4 results on '"Villaro, E."'
Search Results
2. Production and processing of graphene and related materials
- Author
-
Backes, Abdelkader, A.M., Alonso, Andrieux-Ledier, Arenal, Azpeitia, Balakrishnan, Banszerus, Barjon, Bartali, Bellani, Berger, Ortega, M.M.B., Bernard, Beton, P.H., Beyer, Bianco, B?ggild, Bonaccorso, Barin, G.B., Botas, Bueno, R.A., Carriazo, Castellanos-Gomez, Christian, Ciesielski, Ciuk, Cole, M.T., Coleman, Coletti, Crema, Cun, Dasler, De Fazio, D?ez, Drieschner, Duesberg, G.S., Fasel, Feng, Fina, Forti, Galiotis, Garberoglio, Garc?a, J.M., Garrido, J.A., Gibertini, G?lzh?user, G?mez, Greber, Hauke, Hemmi, Hernandez-Rodriguez, Hirsch, Hodge, S.A., Huttel, Jepsen, P.U., Jimenez, Kaiser, Kaplas, Kim, Kis, Papagelis, Kostarelos, Krajewska, Lee, Lipsanen, Liscio, Lohe, M.R., Loiseau, Lombardi, L?pez, M.F., Martin, Mart?n, Mart?nez, Martin-Gago, J.I., Marzari, Mayoral, McManus, Melucci, M?ndez, Merino, Meyer, A.P., Miniussi, Miseikis, Mishra, Morandi, Munuera, Mu?oz, Nolan, Ortolani, Ott, A.K., Palacio, Palermo, Parthenios, Pasternak, Patane, Prato, Prevost, Prudkovskiy, Pugno, Rojo, Rossi, Ruffieux, Samor?, Schu?, Setijadi, Seyller, Speranza, Stampfer, Stenger, Strupinski, Svirko, Taioli, Teo, K.B.K., Testi, Tomarchio, Tortello, Treossi, Turchanin, Vazquez, Villaro, Whelan, P.R., Xia, Yakimova, Yang, Yazdi, G.R., Yim, Yoon, Zhang, Zhuang, Colombo, Ferrari, A.C., Garcia-Hernandez, European Commission, García-Hernández, M., Apollo - University of Cambridge Repository, Heidelberg University, University of Cambridge, Universidad Autónoma de Madrid, Université Paris-Saclay, Aragonese Foundation for Research & Development, CSIC, University of Nottingham, RWTH Aachen University, Université de Versailles Saint-Quentin-en-Yvelines, Bruno Kessler Foundation, Italian Institute of Technology, Université Grenoble Alpes, Technische Universität Dresden, Polytechnic University of Turin, University of Zurich, Bielefeld University, Université de Strasbourg, Technical University of Denmark, Swiss Federal Laboratories for Materials Science and Technology, CIC energigune, National Research Council of Italy, Institute of Electronic Materials Technology, University of Bath, Trinity College Dublin, Friedrich-Alexander University Erlangen-Nürnberg, Technical University of Munich, Universität der Bundeswehr München, University of Patras, CSIC - Institute of Micro and Nanotechnology, Catalan Institute of Nanoscience and Nanotechnology, Swiss Federal Institute of Technology Lausanne, Avanzare S.L. Technological Innovation, Ulm University, University of Eastern Finland, Institute of Chemical Engineering and High Temperature Chemical Processes, University of Manchester, Polish Academy of Sciences, Department of Electronics and Nanoengineering, University of Castilla-La Mancha, University of Zaragoza, Groupo Antolin I+D+I, Warsaw University of Technology, Ikerbasque Basque Foundation for Science, BEC-INFM, Chemnitz University of Technology, Charles University, Buckingway Business Park, Friedrich Schiller University Jena, Interquimica, Linköping University, University of Texas at Dallas, Aalto-yliopisto, Aalto University, Backes, C., Abdelkader, A. M., Alonso, C., Andrieux-Ledier, A., Arenal, R., Azpeitia, J., Balakrishnan, N., Banszerus, L., Barjon, J., Bartali, R., Bellani, S., Berger, C., Berger, R., Ortega, M. M. B., Bernard, C., Beton, P. H., Beyer, A., Bianco, A., Boggild, P., Bonaccorso, F., Barin, G. B., Botas, C., Bueno, R. A., Carriazo, D., Castellanos-Gomez, A., Christian, M., Ciesielski, A., Ciuk, T., Cole, M. T., Coleman, J., Coletti, C., Crema, L., Cun, H., Dasler, D., De Fazio, D., Diez, N., Drieschner, S., Duesberg, G. S., Fasel, R., Feng, X., Fina, A., Forti, S., Galiotis, C., Garberoglio, G., Garcia, J. M., Garrido, J. A., Gibertini, M., Golzhauser, A., Gomez, J., Greber, T., Hauke, F., Hemmi, A., Hernandez-Rodriguez, I., Hirsch, A., Hodge, S. A., Huttel, Y., Jepsen, P. U., Jimenez, I., Kaiser, U., Kaplas, T., Kim, H., Kis, A., Papagelis, K., Kostarelos, K., Krajewska, A., Lee, K., Li, C., Lipsanen, H., Liscio, A., Lohe, M. R., Loiseau, A., Lombardi, L., Lopez, M. F., Martin, O., Martin, C., Martinez, L., Martin-Gago, J. A., Martinez, J. I., Marzari, N., Mayoral, A., Mcmanus, J., Melucci, M., Mendez, J., Merino, C., Merino, P., Meyer, A. P., Miniussi, E., Miseikis, V., Mishra, N., Morandi, V., Munuera, C., Munoz, R., Nolan, H., Ortolani, L., Ott, A. K., Palacio, I., Palermo, V., Parthenios, J., Pasternak, I., Patane, A., Prato, M., Prevost, H., Prudkovskiy, V., Pugno, N., Rojo, T., Rossi, A., Ruffieux, P., Samori, P., Schue, L., Setijadi, E., Seyller, T., Speranza, G., Stampfer, C., Stenger, I., Strupinski, W., Svirko, Y., Taioli, S., Teo, K. B. K., Testi, M., Tomarchio, F., Tortello, M., Treossi, E., Turchanin, A., Vazquez, E., Villaro, E., Whelan, P. R., Xia, Z., Yakimova, R., Yang, S., Yazdi, G. R., Yim, C., Yoon, D., Zhang, X., Zhuang, X., Colombo, L., Ferrari, A. C., Garcia-Hernandez, M., Physikalisch-Chemisches Institut [Heidelberg] (PCI), Universität Heidelberg [Heidelberg] = Heidelberg University, Centre for Research on Adaptive Nanostructures and Nanodevices and Advanced Materials and BioEngineering Research (CRANN-AMBER), Cambridge Graphene Centre (Cambridge, UK), DPHY, ONERA, Université Paris Saclay (COmUE) [Châtillon], ONERA-Université Paris Saclay (COmUE), Instituto de Nanociencia de Aragón [Saragoza, España] (INA), University of Zaragoza - Universidad de Zaragoza [Zaragoza], Instituto de Ciencia de Materiales de Aragón [Saragoza, España] (ICMA-CSIC), Materials Science Factory - ICMM [Madrid], Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Physics and Astronomy [Nottingham], University of Nottingham, UK (UON), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH), Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Fondazione Bruno Kessler [Trento, Italy] (FBK), IIT Graphene Labs, Istituto Italiano di Tecnologia (IIT), Circuits électroniques quantiques Alpes (NEEL - QuantECA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Georgia Institute of Technology [Atlanta], Technische Universität Dresden = Dresden University of Technology (TU Dresden), Politecnico di Torino = Polytechnic of Turin (Polito), Universität Zürich [Zürich] = University of Zurich (UZH), Universität Bielefeld = Bielefeld University, Immunopathologie et chimie thérapeutique (ICT), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), BeDimensional Spa, Swiss Federal Laboratories for Materials Science and Technology [Thun] (EMPA), CIC ENERGIGUNE - Parque Tecnol Alava, Ikerbasque - Basque Foundation for Science, Institute for Microelectronics and Microsystems (IMM ), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Institut de Science et d'ingénierie supramoléculaires (ISIS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Instytut Technologii Materiałów Elektronicznych, Department of Electronics and Electrical Engineering [Bath], University of Bath [Bath], Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Walter Schottky Institut Technische Universität München, Universität der Bundeswehr München [Neubiberg], Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Center for Advancing Electronics in Dresden (CFAED), European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK), IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain, Universidad de Alicante, Institut de théorie des phénomènes physiques (EPFL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Avanzare Innovacion Tecnologica S.L., Center for Nanostructured Graphene, Universität Ulm - Ulm University [Ulm, Allemagne], Electrical Engineering Institute - EPFL, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institute of Chemical Engineering Sciences - Hellas [Crete] (ICE-HT), Foundation for Research and Technology - Hellas (FORTH), Aristotle University of Thessaloniki, University of Manchester [Manchester], Polish Academy of Sciences (PAN), LEM, UMR 104, CNRS-ONERA, Université Paris-Saclay (Laboratoire d'étude des microstructures), ONERA-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidad de Sevilla / University of Sevilla, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Department of Materials Science and Engineering (DMSE), Massachusetts Institute of Technology (MIT), Institute of Organic Synthesis and Photoreactivity (ISOF), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Instituto de Física Fundamental [Madrid] (IFF), Istituto per la Microelettronica e i Microsistemi [Bologna] (IMM), University of Exeter, Chalmers University of Technology [Göteborg], Warsaw University of Technology [Warsaw], Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), University of Trento [Trento], School of Engineering and Materials Science [London] (SEMS), Queen Mary University of London (QMUL), Departamento de Química Inorgánica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Charles University [Prague] (CU), Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Universidad de Castilla-La Mancha = University of Castilla-La Mancha (UCLM), University of Calgary, Department of Physics, Chemistry and Biology, Linköping University, University of Linköping [Sweden], University of Texas at Dallas [Richardson] (UT Dallas), Universität Heidelberg [Heidelberg], DPHY, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, Consejo Superior de Investigaciones Científicas [Spain] (CSIC)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), QuantECA - Circuits électroniques quantiques Alpes, Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Technische Universität Dresden (TUD), Technical University of Denmark [Lyngby] (DTU), Consiglio Nazionale delle Ricerche (CNR), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Politecnico di Torino [Torino] (Polito), University of Patras [Patras], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), LEM, UMR 104 CNRS-ONERA, Université Paris Saclay [Châtillon], Universidad de Sevilla, École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Charles University [Prague], Universidad de Castilla-La Mancha (UCLM), Autonomous University of Madrid, Faculty of Sciences, Department of Ecology, 28049 Madrid, Spain, Agencia Aragonesa por la Investigacion y el Desarollo (ARAID), Fundacion ARAID-Gobierno de Aragón [Zaragoza, Espagne], Laboratorio de Microscopias Avanzadas, JARA-FIT, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Dipartimento di Scienza Applicata e Tecnologia DISAT, University of Zürich, University of Zürich [Zürich] (UZH), Physics of Supramolecular Systems (Bielefeld University), Immunologie et chimie thérapeutiques (ICT), Cancéropôle du Grand Est-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Center for Nanotechnology Innovation, @NEST, Chair of Organic Chemistry II and Joint Institute of Advanced Materials and Processes, Department of Chemistry and Biochemistry, University of Bern, University of Bern, Instituto de Micro y Nanotecnología, Univ Geneva, DQMP, 24 Quai Ernest, CH-1211 Geneva 4, Switzerland, Universität Ulm - Ulm University, Institute of Photonics (Institute of Photonics), University of Shanghai [Shanghai], Istituto per la Sintesi Organica e la Fotoreattività - ISOF (Bologne, Italie), Consiglio Nazionale delle Ricerche [Bologna] (CNR), ACM Advanced Carbon Materials (Grupo Antolin Ingenieria), INRES-Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Carbon Bionanotechnology Laboratory (CICbiomaGUNE), Dipartimento di Scienze Farmaceutiche & INSTM UdR Trieste, Université Trieste, Department of Structural Engineering and Geotechnics, Edoardo Amaldi Foundation, Lehrstuhl für Technische Physik, Technisches Universität Chemnitz, Institute of Physical Chemistry (Firedrich Schiller University Jena), Linköping University (LIU), Department of Materials Science and Engineering (University of Texas), UAM. Departamento de Química Física Aplicada, Circuits électroniques quantiques Alpes (QuantECA), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, García-Hernández, M. [0000-0002-5987-0647], European Union (EU), and Horizon 2020
- Subjects
Inks of layered materials ,Growth of layered material ,Materialkemi ,02 engineering and technology ,Chemical vapor deposition ,Q1 ,01 natural sciences ,materials ,law.invention ,Characterization of layered materials ,Functionalization of layered materials ,Growth of layered materials ,Processing of layered materials ,Synthesis of graphene and related materials ,law ,540 Chemistry ,functionalization of layered ,Materials Chemistry ,General Materials Science ,Graphite ,QA ,QC ,growth of ,SYNTHESE DU GRAPHENE ET DES MATERIAUX ASSOCIES ,Settore FIS/01 - Fisica Sperimentale ,Processing of layered material ,Química ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Exfoliation joint ,ddc ,Characterization of layered material ,layered materials ,Nanoröhre ,Mechanics of Materials ,processing of layered materials ,inks of layered materials ,characterization of layered materials ,functionalization of layered materials ,synthesis of graphene and related materials ,growth of layered materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,PROCÉDURE DES MATERIAUX EN COUCHE ,ddc:620 ,0210 nano-technology ,51 Physical Sciences ,Graphene nanoribbons ,Materials science ,530 Physics ,Nanotechnology ,010402 general chemistry ,FONCTIONNALISATION DES MATERIAUX EN COUCHES ,Monolayer ,Functionalization of layered material ,ddc:530 ,Thin film ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Nanocomposite ,Graphene ,Inks of layered material ,Mechanical Engineering ,Física ,General Chemistry ,CARACTERISATION DES MATERAUX EN COUCHES ,CROISSANCE DES MATERIAUX EN COUCHE ,5104 Condensed Matter Physics ,0104 chemical sciences ,7 Affordable and Clean Energy ,ENCRAGE DES MATERIAUX EN COUCHE - Abstract
We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV–VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp 2 basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp 2 carbon network by π–π stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs, can be functionalized and we summarize emerging approaches to covalently and noncovalently functionalize MoS2 both in the liquid and on substrate. Section IX describes some of the most popular characterization techniques, ranging from optical detection to the measurement of the electronic structure. Microscopies play an important role, although macroscopic techniques are also used for the measurement of the properties of these materials and their devices. Raman spectroscopy is paramount for GRMs, while PL is more adequate for non-graphene LMs (see section IX.2). Liquid based methods result in flakes with different thicknesses and dimensions. The qualification of size and thickness can be achieved using imaging techniques, like scanning probe microscopy (SPM) or transmission electron microscopy (TEM) or spectroscopic techniques. Optical microscopy enables the detection of flakes on suitable surfaces as well as the measurement of optical properties. Characterization of exfoliated materials is essential to improve the GRM metrology for applications and quality control. For grown GRMs, SPM can be used to probe morphological properties, as well as to study growth mechanisms and quality of transfer. More generally, SPM combined with smart measurement protocols in various modes allows one to get obtain information on mechanical properties, surface potential, work functions, electrical properties, or effectiveness of functionalization. Some of the techniques described are suitable for 'in situ' characterization, and can be hosted within the growth chambers. If the diagnosis is made 'ex situ', consideration should be given to the preparation of the samples to avoid contamination. Occasionally cleaning methods have to be used prior to measurement., We acknowledge funding from the European Commission Graphene Flagship Core1 (grant agreement 696656) and Core2 (grant agreement 785219).
- Published
- 2020
- Full Text
- View/download PDF
3. Βio-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performance.
- Author
-
Rehman S, Gomez J, Villaro E, Cossey D, and Karagiannidis PG
- Abstract
In this work, we report the synthesis and study of nanocomposites with a biobased epoxy/amine (Epilok 60-600G/Curamine 30-952) matrix reinforced with reduced graphene oxide (rGO) or functionalised with 3-glycidoxypropyltrimethoxysilane (GLYMO-rGO). These graphene related materials (GRMs) were first dispersed into a Curamine hardener using bath ultrasonication, followed by the addition of epoxy resin. Curing kinetics were studied by DSC under non-isothermal and isothermal conditions. The addition of 1.5 wt% of GLYMO-rGO into the epoxy matrix was found to increase the degree of cure by up to 12% and glass transition temperature by 14 °C. Mechanical testing showed that the addition of 0.05 wt% GLYMO-rGO improves Young's modulus and tensile strength by 60% and 16%, respectively, compared to neat epoxy. Carbon fibre reinforced polymer (CFRP) laminates were prepared via hand lay up, using the nanocomposite system GRM/Epilok/Curamine as matrix, and were cut as CFRP adherents for lap shear joints. GRM/Epilok/Curamine was also used as adhesive to bond CFRP/CFRP and CFRP/aluminium adherents. The addition of 0.1 wt% GLYMO-rGO into the adhesive and CRFP adherents showed improved lap shear strength by 23.6% compared to neat resin, while in the case of CFRP/Aluminium joints the increase was 21.2%.
- Published
- 2022
- Full Text
- View/download PDF
4. [A case of sialolithiasis with involvement of a calculus in Wharton's duct].
- Author
-
Villaro E, Salzano D, Falivene M, Mastroberti PF, Troiano A, and Caliendo A
- Subjects
- Humans, Male, Middle Aged, Submandibular Gland pathology, Salivary Duct Calculi pathology, Salivary Gland Diseases pathology, Submandibular Gland Diseases pathology
- Published
- 1987
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.