One sample (UKR-1) produced no current and thus no exposure age is available. The mean deposition time for the moraine ranges from 12.4 ± 0.3 to 12.9 ± 0.3 10Be ka, depending on choice of surface erosion and snow cover. These results provide the first direct indication, using surface exposure dating, of a possible glacier response in the Ukrainian Carpathian Mountains to a cold event contemporary with the Younger Dryas (YD). Together with exposure ages from other mountain ranges across Europe, the new data provide direct chronological evidence for a widespread expression of the YD cold event outside the main ice margin limits left by the former Scandinavian Ice Sheet.
- Published
- 2012
- Full Text
- View/download PDF
34. In situ cosmogenic exposure ages from the Isle of Skye, northwest Scotland: implications for the timing of deglaciation and readvance from 15 to 11 ka
- Author
-
William E. N. Austin, Maria Miguens-Rodriguez, Derek Fabel, David Small, Sheng Xu, and Vincent Rinterknecht
- Subjects
010506 paleontology ,geography ,geography.geographical_feature_category ,Paleontology ,Glacier ,Exposure age ,010502 geochemistry & geophysics ,01 natural sciences ,Archaeology ,Deposition (geology) ,Arts and Humanities (miscellaneous) ,Moraine ,Earth and Planetary Sciences (miscellaneous) ,Period (geology) ,Deglaciation ,Stadial ,Physical geography ,Ice sheet ,Geology ,0105 earth and related environmental sciences - Abstract
We present 10 in situ cosmogenic exposure ages from two moraines on the Isle of Skye. The Strollamus medial moraine was deposited during deglaciation of the Devensian ice sheet and yields a mean exposure age from five samples of 14.3 ± 0.9 ka. The moraine age indicates that a significant ice mass existed on Skye at the time of a regional readvance recorded in Wester Ross, northwest Scotland. Taken at face value the ages suggest that deglaciation did not occur until well into Greenland Interstade 1. The Slapin moraine represents the local limit of the Loch Lomond Readvance (LLR) and yields a mean exposure age from five samples of 11.5 ± 0.7 ka, which is consistent with deposition relating to the LLR. These ages suggest that the maximum extent may have been reached late in the stadial and that some glaciers may have remained active until after the climatic amelioration that marks its end. This scenario is considered unlikely given the nature of the climate during this period, which leads us to call for a locally calibrated production rate. Copyright © 2011 John Wiley & Sons, Ltd.
- Published
- 2011
- Full Text
- View/download PDF
35. Post-Younger Dryas deglaciation of the Greenland western margin as revealed by spatial analysis of lakes
- Author
-
Jessica Rogers, Yuri Gorokhovich, Vincent Rinterknecht, DEES, and University of St Andrews [Scotland]
- Subjects
010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,05 social sciences ,Geography, Planning and Development ,0507 social and economic geography ,Elevation ,Sediment ,15. Life on land ,Spatial distribution ,01 natural sciences ,Oceanography ,13. Climate action ,[SDE]Environmental Sciences ,Earth and Planetary Sciences (miscellaneous) ,Erosion ,Deglaciation ,Glacial period ,Younger Dryas ,050703 geography ,ComputingMilieux_MISCELLANEOUS ,Geology ,Sea level ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot-study area on the widest ice-free coastal margin of the south-western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd.
- Published
- 2009
- Full Text
- View/download PDF
36. Cosmogenic 10 Be ages on the Pomeranian Moraine, Poland
- Author
-
Grant M. Raisbeck, Vincent Rinterknecht, Peter U. Clark, Françoise Yiou, Leszek Marks, Jan A. Piotrowski, and Edward J. Brook
- Subjects
Archeology ,geography ,geography.geographical_feature_category ,Age groups ,Moraine ,Pomeranian ,Geology ,Mean age ,Ice sheet ,Archaeology ,Ecology, Evolution, Behavior and Systematics - Abstract
Rinterknecht, V. R., Marks, L., Piotrowski, J. A., Raisbeck, G. M., Yiou, F., Brook, E. J. & Clark, P. U. 2005 (May): Cosmogenic 10Be ages on the Pomeranian Moraine, Poland. Boreas, Vol. 34, pp. 186–191. Oslo. ISSN 0300–9483. We measured the 10Be concentrations in boulders collected from the Pomeranian Moraine in Poland, providing the first direct dating of the southern margin of the Scandinavian Ice Sheet (SIS) in the Polish Lowland. The mean age of 8 10Be ages of the Pomeranian Moraine in northwestern Poland is 14.30.8 10Be ka, while in northeastern Poland the mean age of 19 10Be ages of the moraine is 15.00.5 10Be ka. Given the excellent agreement between the two age groups, we calculate a mean age of 14.80.4 10Be ka for final deposition of the Pomeranian Moraine of northern Poland. The age of the Pomeranian Moraine suggests that the southern margin of the SIS was near its maximum extent in Poland at a younger time than previously inferred, and that retreat from the moraine at 14.80.4 10Be ka probably occurred in response to the onset of the Bolling interstade.
- Published
- 2008
- Full Text
- View/download PDF
37. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene
- Author
-
Michał Żarnowski, Régis Braucher, Michał Makos, Vincent Rinterknecht, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,Pleistocene ,[SDE.MCG]Environmental Sciences/Global Changes ,Older Dryas ,01 natural sciences ,Deglaciation ,Glacial period ,Stadial ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Geomorphology ,Ecology, Evolution, Behavior and Systematics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Glacier ,Massif ,15. Life on land ,13. Climate action ,Moraine ,Physical geography - Abstract
Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7–13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bolling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d – Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520–1530 m a.s.l. and was located approximately 100–150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11–12 °C and precipitation was reduced by 40–60%. This is in accordance with LGM conditions previously reported for the High Tatras. During the LG1 and LG2 stages the temperature decrease in the study area reached 10 °C and precipitation was lower by ∼30% compare to modern conditions. This resulted in slightly higher accumulation (20–30%) in the Western Tatra Mountains compare to the High Tatra Mountains.
- Published
- 2016
- Full Text
- View/download PDF
38. Timing of the last deglaciation in Belarus
- Author
-
Grant M. Raisbeck, Irina E. Pavlovskaya, Vincent Rinterknecht, Françoise Yiou, Peter U. Clark, and Edward J. Brook
- Subjects
010506 paleontology ,Archeology ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Climate change ,Geology ,Last Glacial Maximum ,01 natural sciences ,law.invention ,13. Climate action ,Moraine ,Stage (stratigraphy) ,law ,Deglaciation ,Radiocarbon dating ,Physical geography ,Ice sheet ,Geomorphology ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Chronology - Abstract
We measured 10Be concentrations in boulders collected from the Orsha and Braslav moraines, associated with the Last Glacial Maximum extent and a recessional stage of the Scandinavian Ice Sheet (SIS), respectively, providing a direct dating of the southeastern sector of the ice-sheet margin in Belarus. By combining these data with selected existing radiocarbon ages, we developed a chronology for the last deglaciation of Belarus. The northeastern part of the country remained ice free until at least 19.2±0.2 cal. kyr BP, whereas the northwestern part of the country was ice free until 22.3±1.5 cal. kyr BP. A lobate ice margin subsequently advanced to its maximum extent and deposited the Orsha Moraine. The ice margin retreated from this moraine at 17.7±2.0 10Be kyr to a position in the northern part of the country, where it deposited the Braslav Moraine. Subsequent ice-margin retreat from that moraine at 13.1±0.5 10Be kyr represented the final deglaciation of Belarus. Direct dating of these moraines better constrains the relation of ice-margin positions in Belarus to those in adjacent countries as well as the SIS response to climate change.
- Published
- 2007
- Full Text
- View/download PDF
39. Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data
- Author
-
Yves Frenot, Marie Dumont, Vincent Favier, Vincent Rinterknecht, Daniel Brunstein, Martin Ménégoz, Adrien Gilbert, Hubert Gallée, Deborah Verfaillie, Vincent Jomelli, Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Météo-France Direction Interrégionale Sud-Est (DIRSE), Météo-France, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), DEES, University of St Andrews [Scotland], Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), IPEV program 1048 (GLACIOCLIM-KESAACO), INSU program LEFE-KCRuMBLE, Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), University of St Andrews. Earth and Environmental Sciences, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Scottish Oceans Institute, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Météo France, Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Université Grenoble Alpes (UGA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), and Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
GB ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,NDAS ,Elevation ,Glacier ,Albedo ,010502 geochemistry & geophysics ,Spatial distribution ,Snow ,01 natural sciences ,QE Geology ,Glacier mass balance ,Geophysics ,13. Climate action ,Climatology ,GB Physical geography ,[SDE]Environmental Sciences ,Snow line ,QE ,Moderate-resolution imaging spectroradiometer ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Date of Acceptance: 28/02/2015 The retreat of glaciers in the Kerguelen Islands (49°S, 69°E) and their associated climatic causes have been analyzed using field data and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images to validate a positive degree-day (PDD) model forced by data from local meteorological stations. Mass balance measurements made during recent field campaigns on the largest glacier of the Cook Ice Cap were compared to data from the early 1970s, providing a 40 year view of the differences in the spatial distribution of surface mass balance (SMB). To obtain additional regional data for the validation of our models, we analyzed MODIS images (2000-2012) to determine if our model was capable of reproducing variations in the transient snow line. The PDD model correctly simulated the variations in the snow line, the spatial variations in the SMB, and its trend with elevation. Yet current SMB values diverge from their classic linear representation with elevation, and stake data at high altitudes now display more negative SMB values than expected. By analyzing MODIS albedo, we observed that these values are caused by the disappearance of snow and associated feedback on melt rates. In addition, certain parts of Ampere Glacier could not be reproduced by the surface energy balance model because of overaccumulation due to wind deposition. Finally, the MODIS data, field data, and our models suggest that the acceleration of glacier wastage in Kerguelen is due to reduced net accumulation and an associated rise in the snow line since the 1970s. Publisher PDF
- Published
- 2015
- Full Text
- View/download PDF
40. Cosmogenic Be dating of the Salpausselk� I Moraine in southwestern Finland
- Author
-
Françoise Yiou, Silvio Tschudi, Peter U. Clark, Grant M. Raisbeck, Vincent Rinterknecht, Juha P. Lunkka, Edward J. Brook, SUPA School of Physics and Astronomy [University of St Andrews], University of St Andrews [Scotland]-Scottish Universities Physics Alliance (SUPA), Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010506 paleontology ,Archeology ,Global and Planetary Change ,geography ,Varve ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,[SDE.MCG]Environmental Sciences/Global Changes ,Geology ,Mean age ,01 natural sciences ,Moraine ,[SDE]Environmental Sciences ,Physical geography ,Stadial ,Younger Dryas ,Ice sheet ,Quaternary ,Geomorphology ,ComputingMilieux_MISCELLANEOUS ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences - Abstract
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselka I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data ( n = 13 ) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.
- Published
- 2004
- Full Text
- View/download PDF
41. A major advance of tropical Andean glaciers during the Antarctic cold reversal
- Author
-
Feng He, Léo Martin, L. Leanni, Delphine Grancher, Bernard Francou, Régis Braucher, Myriam Khodri, Pierre-Henri Blard, Mathias Vuille, Vincent Jomelli, H. Fonseca, Vincent Favier, Daniel Brunstein, Zhengyu Liu, Vincent Rinterknecht, Didier Bourlès, Jorge Luis Ceballos, Bette L. Otto-Bliesner, Christopher M. Colose, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric and Environmental Sciences [Albany] (DAES), University at Albany [SUNY], State University of New York (SUNY)-State University of New York (SUNY), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Processus de la variabilité climatique tropicale et impacts (PARVATI), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN), Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), National Center for Atmospheric Research [Boulder] (NCAR), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SUPA School of Physics and Astronomy [University of St Andrews], University of St Andrews [Scotland]-Scottish Universities Physics Alliance (SUPA), Meteorología y Estudios Ambientales ? IDEAM, ANR-10-BLAN-0608,ELPASO,El-Niño : leçons du passé à partir de simulations et d'observations(2010), Université Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
- Subjects
010506 paleontology ,010504 meteorology & atmospheric sciences ,Climate ,[SDE.MCG]Environmental Sciences/Global Changes ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Older Dryas ,Colombia ,01 natural sciences ,Helium ,Antarctic Cold Reversal ,Isotopes ,Deglaciation ,Ice Cover ,Glacial period ,Younger Dryas ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,geography ,Multidisciplinary ,geography.geographical_feature_category ,Glacier ,Cold Temperature ,Oceanography ,Surface exposure dating ,13. Climate action ,Moraine ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,Beryllium ,Geology - Abstract
A moraine chronology determined by surface exposure dating shows that glaciers in the northern tropical Andes expanded to a larger extent during the Antarctic cold reversal (14,500 to 12,900 years ago) than during the Younger Dryas stadial (12,800 to 11,500 years ago), contrary to previous studies; as a result, previous chronologies and climate interpretations from tropical glaciers may need to be revisited. The Younger Dryas was a cold period immediately prior to the present warm interglacial period. There is clear evidence that it occurred throughout much of the Northern Hemisphere, but its global extent remains debatable. Prior work in the tropical Andes suggested extensive glacial advances during the Younger Dryas. Vincent Favier and colleagues present new cosmogenic dating of glacial deposits — and a reassessment of existing datasets from other glaciated Andean landscapes — to show that instead, maximal glacial advances took place in the preceding Antarctic cold reversal. Rather than a major advance, the Younger Dryas now appears to have been associated with modest glacial retreat. The Younger Dryas stadial, a cold event spanning 12,800 to 11,500 years ago, during the last deglaciation, is thought to coincide with the last major glacial re-advance in the tropical Andes1. This interpretation relies mainly on cosmic-ray exposure dating of glacial deposits. Recent studies, however, have established new production rates2,3,4 for cosmogenic 10Be and 3He, which make it necessary to update all chronologies in this region1,5,6,7,8,9,10,11,12,13,14,15 and revise our understanding of cryospheric responses to climate variability. Here we present a new 10Be moraine chronology in Colombia showing that glaciers in the northern tropical Andes expanded to a larger extent during the Antarctic cold reversal (14,500 to 12,900 years ago) than during the Younger Dryas. On the basis of a homogenized chronology of all 10Be and 3He moraine ages across the tropical Andes, we show that this behaviour was common to the northern and southern tropical Andes. Transient simulations with a coupled global climate model suggest that the common glacier behaviour was the result of Atlantic meridional overturning circulation variability superimposed on a deglacial increase in the atmospheric carbon dioxide concentration. During the Antarctic cold reversal, glaciers advanced primarily in response to cold sea surface temperatures over much of the Southern Hemisphere. During the Younger Dryas, however, northern tropical Andes glaciers retreated owing to abrupt regional warming in response to reduced precipitation and land–surface feedbacks triggered by a weakened Atlantic meridional overturning circulation. Conversely, glacier retreat during the Younger Dryas in the southern tropical Andes occurred as a result of progressive warming, probably influenced by an increase in atmospheric carbon dioxide. Considered with evidence from mid-latitude Andean glaciers16, our results argue for a common glacier response to cold conditions in the Antarctic cold reversal exceeding that of the Younger Dryas.
- Published
- 2014
- Full Text
- View/download PDF
42. Unstable ice stream in Greenland during the Younger Dryas cold event
- Author
-
Vincent Rinterknecht, Didier Bourlès, Valérie Masson-Delmotte, Daniel Brunstein, Vincent Favier, Romain Schläppy, Vincent Jomelli, L. Leanni, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), School of Physical Sciences [Milton Keynes], The Open University [Milton Keynes] (OU), CLIPS, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), DEES, University of St Andrews [Scotland], Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris 1 Panthéon-Sorbonne (UP1), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,geography ,geography.geographical_feature_category ,Ice stream ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geology ,Antarctic sea ice ,Arctic ice pack ,Ice shelf ,Iceberg ,Oceanography ,Fast ice ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,Sea ice ,[SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology ,Ice sheet ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Past, present, and future ice sheet stability is closely linked to the dynamic behavior of major draining ice streams and surrounding ice shelves. While short observational records document the recent variability and acceleration of ice streams, the long-term dynamics of ice streams remain poorly documented. Here, we date the Pjetursson’s Moraine on Disko Island, Greenland, to 12.2 ± 0.6 ka and demonstrate that the Jakobshavn Isbræ (JI) ice stream collapsed during the middle of the Younger Dryas (YD) cold interval. We suggest that this collapse was due to the incursion of warm subsurface water under the ice shelf fronting the JI ice stream, as well as increased surface-air temperature and sea-surface temperature seasonality starting at the beginning of the YD cold interval. The triggered acceleration of the land-based JI and the delivery of icebergs into Disko Bugt potentially contributed to Heinrich Event 0 at the end of the YD. The collapse of the JI ice stream 12.2 ± 0.6 ka ago demonstrates that calving marine-based ice margins can respond rapidly to environmental changes. It provides a new benchmark for marine-terminating ice stream models.
- Published
- 2014
- Full Text
- View/download PDF
43. Provenance of North Atlantic ice-rafted debris during the last deglaciation--A new application of U-Pb rutile and zircon geochronology
- Author
-
Peter A. Cawood, William E. N. Austin, Randall R. Parrish, David Small, Vincent Rinterknecht, Durham University, School of Earth Sciences [Bristol], University of Bristol [Bristol], DEES, and University of St Andrews [Scotland]
- Subjects
geography ,Provenance ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Metamorphism ,Geology ,Older Dryas ,010502 geochemistry & geophysics ,01 natural sciences ,Paleontology ,13. Climate action ,Geochronology ,[SDE]Environmental Sciences ,Deglaciation ,Ice sheet ,Metamorphic facies ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Zircon - Abstract
Understanding the provenance of ice-rafted debris (IRD) provides a means to link the behavior of individual ice sheets to proxy records of climate change. Here we present a new approach to determining IRD provenance using U-Pb geochronology of detrital minerals rutile and zircon. We characterize potential source regions from Scotland using detrital rutile from modern fluvial systems, and demonstrate that their unimodal rutile U-Pb ages reflect the timing of the last amphibolite facies metamorphism of the source rocks, imparting a distinctive source signature. Contrasts between these spectra and the bimodal IRD (ca. 470 Ma and ca. 1800–2000 Ma) rutile age signatures rule out Scotland as the sole source and suggest a Laurentian contribution; IRD zircon ages further support this view. U-Pb mineral dating has the potential to provide new insight on IRD provenance, because it allows linkage between IRD and individual source terranes based on their differing magmatic and tectonothermal histories. The occurrence of Laurentian-sourced IRD proximal to Scotland demonstrates widespread and rapid dispersal of debris across the subpolar North Atlantic during the Older Dryas cold oscillation, and implicates the Atlantic meridional overturning circulation as a control. This highlights the sensitivity of some IRD records to rapid climate change during the last deglaciation and supports the interpretation of Heinrich events as time-parallel marker horizons.
- Published
- 2013
- Full Text
- View/download PDF
44. Late Quaternary ice sheet extents in northeastern Germany inferred from surface exposure dating
- Author
-
Jean-Luc Mercier, Vincent Rinterknecht, Margot Böse, Régis Braucher, Didier Bourlès, Braucher, Régis, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), and Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)
- Subjects
010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,Solifluction ,01 natural sciences ,law.invention ,[SDU] Sciences of the Universe [physics] ,law ,Radiocarbon dating ,Meltwater ,Geomorphology ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Geology ,Surface exposure dating ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Moraine ,Physical geography ,Ice sheet ,Quaternary ,Urstromtal - Abstract
We determined in situ cosmogenic 10 Be ages for 11 boulders on the Hoher Flaming ice marginal belt and five boulders on the Gerswalder moraine, a recessional moraine of the Pomeranian stage. Previous time estimations for the deposition of these moraines along the southern margin of the Scandinavian Ice Sheet (SIS) in northeastern Germany are mostly based on geomorphology and stratigraphy, and on few radiocarbon dates and recently published surface exposure ages in the case of the Pomeranian moraine. Our new exposure ages range from 21.7 ± 1.2 10 Be ka to 172.6 ± 6.0 10 Be ka for the Hoher Flaming ice marginal belt. The wide range of exposure ages may reflect episodic ice marginal belt modification due to intensified erosion by meltwater channeled in the Baruther Urstromtal, (ice marginal valley) accompanied by long-lasting erosional processes like solifluction and aeolian deflation. For the Gerswalder moraine, our new exposure ages range from 12.3 ± 0.6 10 Be ka to 16.6 ± 1.0 10 Be ka. Excluding the youngest sample (BER-97-03), we calculated error-weighted mean ages ranging from 15.2 ± 0.5 10 Be ka to 16.0 ± 0.5 10 Be ka ( n = 4), depending on choice of scaling methods, surface erosion and snow cover. These results firmly establish the position of the southern margin of the SIS in northeastern Germany during the Gerswalder substage a recessional phase of the Pomeranian stage.
- Published
- 2012
45. Deglaciation
- Author
-
Vincent Rinterknecht
- Published
- 2011
- Full Text
- View/download PDF
46. Preliminary 10 Be chronology for the last deglaciation of the western margin of the Greenland Ice Sheet
- Author
-
Joerg M. Schaefer, Marc W. Caffee, Vincent Rinterknecht, Yuri Gorokhovich, DEES, University of St Andrews [Scotland], Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], and Purdue University [West Lafayette]
- Subjects
010506 paleontology ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Ice stream ,[SDE.MCG]Environmental Sciences/Global Changes ,Paleontology ,Greenland ice sheet ,Glacier morphology ,01 natural sciences ,Ice shelf ,Ice-sheet model ,Oceanography ,Arts and Humanities (miscellaneous) ,Greenland ice core project ,13. Climate action ,[SDE]Environmental Sciences ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,Physical geography ,Ice sheet ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ∼6 cm a−1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley & Sons, Ltd.
- Published
- 2009
- Full Text
- View/download PDF
47. Timing of the last deglaciation in Lithuania
- Author
-
Grant M. Raisbeck, Edward J. Brook, Peter U. Clark, Françoise Yiou, Vincent Rinterknecht, Albertas Bitinas, CSNSM AS, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
010506 paleontology ,Archeology ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Climate change ,01 natural sciences ,law.invention ,law ,Deglaciation ,Glacial period ,Radiocarbon dating ,Geomorphology ,PRODUCTION-RATES ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,POLAND ,Geology ,BE-10 ,Surface exposure dating ,13. Climate action ,Moraine ,Physical geography ,Ice sheet ,Chronology - Abstract
Boulders from the Gruda Moraine, which is associated with the maximum extent of the Scandinavian Ice Sheet (SIS) during the last glaciation, and the Baltija (also referred to as the South Lithuanian), the Middle and North Lithuanian moraines, which are associated with recessional stages of the SIS, were sampled for surface exposure dating using (10)Be. By combining these data with existing radiocarbon ages, we developed a chronology for the retreat of the SIS margin in Lithuania. Our new (10)Be ages suggest that the SIS margin began to retreat from its maximum extent at 18.3 +/- 0.8 (10)Be kyr. Based on a probable correlation of the Baltija Moraine with the Pomeranian Moraine in Poland, we infer that the Baltija Moraine was formed following a re-advance of the SIS margin. The ice margin retreated from the Baltija position at 14.0 +/- 0.4 (10)Be kyr. The SIS-margin retreat paused at least two more times to form the Middle Lithuanian Moraine at 13.5 +/- 0.6 (10)Be kyr and the North Lithuanian Moraine (tentatively correlated to the Pajuris Moraine) at 13.3 +/- 0.7 (10)Be kyr. Subsequent ice-margin retreat from the North Lithuanian Moraine represented the final deglaciation of Lithuania. Direct dating of these moraines better constrains the relation of ice-margin positions in Lithuania to those in adjacent countries as well as the SIS response to climate change.
- Published
- 2008
- Full Text
- View/download PDF
48. 'Cosmogenic 10Be ages on the Pomeranian moraine, Poland':Reply to comments
- Author
-
Grant M. Raisbeck, Jan A. Piotrowski, Edward J. Brook, Peter U. Clark, Vincent Rinterknecht, Françoise Yiou, and Leszek Marks
- Subjects
Archeology ,geography ,geography.geographical_feature_category ,Moraine ,Pomeranian ,Geology ,Archaeology ,Ecology, Evolution, Behavior and Systematics - Published
- 2006
- Full Text
- View/download PDF
49. The last deglaciation in Northern Germany
- Author
-
Vincent Rinterknecht
- Subjects
Deglaciation ,Physical geography ,Geology ,Earth-Surface Processes - Published
- 2012
- Full Text
- View/download PDF
50. Testing the Lake Agassiz meltwater trigger for the Younger Dryas
- Author
-
George H. Denton, Timothy G. Fisher, K. C. Glover, Joerg M. Schaefer, Nicholas Waterson, Irka Hajdas, Henry M. Loope, Wallace S. Broecker, Thomas V. Lowell, Gary C. Comer, Vincent Rinterknecht, and James T. Teller
- Subjects
geography ,geography.geographical_feature_category ,Flood myth ,Structural basin ,Older Dryas ,Oceanography ,parasitic diseases ,General Earth and Planetary Sciences ,Thermohaline circulation ,Younger Dryas ,Ice sheet ,Glacial lake ,Meltwater ,Geology - Abstract
Meltwater drainage from glacial Lake Agassiz has been implicated for nearly 15 years as a trigger for thermohaline circulation changes producing the abrupt cold period known as the Younger Dryas. On the basis of initial field reconnaissance to the lake's proposed outlets, regional geomorphic mapping, and preliminary chronological data, an alternative hypothesis may be warranted. Should ongoing data collection continue to support preliminary results, it could be concluded that Lake Agassiz did not flood catastrophically into the Lake Superior basin preceding the Younger Dryas (Figure 1). All preliminary findings imply a retreating ice sheet margin approximately 1000 years younger than previously thought, which would have blocked key meltwater corridors at the start of the Younger Dryas.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.