22 results on '"Vincent Lapeyrere"'
Search Results
2. Photonic chip for visible interferometry: laboratory characterization and comparison with the theoretical model
- Author
-
Manon Lallement, Sylvestre Lacour, Elsa Huby, Guillermo Martin, Kévin Barjot, Guy S. Perrin, Daniel Rouan, Vincent Lapeyrere, Sébastien B. Viévard, Olivier Guyon, Julien Lozi, Vincent Déo, Takayuki Kotani, Cécil Pham, Cédric Cassagnettes, Adrien Billat, Nick Cvetojevic, and Franck Marchis
- Published
- 2022
3. MOLsphere and pulsations of the Galactic Center’s red supergiant GCIRS 7 from VLTI/GRAVITY
- Author
-
Karine Perraut, Xavier Haubois, Jason Dexter, Christian Straubmeier, Th. Henning, F. H. Vincent, Linda J. Tacconi, Eckhard Sturm, Idel Waisberg, Stefan Hippler, Guy Perrin, Vincent Lapeyrere, J. Sanchez-Bermudez, Felix Widmann, Andreas Kaufer, Thomas Ott, A. Drescher, O. Pfuhl, Julien Woillez, G. Rodríguez-Coira, Laurent Jocou, Jean-Philippe Berger, Eric Gendron, Lieselotte Jochum, Gérard Zins, S. von Fellenberg, Paulo J. V. Garcia, Sylvestre Lacour, Stefan Gillessen, M. Nowak, N. M. Förster Schreiber, Julia Stadler, Matthew Horrobin, Feng Gao, António Amorim, Frank Eisenhauer, Pierre Léna, Odele Straub, J.-B. Le Bouquin, Erich Wiezorrek, M. Habibi, Reinhard Genzel, Silvia Scheithauer, H. Bonnet, Thibaut Paumard, Pierre Kervella, A. Jiménez-Rosales, Andreas Eckart, Ekkehard Wieprecht, S. Yazici, T. Taro Shimizu, M. Bauböck, Roberto Abuter, Jinyi Shangguan, Wolfgang Brandner, Yann Clénet, P. T. de Zeeuw, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Département de Chimie Moléculaire - Ingéniérie et Intéractions BioMoléculaires (DCM - I2BM), Département de Chimie Moléculaire (DCM), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Extraterrestrische Physik (MPE), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Wageningen University and Research [Wageningen] (WUR), European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), Poznan Technical University, Max Planck Institute for Astronomy (MPIA), GRAVITY Collaboration, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics [LESIA], Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 [RNMCD], Département de Chimie Moléculaire - Ingéniérie et Intéractions BioMoléculaires [DCM - I2BM], Max-Planck-Institut für Extraterrestrische Physik [MPE], Laboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA], Wageningen University and Research [Wageningen] [WUR], European Southern Observatory [Santiago] [ESO], European Southern Observatory [ESO], Institut Européen des membranes [IEM], Institut de Planétologie et d'Astrophysique de Grenoble [IPAG], Max Planck Institute for Astronomy [MPIA], Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universidade de Lisboa = University of Lisbon (ULISBOA), Centro de Astrofísica e Gravitação (CENTRA), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Leiden University, University of Colorado [Boulder], Universität zu Köln = University of Cologne, Max Planck Institute for Radio Astronomy, Universidade do Porto = University of Porto, University of California [Berkeley] (UC Berkeley), University of California (UC), Institute of Astronomy [Cambridge], University of Cambridge [UK] (CAM), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Weizmann Institute of Science [Rehovot, Israël], Sciences, EDP, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Européen des membranes (IEM), and Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Galaxy: nucleus ,techniques: interferometric ,stars: individual: GCIRS 7 ,stars: fundamental parameters ,supergiants ,Astrophysics - astrophysics of galaxies ,Extinction (astronomy) ,Continuum (design consultancy) ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,01 natural sciences ,Astrophysics - solar and stellar astrophysics ,0103 physical sciences ,Red supergiant ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Photosphere ,010308 nuclear & particles physics ,Galactic Center ,Astronomy and Astrophysics ,Stars ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Supergiant ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
GCIRS 7, the brightest star in the Galactic central parsec, formed $6\pm2$ Myr ago together with dozens of massive stars in a disk orbiting the central black-hole. It has been argued that GCIRS 7 is a pulsating body, on the basis of photometric variability. We present the first medium-resolution ($R=500$), K-band spectro-interferometric observations of GCIRS 7, using the GRAVITY instrument with the four auxiliary telescopes of the ESO VLTI. We looked for variations using two epochs, namely 2017 and 2019. We find GCIRS 7 to be moderately resolved with a uniform-disk photospheric diameter of $\theta^*_\text{UD}=1.55 \pm 0.03$ mas ($R^*_\text{UD}=1368 \pm 26$ $R_\odot$) in the K-band continuum. The narrow-band uniform-disk diameter increases above 2.3 $\mu$m, with a clear correlation with the CO band heads in the spectrum. This correlation is aptly modeled by a hot ($T_\text{L}=2368\pm37$ K), geometrically thin molecular shell with a diameter of $\theta_\text{L}=1.74\pm0.03$ mas, as measured in 2017. The shell diameter increased ($\theta_\text{L}=1.89\pm0.03$ mas), while its temperature decreased ($T_\text{L}=2140\pm42$ K) in 2019. In contrast, the photospheric diameter $\theta^*_\text{UD}$ and the extinction up to the photosphere of GCIRS 7 ($A_{\mathrm{K}_\mathrm{S}}=3.18 \pm 0.16$) have the same value within uncertainties at the two epochs. In the context of previous interferometric and photo-spectrometric measurements, the GRAVITY data allow for an interpretation in terms of photospheric pulsations. The photospheric diameter measured in 2017 and 2019 is significantly larger than previously reported using the PIONIER instrument ($\theta_*=1.076 \pm 0.093$ mas in 2013 in the H band). The parameters of the photosphere and molecular shell of GCIRS 7 are comparable to those of other red supergiants that have previously been studied using interferometry., Comment: 12 pages, 11 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics (A&A)
- Published
- 2021
4. The mass of β Pictoris c from β Pictoris b orbital motion
- Author
-
Matthias Samland, Anne-Lise Maire, David Mouillet, Andreas Eckart, Valentin Christiaens, Julien Woillez, Sarah Blunt, K. Perraut, T. Paumard, T. Ott, Myriam Benisty, E. Nasedkin, A. Mérand, Z. Hubert, Stefan Hippler, Frank Eisenhauer, Roderick Dembet, Gilles Otten, F. H. Vincent, Pierre Léna, Jinyi Shangguan, Miriam Keppler, Ekkehard Wieprecht, G. Bourdarot, M. Houllé, Odele Straub, Alexander J. Bohn, M. Nowak, Felix Widmann, K. Ward-Duong, P. T. de Zeeuw, J.-B. Le Bouquin, Julia Stadler, T. Taro Shimizu, A. Boccaletti, David K. Sing, Ji Wang, Linda J. Tacconi, Arthur Vigan, Elodie Choquet, Jens Kammerer, Claudia Paladini, J. Rameau, R. J. García López, Xavier Haubois, E. Rickman, Guy Perrin, J. P. Berger, Wolfgang Brandner, Eric Gendron, G. Heißel, H. Bonnet, Laurent Jocou, A. Cridland, S. D. von Fellenberg, Pierre Kervella, R. Asensio-Torres, G. Rousset, O. Pfuhl, Erich Wiezorrek, M. Bonnefoy, Y. Clénet, Senol Yazici, R. Abuter, John D. Monnier, Laura Kreidberg, Paulo J. V. Garcia, Zafar Rustamkulov, Tomas Stolker, Gilles Duvert, Paul Mollière, H. Beust, Eckhard Sturm, António Amorim, Anne-Marie Lagrange, Paola Caselli, Christian Straubmeier, Th. Henning, G. Chauvin, Benjamin Charnay, Sylvestre Lacour, E. F. van Dishoeck, Jason Dexter, Stefan Gillessen, André Young, D. Lutz, V. Coudé du Foresto, R. Genzel, Feng Gao, J. H. Girard, Faustine Cantalloube, L. Rodet, Sasha Hinkley, A. Drescher, Vincent Lapeyrere, Laurent Pueyo, Matthew Horrobin, M. L. Bolzer, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), MacoPharma, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Caltech Department of Astronomy [Pasadena], California Institute of Technology (CALTECH), Departamento de Astronomía, Universidad de Chile = University of Chile [Santiago] (UCHILE), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, European Southern Observatory (ESO), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Max-Planck-Institut für Astronomie (MPIA), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Service de Pathologie respiratoire et allergologie [CHU Limoges], CHU Limoges, University of Auckland [Auckland], the GRAVITY Collaboration, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Harvard University-Smithsonian Institution, and Université de Genève = University of Geneva (UNIGE)
- Subjects
Astrophysics - instrumentation and methods for astrophysics ,planets and satellites: detection ,010504 meteorology & atmospheric sciences ,Astrophysics ,Astrophysics - Earth and planetary astrophysics ,01 natural sciences ,High angular resolution ,Planet ,instrumentation: high angular resolution ,0103 physical sciences ,Beta Pictoris ,10. No inequality ,instrumentation: interferometers ,010303 astronomy & astrophysics ,Instrumentation ,0105 earth and related environmental sciences ,Orbital elements ,Physics ,Interferometers ,Astronomy and Astrophysics ,Astrometry ,Exoplanet ,Radial velocity ,Detection ,Space and Planetary Science ,Orbital motion ,Planets and satellites ,Eccentricity (mathematics) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Aims.We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet.Methods.We combined previous astrometry ofβPictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion ofβPictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet,βPictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations.Results.From the astrometry of planet b only, we can (i) detect the presence ofβPictoris c and (ii) constrain its mass to 10.04−3.10+4.53MJup. If one adds the astrometry ofβPictoris c, the mass is narrowed down to 9.15−1.06+1.08MJup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89−0.75+0.75MJup. With a semimajor axis of 2.68 ± 0.02 au, a period of 1221 ± 15 days, and an eccentricity of 0.32 ± 0.02, the orbital parameters ofβPictoris c are now constrained as precisely as those ofβPictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets’ dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet.
- Published
- 2021
5. FIRST, a pupil-remapping fiber interferometer at the Subaru Telescope: on-sky results
- Author
-
Elsa Huby, Olivier Guyon, Vincent Lapeyrere, Franck Marchis, Takayuki Kotani, Guillermo Martin, Julien Lozi, Kevin Barjot, Sébastien Vievard, Daniel Rouan, Gaspard Duchene, Vincent Deo, Sylvestre Lacour, Nick Cvetojevic, Guy Perrin, Nemanja Jovanovic, Tuthill, Peter G., Mérand, Antoine, and Sallum, Stephanie
- Subjects
Physics ,Diffraction ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Interferometry ,law ,Sky ,0103 physical sciences ,Extremely Large Telescope ,Astrophysics::Solar and Stellar Astrophysics ,Angular resolution ,Astrophysics::Earth and Planetary Astrophysics ,Adaptive optics ,Subaru Telescope ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
FIRST, the Fibered Imager foR a Single Telescope, is a spectro-imager using single-mode fibers for pupil remap- ping, allowing measurements beyond the telescope diffraction limit. Integrated on the Subaru Coronagraphic Extreme Adaptive Optics instrument at the Subaru Telescope, it benefits from a very stable visible light wave- front allowing to acquire long exposure and operate on significantly fainter sources than previously possible. On-sky results demonstrated the ability of the instrument to detect stellar companions separated 43mas in the case of the Capella binary system. A similar approach on an extremely large telescope would offer unique scientific opportunities for companion detection and characterization at very high angular resolution.
- Published
- 2020
6. Recent results on electro-optic visible multi-telescope beam combiner for next generation FIRST/SUBARU instruments: hybrid and passive devices
- Author
-
Nick Cvetojevic, Vincent Lapeyrere, Cédric Cassagnettes, Guillermo Martin, Sylvestre Lacour, Kevin Barjot, Sébastien Vievard, Nadège Courjal, Gwenn Ulliac, Elsa Huby, and Martin Foin
- Subjects
Physics ,Spatial filter ,Aperture ,business.industry ,law.invention ,Telescope ,Optics ,law ,Splitter ,Photonics ,business ,Phase modulation ,Beam splitter ,Beam (structure) - Abstract
FIRST (Fibered Imager foR a Single Telescope instrument) is an instrument that enables high contrast imaging and spectroscopy, thanks to a unique combination of sparse aperture masking, spatial filtering by single-mode waveguides and cross-dispersion in the visible. In order to increase the instrument’s stability and sensitivity, we proposed a new series of photonic beam combiners. The idea is to achieve phase modulation inside an optical chip and get rid of external delay lines, and improve the transmission by using novel techniques that will allow for beam combination in 3D, avoiding planar X-crossings and large bending radii observed in planar integrated optics instruments, between first and last inputs to combine, when the inputs separation is large (i.e. in 9 telescopes beam combiners). In a previous paper [4] we presented first prototypes of beam combiners for FIRST/SUBARU 9T. Planar 2D concepts were studied, but transmission was low due to the high number of crossings and the sharp bending angles needed to achieve beam combination within the length of the wafer. In this paper we will present our recent results on improved designs concerning: A) A hybrid Lithium-Niobate active beam splitter and phase modulator (9T, 1x8), coupled to a passive glass beam combiner (72x36, by pairs). B) A full passive device (5T splitter+beam combiner) and C) a narrow 5T splitter + phase modulator based on lithium niobate, to reduce the bending losses and optimize the overall transmission once coupled to the passive combiner. A comparative analysis of different performances will be presented.
- Published
- 2020
7. Achromatic electro-optic modulation using cascaded lithium niobate Ti:diffused waveguides @670nm
- Author
-
Guillermo Martin, Nadège Courjal, Pierre-Louis Mayeur, Sylvestre Lacour, Gwenn Ulliac, Martin Foin, and Vincent Lapeyrere
- Subjects
Test setup ,Materials science ,business.industry ,Lithium niobate ,Pockels effect ,law.invention ,Interferometry ,chemistry.chemical_compound ,chemistry ,Achromatic lens ,law ,Modulation ,Electric field ,Optoelectronics ,business ,Phase modulation - Abstract
In this paper we report the simulation of an achromatised LiNbO3 phase modulator with a range of 300nm centered around 670nm by using a two stage cascaded Mach-Zehnder controlled by independent electric field on each stage to overcome the chromatic dispersion brought by the Pockels effect. Development of a two stages electro-optic phase modulator test setup and first proofs of phase compensation between the stages will be presented.
- Published
- 2020
8. Test of the Einstein Equivalence Principle near the Galactic Center Supermassive Black Hole
- Author
-
N. M. Förster Schreiber, Karine Perraut, Ekkehard Wieprecht, Christian Straubmeier, Stefan Hippler, Th. Henning, Thibaut Paumard, Frank Eisenhauer, Felix Widmann, Pierre Kervella, Laurent Jocou, Paulo J. V. Garcia, Pierre Léna, Silvia Scheithauer, Matthew Horrobin, M. Bauböck, Thomas Ott, Maryam Habibi, Oliver Pfuhl, Jason Dexter, Linda J. Tacconi, S. von Fellenberg, A. Jimenez Rosales, Yann Clénet, P. T. de Zeeuw, Sylvestre Lacour, Gilles Duvert, Andreas Eckart, Guy Perrin, Amiel Sternberg, Senol Yazici, Eckhard Sturm, Erich Wiezorrek, Eric Gendron, Idel Waisberg, M. Ebert, Reinhard Genzel, F. Vincent, António Amorim, Sebastian Rabien, G. Rodríguez-Coira, Z. Hubert, Xavier Haubois, Vincent Lapeyrere, Odele Straub, J.-B. Le Bouquin, Wolfgang Brandner, G. Rousset, Feng Gao, V. Coudé du Foresto, Jean-Philippe Berger, Stefan Gillessen, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), GRAVITY, Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Gravitation and Astrophysics ,7. Clean energy ,01 natural sciences ,General Relativity and Quantum Cosmology ,Gravitational potential ,0103 physical sciences ,Equivalence principle ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Supermassive black hole ,Galactic Center ,White dwarf ,Astrophysics - Astrophysics of Galaxies ,Redshift ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Black hole ,Sagittarius A ,Astrophysics of Galaxies (astro-ph.GA) ,Physics::Space Physics ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
During its orbit around the four million solar mass black hole Sagittarius A* the star S2 experiences significant changes in gravitational potential. We use this change of potential to test one part of the Einstein equivalence principle: the local position invariance (LPI). We study the dependency of different atomic transitions on the gravitational potential to give an upper limit on violations of the LPI. This is done by separately measuring the redshift from hydrogen and helium absorption lines in the stellar spectrum during its closest approach to the black hole. For this measurement we use radial velocity data from 2015 to 2018 and combine it with the gravitational potential at the position of S2, which is calculated from the precisely known orbit of S2 around the black hole. This results in a limit on a violation of the LPI of $|\beta_{He}-\beta_{H}| = (2.4 \pm 5.1) \cdot 10^{-2}$. The variation in potential that we probe with this measurement is six magnitudes larger than possible for measurements on Earth, and a factor ten larger than in experiments using white dwarfs. We are therefore testing the LPI in a regime where it has not been tested before., Comment: Accepted for publication in Physical Review Letters
- Published
- 2019
9. A geometric distance measurement to the Galactic Center black hole with 0.3% uncertainty
- Author
-
Idel Waisberg, Thibaut Paumard, Julien Woillez, Jason Dexter, Oliver Pfuhl, Stefan Gillessen, Thomas Henning, Senol Yazici, Matthew Horrobin, Stefan Hippler, Christian Straubmeier, Karine Perraut, Odele Straub, J.-B. Le Bouquin, Sebastian Rabien, Amiel Sternberg, F. Vincent, António Amorim, Laurent Jocou, Vincent Lapeyrere, Reinhard Genzel, V. Coudé du Foresto, Feng Gao, Xavier Haubois, Gilles Duvert, Ekkehard Wieprecht, Jean-Philippe Berger, Paulo J. V. Garcia, Maryam Habibi, Thomas Ott, A. Jiménez-Rosales, Ortwin Gerhard, S. von Fellenberg, Linda J. Tacconi, G. Rousset, Eric Gendron, Guy Perrin, Pierre Kervella, Frank Eisenhauer, G. Rodriguez Coira, R. Abuter, Felix Widmann, Pierre Léna, Eckhard Sturm, Silvia Scheithauer, N. M. Förster Schreiber, Erich Wiezorrek, Henri Bonnet, Andreas Eckart, M. Bauböck, Sylvestre Lacour, Yann Clénet, P. T. de Zeeuw, Wolfgang Brandner, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Galaxy: nucleus ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Galactic Center ,black hole physics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Orbital eccentricity ,Astrometry ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Redshift ,Black hole ,Orbit ,Interferometry ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,astrometry ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Gravitational redshift - Abstract
We present a 0.16% precise and 0.27% accurate determination of R0, the distance to the Galactic Center. Our measurement uses the star S2 on its 16-year orbit around the massive black hole Sgr A* that we followed astrometrically and spectroscopically for 27 years. Since 2017, we added near-infrared interferometry with the VLTI beam combiner GRAVITY, yielding a direct measurement of the separation vector between S2 and Sgr A* with an accuracy as good as 20 micro-arcsec in the best cases. S2 passed the pericenter of its highly eccentric orbit in May 2018, and we followed the passage with dense sampling throughout the year. Together with our spectroscopy, in the best cases with an error of 7 km/s, this yields a geometric distance estimate: R0 = 8178 +- 13(stat.) +- 22(sys.) pc. This work updates our previous publication in which we reported the first detection of the gravitational redshift in the S2 data. The redshift term is now detected with a significance level of 20 sigma with f_redshift = 1.04 +- 0.05., Comment: 9 pages, 7 figures, submitted to A&A
- Published
- 2019
- Full Text
- View/download PDF
10. Short life and abrupt death of PicSat, a small 3U CubeSat dreaming of exoplanet detection
- Author
-
Guillaume Schworer, Mathias Nowak, Antoine Crouzier, Lester David, Vincent Lapeyrere, and Sylvestre Lacour
- Subjects
010504 meteorology & atmospheric sciences ,Payload ,Computer science ,FOS: Physical sciences ,Astronomy ,01 natural sciences ,Exoplanet ,Starlight ,0103 physical sciences ,Hill sphere ,Beta Pictoris ,Satellite ,CubeSat ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Transit (satellite) ,0105 earth and related environmental sciences - Abstract
PicSat was a three unit CubeSat (measuring 30 cm x 10 cm x 10 cm) which was developed to monitor the beta Pictoris system. The main science objective was the detection of a possible transit of the giant planet beta Pictoris b's Hill sphere. Secondary objectives included studying the circumstellar disk, and detecting exocomets in the visible band. The mission also had a technical objective: demonstrate our ability to inject starlight in a single mode fiber, on a small satellite platform. To answer all those objectives, a dedicated opto-mechanical payload was built, and integrated in a commercial 3U platform, along with a commercial ADCS (Attitude Determination and Control System). The satellite successfully reached Low Earth Orbit on the PSLV-C40 rocket, on January, 12, 2018. Unfortunately, on March, 20, 2018, after 10 weeks of operations, the satellite fell silent, and the mission came to an early end. Furthermore, due to a failure of the ADCS, the satellite never actually pointed toward its target star during the 10 weeks of operations. In this paper, we report on the PicSat mission development process, and on the reasons why it did not deliver any useful astronomical data., Comment: 11 pages, 11 figures
- Published
- 2018
11. A space interferometer on a 6U Cubesat: FIRST-S (Conference Presentation)
- Author
-
Sylvestre Lacour, Vincent Lapeyrere, Mathias Nowak, Antoine Crouzier, Mathurin Grenot, and Lester David
- Subjects
Physics ,business.industry ,Aperture ,Context (language use) ,Active optics ,Exoplanet ,law.invention ,Telescope ,Interferometry ,Optics ,law ,CubeSat ,Photonics ,business - Abstract
The FIRST-S project is an astronomical project in the context of exoplanet detection. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars. It requires high dynamic range (103) at moderate resolution (arcsec). The proposed instrument is 60 cm baseline stellar interferometer with nulling capabilities based on single-mode fibers and LiNbO3 (Lithium niobate) photonic ship on a 6U CubeSat. This nulling technique is currently developed in the context of FIRST project (Fibered Imager foR a Single Telescope), and is suitable for a nanosatellite application. The first part of this challenge – controlling the injection of the star light in a single-mode fiber with a accuracy of 1 arcsecond – is addressed by the PicSat mission. PicSat is using a 2 stages pointing system: the Attitude Determination and Control System (ADCS) of the platform, and the control of a 2 axis piezo stage. The design is based on two 9cm aperture telescope, inspired by the PicSat payload. The light collected by these two telescopes is guided with the single mode fibers to the integrated active optics. The active part of this ship controls the optical phase difference to a nanometer accuracy over few microns and allow to scan the null fringe. The interferometer itself is used as an OPD sensor and interacts with the ADCS of the platform to maintain this OPD lower to few microns. In this presentation I will present the performances of PicSat on which be can base this design. The satellite design will then be described including the telescopes and injection into fibers and the recombination system. Finally the first results on a lab demonstrator with these parts will be shown.
- Published
- 2018
12. Correction of differential chromatic dispersion in GRAVITY
- Author
-
Roderick Dembet, Sylvestre Lacour, Burkhard Wolff, Karine Rousselet-Perraut, Christian Straubmeier, Frank Eisenhauer, António Amorim, Vincent Lapeyrere, Wolfgang Brandner, Jean-Baptiste Le Bouquin, Guy Perrin, and Xavier Haubois
- Subjects
Wavefront ,Physics ,Optical fiber ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,law.invention ,Interferometry ,Optics ,law ,Dispersion (optics) ,Chromatic scale ,business ,Optical path length ,Data reduction - Abstract
The GRAVITY instrument installed at VLTI uses differential fibered delay lines to spatially filter the incoming wavefronts and accurately control the optical path difference between the Fringe Tracker (FT) and Scientific Detector (SC) parts of the instrument. On top of the differential dispersion occurring in the air, the chromatic dispersion introduced by these fibers impacts the real time performances of the fringe tracker by generating a second-order chromatic phase shift. Moreover, differential dispersion also affects GRAVITY dual-feed measurements that require a length adjustment of both FT and SC fibers. In this contribution, we show how chromatic dispersion can be corrected both in the fringe tracker real-time control as well as in the astrometric data reduction.
- Published
- 2018
13. SAGE: using CubeSats for Gravitational Wave Detection
- Author
-
Julien Woillez, Lester David, A. Kellerer, Sylvestre Lacour, Pierre Bourget, A. Le Tiec, Mathias Nowak, F. Vincent, Vincent Lapeyrere, O. Straub, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
geometry ,interferometer ,FOS: Physical sciences ,geostationary ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,thermal ,High Energy Physics - Experiment (hep-ex) ,Acceleration ,General Relativity and Quantum Cosmology ,pressure ,Optics ,0103 physical sciences ,optical ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,effect: solar ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,orbit ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Spacecraft ,business.industry ,Gravitational wave ,gravitational radiation ,acceleration ,Trajectory of a projectile ,tracks ,recombination ,observatory ,Orbit ,Interferometry ,Solar wind ,gravitational waves ,frequency ,trajectory ,cubesats ,Geostationary orbit ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,nanosats - Abstract
SAGE (SagnAc interferometer for Gravitational wavE) is a fast track project for a space observatory based on multiple 12-U CubeSats in geostationary orbit. The objective of this project is to create a Sagnac interferometer with 73000 km circular arms. The geometry of the interferometer makes it especially sensitive to circularly polarized gravitational waves at frequency close to 1 Hz. The nature of the Sagnac measurement makes it almost insensitive to position error, allowing spacecrafts in ballistic trajectory. The light source and recombination units of the interferometer are based on compact fibered technologies, without the need of an optical bench. The main limitation would come from non-gravitational acceleration of the spacecraft. However, conditionally upon our ability to post-process the effect of solar wind, solar pressure and thermal expansion, we would detect gravitational waves with strains down to 10^-21 over a few days of observation., Comment: published in SPIE conference proceedings, 2018
- Published
- 2018
14. GRAVITY chromatic imaging of η Car's core. Milliarcsecond resolution imaging of the wind-wind collision zone (Brγ, He I)
- Author
-
S. Kellner, Pierre Kervella, Faustine Cantalloube, Johana Panduro, Magdalena Lippa, V. Coudé du Foresto, Y. Clénet, R. Abuter, G. Avila, Matteo Accardo, Konrad R. W. Tristram, Dan Popovic, Alejandra Rosales, A. Buron, R. Genzel, C. Deen, Laurent Jocou, Markus Schöller, T. Ott, H. Bonnet, P. Fédou, Frank Eisenhauer, R. van Boekel, Stefan Hippler, André Müller, Pierre Léna, Thibaut Moulin, Julien Woillez, L. Pallanca, Ekkehard Wieprecht, P.-O. Petrucci, N. Hubin, Leander Mehrgan, Sylvestre Lacour, Markus Wittkowski, Vincent Lapeyrere, Christian A. Hummel, M. Haug, Eckhard Sturm, Frederic Derie, Thanh Phan Duc, Sarah Kendrew, Burkhard Wolff, Mario Kiekebusch, Nicolas Blind, Andreas Kaufer, W. J. de Wit, Feng Gao, C. Collin, Silvia Scheithauer, L. Kern, Roderick Dembet, Matthew Horrobin, J.-U. Pott, Stefan Gillessen, Johann Kolb, Narsireddy Anugu, R.-R. Rohloff, M. Riquelme, J. Sanchez-Bermudez, Andreas Eckart, J. Moreno-Ventas, R. Brast, Z. Hubert, Isabelle Percheron, M. Mellein, F. Delplancke-Ströbele, M. Karl, Udo Neumann, Imke Wank, Rainer Lenzen, Odele Straub, Michael Esselborn, Armin Huber, J.-B. Le Bouquin, Ralf Klein, Juan-Luis Ramos, Erich Wiezorrek, Samuel Lévêque, K. Perraut, Frédéric Cassaing, C. E. Garcia Dabo, F. Müller, P. M. Plewa, Ewald Müller, N. Ventura, F. Chapron, Gerd Weigelt, M. Ebert, Martin Kulas, M. Wiest, Elodie Choquet, Luca Pasquini, A. Caratti o Garatti, A. Pflüger, T. de Zeeuw, Guy Perrin, Myriam Benisty, Yves Magnard, Joachim M. Bestenlehner, S. Oberti, António Amorim, Nicolas Schuhler, B. Lazareff, Paulo J. V. Garcia, Jason Dexter, Christian Straubmeier, Th. Henning, Jason Spyromilio, F. H. Vincent, A. Mérand, Senol Yazici, Felix Widmann, C. Rau, Pierre Bourget, R. J. García López, Xavier Haubois, Eric Gendron, Gérard Zins, G. Rousset, Andres J. Ramirez, Gilles Duvert, T. Paumard, Lieselotte Jochum, Idel Waisberg, F. Haussmann, O. Pfuhl, Sebastian Rabien, G. Rodríguez-Coira, Gerd Jakob, J. P. Berger, Wolfgang Brandner, D. Ziegler, and Marcos Suarez
- Subjects
Physics ,010308 nuclear & particles physics ,Binary number ,Astronomy and Astrophysics ,Astrophysics ,Collision ,01 natural sciences ,Galaxy ,Wavelength ,13. Climate action ,Space and Planetary Science ,Angular diameter ,0103 physical sciences ,Radiative transfer ,Chromatic scale ,010303 astronomy & astrophysics ,Cavity wall - Abstract
Context. η Car is one of the most intriguing luminous blue variables in the Galaxy. Observations and models of the X-ray, ultraviolet, optical, and infrared emission suggest a central binary in a highly eccentric orbit with a 5.54 yr period residing in its core. 2D and 3D radiative transfer and hydrodynamic simulations predict a primary with a dense and slow stellar wind that interacts with the faster and lower density wind of the secondary. The wind-wind collision scenario suggests that the secondary’s wind penetrates the primary’s wind creating a low-density cavity in it, with dense walls where the two winds interact. However, the morphology of the cavity and its physical properties are not yet fully constrained. Aims. We aim to trace the inner ∼5–50 au structure of η Car’s wind-wind interaction, as seen through Brγ and, for the first time, through the He I 2s-2p line. Methods. We have used spectro-interferometric observations with the K-band beam-combiner GRAVITY at the VLTI. The analyses of the data include (i) parametrical model-fitting to the interferometric observables, (ii) a CMFGEN model of the source’s spectrum, and (iii) interferometric image reconstruction. Results. Our geometrical modeling of the continuum data allows us to estimate its FWHM angular size close to 2 mas and an elongation ratio ϵ = 1.06 ± 0.05 over a PA = 130° ± 20°. Our CMFGEN modeling of the spectrum helped us to confirm that the role of the secondary should be taken into account to properly reproduce the observed Brγ and He I lines. Chromatic images across the Brγ line reveal a southeast arc-like feature, possibly associated to the hot post-shocked winds flowing along the cavity wall. The images of the He I 2s-2p line served to constrain the 20 mas (∼50 au) structure of the line-emitting region. The observed morphology of He I suggests that the secondary is responsible for the ionized material that produces the line profile. Both the Brγ and the He I 2s-2p maps are consistent with previous hydrodynamical models of the colliding wind scenario. Future dedicated simulations together with an extensive interferometric campaign are necessary to refine our constraints on the wind and stellar parameters of the binary, which finally will help us predict the evolutionary path of η Car.
- Published
- 2018
15. Correcting for background changes in CoRoT exoplanet data
- Author
-
Michel Auvergne, J. E. S. Costa, Bart Vandenbussche, Vincent Lapeyrere, Reza Samadi, Conny Aerts, R. Drummond, Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Astronomie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Instituto de Física, Universidade Federal do Rio Grande do Sul
- Subjects
Physics ,Polynomial regression ,Pixel ,Astronomy ,Astronomy and Astrophysics ,Photometer ,Residual ,Asteroseismology ,Exoplanet ,law.invention ,Photometry (optics) ,Stars ,Space and Planetary Science ,law ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Remote sensing - Abstract
International audience; Context: The CoRoT satellite is a highly accurate photometer with 2 channels respectively optimised for asteroseismology and exoplanet finding. The design includes an effective straylight rejection system, however residual straylight reaches the detectors. Aims: We test four different background models in order to apply the best possible background correction to the 12 000 stars observed over the 2 exoplanet CCDs. We identify the best correction method for two types of data reduction - the validation and production data. We also describe a bright pixel correction method and compare background correction quality before and after this correction. Methods: We used jackknifing - a particular example of bootstrapping - to increase our statistical analysis of a small dataset, comparing the background model with a background datapoint. This enabled us to quantify the background correction quality, which would be impossible when applying the correction to star data. Results: Our examination of the in-orbit data from two CoRoT runs shows that they give very different results. The commissioning run had far from optimal background window placement. Both runs demonstrate that the closest window correction is very sensitive to the bright pixel problem. Using three windows increases the chance of including a bright pixel impacted window and does not increase performance. Both median and polynomial fit methods give a good correction in most cases, but the median is overall most efficient. Conclusions: We have shown that a median of all available background windows is the correction method most resistant to bright pixels. It also gives a good background correction for data post-bright-pixel correction. This method has been implemented in the CoRoT pipeline for both validation and production data.
- Published
- 2008
16. GRAVITY data reduction software
- Author
-
Cesar Enrique Garcia-Dabo, K. Perraut, Frank Eisenhauer, Christian Straubmeier, António Amorim, N. Azouaoui, Sylvestre Lacour, Pierre Kervella, Vincent Lapeyrere, Guy Perrin, Wolfgang Brandner, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Haute résolution angulaire en astrophysique, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), European Southern Observatory (Germany), Max-Planck-Institut für Extraterrestrische Physik (MPE), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Univ. zu Koln (Germany), Lisboa, and Max-Planck-Institut fur Astronomie (Germany)
- Subjects
Physics ,business.industry ,Absolute phase ,Visibility (geometry) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrometry ,Metrology ,Interferometry ,Software ,Astrophysics::Solar and Stellar Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business ,Focus (optics) ,Data reduction ,Remote sensing - Abstract
International audience; We focus on the main algorithms of the data reduction software for the second generation VLTI instrument GRAVITY. From the interferometric data and the metrology signal, the pipeline recovers the complex visibility of the science target with an absolute phase with respect to the fringe tracker target. Visibilities are then calibrated and the relative astrometry is eventually computed when possible.
- Published
- 2014
17. CubeSats as pathfinders for planetary detection: the FIRST-S satellite
- Author
-
Guillermo Martin, G. Perrin, Xavier Haubois, S. Arroud, L. Gauchet, R. Gourgues, Vincent Lapeyrere, Sylvestre Lacour, S. Heidmann, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Haute résolution angulaire en astrophysique, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Technique, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Aperture ,Computer science ,Lithium niobate ,Physics::Optics ,FOS: Physical sciences ,Context (language use) ,law.invention ,Telescope ,chemistry.chemical_compound ,Optics ,law ,Astronomical interferometer ,CubeSat ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Interferometry ,Cophasing ,chemistry ,Astrophysics - Solar and Stellar Astrophysics ,Darwin (spacecraft) ,Astrophysics::Earth and Planetary Astrophysics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Beam (structure) - Abstract
The idea behind FIRST (Fibered Imager foR a Single Telescope) is to use single-mode fibers to combine multiple apertures in a pupil plane as such as to synthesize a bigger aperture. The advantages with respect to a pure imager are i) relaxed tolerance on the pointing and cophasing, ii) higher accuracy in phase measurement, and iii) availability of compact, precise, and active single-mode optics like Lithium Niobate. The latter point being a huge asset in the context of a space mission. One of the problems of DARWIN or SIM-like projects was the difficulty to find low cost pathfinders missions. But the fact that Lithium Niobate optic is small and compact makes it easy to test through small nanosats missions. Moreover, they are commonly used in the telecom industry, and have already been tested on communication satellites. The idea of the FIRST-S demonstrator is to spatialize a 3U CubeSat with a Lithium Niobate nulling interferometer. The technical challenges of the project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer would be 30 cm, giving a 2.2 AU spatial resolution at distance of 10 pc. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars., Comment: SPIE 2014 -- Astronomical telescopes and instrumentation -- Montreal
- Published
- 2014
18. The GRAVITY instrument software/high-level software
- Author
-
Markus Schöller, Marcus Haug, Sylvestre Lacour, Vincent Lapeyrere, Leonard Burtscher, Frank Eisenhauer, Christian Straubmeier, Narsireddy Anugu, Yitping Kok, J. Weber, Pierre Fedou, Reinhard Genzel, Stefan Gillessen, Eszter Pozna, Ekkehard Wieprecht, Oliver Pfuhl, T. Paumard, Senol Yazici, Jürgen Ott, Guy Perrin, Eckhard Sturm, N. Blind, Karine Rousselet-Perraut, F. Haussmann, Stefan Kellner, Roderick Dembet, Pierre Kervella, António Amorim, Roberto Abuter, Magdalena Lippa, Wolfgang Brandner, Thomas Ott, O. Hans, Max-Planck-Institut für Extraterrestrische Physik (MPE), Univ. zu Koln (Germany), Universidade do Porto = University of Porto, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Haute résolution angulaire en astrophysique, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Menlo Systems, European Southern Observatory (Germany), Lisboa, Max-Planck-Institut fur Astronomie (Germany), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Very Large Telescope ,business.industry ,Infrared ,Computer science ,FOS: Physical sciences ,Interferometry ,Software ,Computer data storage ,Astronomical interferometer ,Software system ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Computer hardware - Abstract
GRAVITY is the four-beam, near- infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of high-level applications during observations: the acquisition procedure and the gathering and merging of data to the final FITS file., Comment: 8 pages, 7 figures, published in Proc. SPIE 9146, Optical and Infrared Interferometry IV, 91462B
- Published
- 2014
19. GRAVITY: a four-telescope beam combiner instrument for the VLTI
- Author
-
Laurent Jocou, Markus Schöller, R.-R. Rohloff, Sylvestre Lacour, Xavier Haubois, Philippe B. Gitton, Andreas Eckart, Guy Perrin, Christian Straubmeier, Th. Henning, Constanza Araujo-Hauck, H. Bartko, Frank Eisenhauer, Stefan Hippler, Pedro Carvas, O. Pfuhl, D. Moch, A. Gräter, Pierre Kervella, Nadia Kudryavtseva, Sebastian Rabien, M. Haug, Rainer Lenzen, Y. Clénet, Kevin Wagner, S. Kellner, M. Wiest, Damian Moratschke, Senol Yazici, P. Fédou, Arnaud Sevin, Stefan Gillessen, J. M. Rees, C. Collin, Gérard Rousset, F. Chapron, Juan-Luis Ramos, M. Thiel, António Amorim, D. Ziegler, Frédéric Gonté, Reiner Hofmann, A. Nolot, K. Perraut, Reinhard Genzel, Elodie Choquet, Ralf Klein, Vianak Naranjo, Eric Gendron, Pierre Léna, Pierre Haguenauer, Udo Neumann, Thibaut Moulin, T. Paumard, Harald Baumeister, J. P. Berger, Wolfgang Brandner, Sebastian Fischer, D. Rouan, Werner Laun, J. Lima, Vincent Lapeyrere, Frédéric Cassaing, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Astronomie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Ingénieurs, Techniciens et Administratifs
- Subjects
Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy ,Field of view ,Astrometry ,Metrology ,law.invention ,Black hole ,Telescope ,Interferometry ,law ,Magnitude (astronomy) ,Astrophysics::Solar and Stellar Astrophysics ,Adaptive optics ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics - Abstract
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {\mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI., Comment: 20 pages, Proceedings SPIE Astronomical Telescopes and Instrumentation Conference 2010
- Published
- 2010
20. Jitter Correction Algorithms for the COROT Satellite Mission: Validation with Test Bench Data and MOST On-Orbit Photometry
- Author
-
M. Auvergne, Conny Aerts, F. De Oliveira Fialho, Bart Vandenbussche, Jaymie M. Matthews, Vincent Lapeyrere, R. Drummond, Rainer Kuschnig, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Pôle Astronomie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Ingénieurs, Techniciens et Administratifs, Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, and Department of Physics and Astronomy, University of British Columbia
- Subjects
Physics ,Test bench ,Astronomy ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Asteroseismology ,Exoplanet ,Photometry (optics) ,Stars ,Space and Planetary Science ,Robustness (computer science) ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Decorrelation ,Remote sensing ,Jitter - Abstract
Contains fulltext : 34576.pdf (Publisher’s version ) (Closed access) We demonstrate the effectiveness and robustness of photometric correction algorithms for satellite pointing jitter in the upcoming space mission COROT, which will study asteroseismology and search for exoplanets. Two algorithms based on model-based estimation and decorrelation are tested in two ways: (1) with artificial light sources in the COROT CCD test bench, and (2) with on-orbit photometry from the Canadian MOST (Microvariability and Oscillations of Stars) satellite. Both algorithms effectively correct for pointing jitter to yield the expected results based on the inputs. The test with MOST data on a multiperiodic pulsating star demonstrates that the model-based estimation method recovers the oscillation signals better, while the decorrelation technique is more reliable if a poor model of the point-spread function is applied to the data. Therefore, the two algorithms complement one another and should both be applied to COROT photometry.
- Published
- 2007
21. Calibration of Flight Model CCDs for the Corot mission
- Author
-
Jean Tristan Buey, Pernelle Bernardi, Vincent Lapeyrere, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ingénieurs, Techniciens et Administratifs, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
- Subjects
Physics ,Calibration (statistics) ,business.industry ,Flight model ,Astrophysics ,Aerospace engineering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business - Abstract
International audience
- Published
- 2006
22. The camera of the Corot space experiment: design, tests, and results
- Author
-
Marc Ollivier, Vincent Lapeyrere, Guy Rolland, Pernelle Bernardi, Alice Pradines, Bertrand Leruyet, Richard Briet, Michel Decaudin, S. Perruchot, Jean-Tristan Buey, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ingénieurs, Techniciens et Administratifs, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
- Subjects
Physics ,Test bench ,Pixel ,business.industry ,Field of view ,law.invention ,Telescope ,Cardinal point ,Optics ,law ,Calibration ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business ,Data reduction ,Remote sensing ,Camera resectioning - Abstract
The Corot project, developed in the framework of the CNES small satellite program with a wide European cooperation, will be launched in 2006. It is dedicated to seismology and detection of telluric planets. It will perform relative photometry in visible light, during very long (150 days) observing runs in the same direction. Both programs are running simultaneously and about 50.000 stars will be observed during the 3 years life. The concept of the instrument is based on an off-axis telescope (27 cm pupil, 3° square field of view), a dioptric objective images the stars on a focal plane. The focal plane is made of 4 CCDs, 2k*4k pixels, AIMO and frame transfer, at -40°C, two for each scientific programs. Electronics boxes manage the CCD readout, the thermal control and house-keeping, onboard software makes pre-processing and data reduction. As the expected signal is made of very small fluctuations expressed in ppm (part per million) a specific calibration of all the photometric chain and sub-systems is necessary. We have developed a specific test bench to calibrate CCDs. The manufacturer (E2V) provided us 10 CCDs and we realized calibration tests on them to be able to choose 4 CCDs for the flight focal plane (with different optimizations for the two scientific programs). Thereafter the camera sub-system has been integrated and calibrated on a specific test bench. This sub-system is made of a dioptric objective, focal plane, electronics boxes, mechanical and thermal equipment. We will present the camera sub-system (constraints and design), the test bench, and the results of the different tests : CCD calibration, radiation effects, Focal-Plane integration, optical setup, thermal balance and Camera calibration.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.