1. Variable peptide processing of a Conus (Asprella) neocostatus α-conotoxin generates bioactive toxiforms that are potent against distinct nicotinic acetylcholine receptor subtypes.
- Author
-
Ramones CMV, Taguchi RS, Gamba EME, Johann E Isagan AE, Watkins M, Chicote MO, Velarde MC, Villaraza AJL, Yu ET, Olivera BM, Concepcion GP, and Lluisma AO
- Subjects
- Animals, Mice, Humans, Cell Line, Tumor, Amino Acid Sequence, Peptides pharmacology, Peptides chemistry, Protein Processing, Post-Translational drug effects, Conotoxins pharmacology, Conotoxins chemistry, Receptors, Nicotinic metabolism, Receptors, Nicotinic genetics, Conus Snail, Nicotinic Antagonists pharmacology, Nicotinic Antagonists chemistry, Nicotinic Antagonists isolation & purification
- Abstract
Conusvenoms are composed of peptides that are commonly post-translationally modified, increasing their chemical diversity beyond what is encoded in the genome and enhancing their potency and selectivity. This study describes how PTMs alter an α-conotoxin's selectivity for specific nAChR subtypes. Venom from the cone snailConus(Asprella)neocostatuswas fractionated using high-performance liquid chromatography and tested using a behavioral intracranial mouse bioassay and a cholinergic calcium imaging assay using SH-SY5Y neuroblastoma cells. Four peptides were isolated from three HPLC fractions and found to have similar amino acid sequences using tandem mass spectrometry; they all containC-terminal amidation. The four peptides appear to be encoded by a single gene as indicated by transcriptomic analysis. One of these, NcIA, contains no additional PTM. NcIB lacked the two glycine residues found in the N-terminus of NcIA and contained two hydroxylated prolines. Analogs of both peptides containing a ɣ-carboxylated glutamic residue (NcIA[E15γ] and NcIB[E13γ]) were also isolated. Functional assays revealed distinct receptor selectivity: NcIA inhibited nicotine-evoked responses by over 70 %, while NcIA[E15γ] did not. Conversely, NcIB[E13γ] was inhibitory (∼60 %), but NcIB was not. Against choline-evoked responses, NcIA was weakly inhibitory (∼40 %), whereas the other three were nearly fully inhibitory. The IC
50 values for NcIB and NcIB[E13γ] were 91.0 nM and 64.7 nM, respectively. These findings indicate that PTMs andN-terminal modifications influence peptide potency and receptor specificity, suggesting that cone snails use variable peptide processing not only to generate chemical diversity in their venom but also to fine-tune the pharmacology of its components., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 Elsevier Inc. All rights reserved.)- Published
- 2025
- Full Text
- View/download PDF