24 results on '"Villanueva, G.L."'
Search Results
2. The HITRAN2020 molecular spectroscopic database
- Author
-
Gordon, I.E., Rothman, L.S., Hargreaves, R.J., Hashemi, R., Karlovets, E.V., Skinner, F.M., Conway, E.K., Hill, C., Kochanov, R.V., Tan, Y., Wcisło, P., Finenko, A.A., Nelson, K., Bernath, P.F., Birk, M., Boudon, V., Campargue, A., Chance, K.V., Coustenis, A., Drouin, B.J., Flaud, J.–M., Gamache, R.R., Hodges, J.T., Jacquemart, D., Mlawer, E.J., Nikitin, A.V., Perevalov, V.I., Rotger, M., Tennyson, J., Toon, G.C., Tran, H., Tyuterev, V.G., Adkins, E.M., Baker, A., Barbe, A., Canè, E., Császár, A.G., Dudaryonok, A., Egorov, O., Fleisher, A.J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J.J., Hartmann, J.–M., Horneman, V.–M., Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I., Kofman, V., Kwabia–Tchana, F., Lavrentieva, N.N., Lee, T.J., Long, D.A., Lukashevskaya, A.A., Lyulin, O.M., Makhnev, V.Yu., Matt, W., Massie, S.T., Melosso, M., Mikhailenko, S.N., Mondelain, D., Müller, H.S.P., Naumenko, O.V., Perrin, A., Polyansky, O.L., Raddaoui, E., Raston, P.L., Reed, Z.D., Rey, M., Richard, C., Tóbiás, R., Sadiek, I., Schwenke, D.W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S.A., Vander Auwera, J., Vasilenko, I.A., Vigasin, A.A., Villanueva, G.L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S.N.
- Published
- 2022
- Full Text
- View/download PDF
3. Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets
- Author
-
Villanueva, G.L., Smith, M.D., Protopapa, S., Faggi, S., and Mandell, A.M.
- Published
- 2018
- Full Text
- View/download PDF
4. Scientific rationale for Uranus and Neptune in situ explorations
- Author
-
Mousis, O., Atkinson, D.H., Cavalié, T., Fletcher, L.N., Amato, M.J., Aslam, S., Ferri, F., Renard, J.-B., Spilker, T., Venkatapathy, E., Wurz, P., Aplin, K., Coustenis, A., Deleuil, M., Dobrijevic, M., Fouchet, T., Guillot, T., Hartogh, P., Hewagama, T., Hofstadter, M.D., Hue, V., Hueso, R., Lebreton, J.-P., Lellouch, E., Moses, J., Orton, G.S., Pearl, J.C., Sánchez-Lavega, A., Simon, A., Venot, O., Waite, J.H., Achterberg, R.K., Atreya, S., Billebaud, F., Blanc, M., Borget, F., Brugger, B., Charnoz, S., Chiavassa, T., Cottini, V., d'Hendecourt, L., Danger, G., Encrenaz, T., Gorius, N.J.P., Jorda, L., Marty, B., Moreno, R., Morse, A., Nixon, C., Reh, K., Ronnet, T., Schmider, F.-X., Sheridan, S., Sotin, C., Vernazza, P., and Villanueva, G.L.
- Published
- 2018
- Full Text
- View/download PDF
5. A deep search for the release of volcanic gases on Mars using ground-based high-resolution infrared and submillimeter spectroscopy: Sensitive upper limits for OCS and SO2
- Author
-
Khayat, A.SJ., Villanueva, G.L., Mumma, M.J., and Tokunaga, A.T.
- Published
- 2017
- Full Text
- View/download PDF
6. A search for SO2, H2S and SO above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy
- Author
-
Khayat, A.S., Villanueva, G.L., Mumma, M.J., and Tokunaga, A.T.
- Published
- 2015
- Full Text
- View/download PDF
7. Modeling of nitrogen compounds in cometary atmospheres: Fluorescence models of ammonia (NH3), hydrogen cyanide (HCN), hydrogen isocyanide (HNC) and cyanoacetylene (HC3N)
- Author
-
Villanueva, G.L., Magee-Sauer, K., and Mumma, M.J.
- Published
- 2013
- Full Text
- View/download PDF
8. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy
- Author
-
Villanueva, G.L., Mumma, M.J., Novak, R.E., Radeva, Y.L., Käufl, H.U., Smette, A., Tokunaga, A., Khayat, A., Encrenaz, T., and Hartogh, P.
- Published
- 2013
- Full Text
- View/download PDF
9. The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy
- Author
-
Paganini, L., Mumma, M.J., Bonev, B.P., Villanueva, G.L., DiSanti, M.A., Keane, J.V., and Meech, K.J.
- Published
- 2012
- Full Text
- View/download PDF
10. Water in planetary and cometary atmospheres: H 2O/HDO transmittance and fluorescence models
- Author
-
Villanueva, G.L., Mumma, M.J., Bonev, B.P., Novak, R.E., Barber, R.J., and DiSanti, M.A.
- Published
- 2012
- Full Text
- View/download PDF
11. Measurement of the isotopic signatures of water on Mars; Implications for studying methane
- Author
-
Novak, R.E., Mumma, M.J., and Villanueva, G.L.
- Published
- 2011
- Full Text
- View/download PDF
12. Scientific rationale for Uranus and Neptune in situ explorations
- Author
-
Mousis, O., Atkinson, D.H., Cavalié, T., Fletcher, L.N., Amato, M.J., Aslam, S., Ferri, F., Renard, J.-B., Spilker, T., Venkatapathy, E., Wurz, P., Aplin, K., Coustenis, A., Deleuil, M., Dobrijevic, M., Fouchet, T., Guillot, T., Hartogh, P., Hewagama, T., Hofstadter, M.D., Hue, V., Hueso, R., Lebreton, J.-P., Lellouch, E., Moses, J., Orton, G.S., Pearl, J.C., Sánchez-Lavega, A., Simon, A., Venot, O., Waite, J.H., Achterberg, R.K., Atreya, S., Billebaud, F., Blanc, M., Borget, F., Brugger, B., Charnoz, S., Chiavassa, T., Cottini, V., d'Hendecourt, L., Danger, G., Encrenaz, T., Gorius, N.J.P., Jorda, L., Marty, B., Moreno, R., Morse, A., Nixon, C., Reh, K., Ronnet, T., Schmider, F.-X., Sheridan, S., Sotin, C., Vernazza, P., Villanueva, G.L., Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), University of Idaho [Moscow, USA], Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of Leicester, NASA Goddard Space Flight Center (GSFC), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Universita degli Studi di Padova, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), NASA Ames Research Center (ARC), Physikalisches Institut [Bern], Universität Bern [Bern], Center for Space and Habitability (CSH), University of Bern, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford [Oxford], ASP 2018, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, University of Maryland [College Park], University of Maryland System, Departamento de Fisica Aplicada [Bilbao], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Space Science and Engineering Division [San Antonio], Southwest Research Institute [San Antonio] (SwRI), Department of Astronomy [College Park], University of Maryland System-University of Maryland System, University of Michigan [Ann Arbor], University of Michigan System, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut de Physique du Globe de Paris (IPGP), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), School of Physical Sciences [Milton Keynes], The Open University [Milton Keynes] (OU), Institut National des Sciences de l’Univers' (INSU), the 'Centre National de la Recherche Scientifique' (CNRS) and 'Centre National d’Etude Spatiale' (CNES), ANR-11-IDEX-0001-02/11-IDEX-0001,AMIDEX,AMIDEX(2011), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Padova = University of Padua (Unipd), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Universität Bern [Bern] (UNIBE), University of Oxford, Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Space Science Institute [Boulder] (SSI), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011), Laboratoire d'Astrophysique de Marseille ( LAM ), Aix Marseille Université ( AMU ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National d'Etudes Spatiales ( CNES ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), NASA Goddard Space Flight Center ( GSFC ), Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' ( CISAS ), Universita degli Studi di Padova = University of Padua = Université de Padoue, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace ( LPC2E ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Jet Propulsion Laboratory ( JPL ), NASA-California Institute of Technology ( CALTECH ), NASA Ames Research Center ( ARC ), Center for Space and Habitability ( CSH ), Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Joseph Louis LAGRANGE ( LAGRANGE ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Max Planck Institute for Solar System Research ( MPS ), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea ( UPV/EHU ), K.U.Leuven, Southwest Research Institute [San Antonio] ( SwRI ), University of Michigan, Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules ( UTINAM ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Astrophysique Interactions Multi-échelles ( AIM - UMR 7158 - UMR E 9005 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ), Institut de Physique du Globe de Paris ( IPGP ), Institut national des sciences de l'Univers ( INSU - CNRS ) -IPG PARIS-Université Paris Diderot - Paris 7 ( UPD7 ) -Université de la Réunion ( UR ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Recherches Pétrographiques et Géochimiques ( CRPG ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Center for Medical Imaging Science and Visualization - Dept. of Medical and Health Sciences, Linköping University ( LIU ), The Open University [Milton Keynes] ( OU ), ANR-11-IDEX-0001-02/11-IDEX-0001,Amidex,Amidex ( 2011 ), Aix Marseille Université (AMU), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Uranus ,Entry probe ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Context (language use) ,01 natural sciences ,7. Clean energy ,Astrobiology ,Atmosphere ,Neptune ,Planet ,0103 physical sciences ,evolution ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Cloud top ,formation ,Astronomy and Astrophysics ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,13. Climate action ,Space and Planetary Science ,Atmospheric entry ,[SDU]Sciences of the Universe [physics] ,atmosphere ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Ice giant ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission., Comment: Submitted to Planetary and Space Science
- Published
- 2017
- Full Text
- View/download PDF
13. A multi-instrument study of Comet C/2009 P1 (Garradd) at 2.1 AU (pre-perihelion) from the Sun
- Author
-
Villanueva, G.L., Mumma, M.J., DiSanti, M.A., Bonev, B.P., Paganini, L., and Blake, G.A.
- Published
- 2012
- Full Text
- View/download PDF
14. EPOXI: Comet 103P/Hartley 2 observations from a worldwide campaign
- Author
-
Meech, K.J., A'Hearn, M.F., Adams, J.A., Bacci, P., Bai, J., Barrera, L., Battelino, M., Bauer, J.M., Becklin, E., Bhatt, B., Biver, N., Bockelée-Morvan, D., Bodewits, D., Böhnhardt, H., Boissier, J., Bonev, B.P., Borghini, W., Brucato, J.R., Bryssinck, E., Buie, M.W., Canovas, H., Castellano, D., Charnley, S.B., Chen, W.P., Chiang, P., Choi, Y.-J., Christian, D.J., Chuang, Y.-L., Cochran, A.L., Colom, P., Combi, M.R., Coulson, I.M., Crovisier, J., Dello Russo, N., Dennerl, K., DeWahl, K., DiSanti, M.A., Facchini, M., Farnham, T.L., Fernández, Y., Floren, H.G., Frisk, U., Fujiyoshi, T., Furusho, R., Fuse, T., Galli, G., Garcia-Hernández, D.A., Gersch, A., Getu, Z., Gibb, E.L., Gillon, M., Guido, E., Guillermo, R.A., Hadamcik, E., Hainaut, O., Hammel, H.B., Harker, D.E., Harmon, J.K., Harris, W.M., Hartogh, P., Hashimoto, M., Hausler, B., Herter, T., Hjalmarson, A., Holland, S.T., Honda, M., Hosseini, S., Howell, E.S., Howes, N., Hsieh, H.H., Hsiao, H.-Y., Hutsemékers, D., Immler, S.M., Jackson, W.M., Jeffers, S.V., Jehin, E., Jones, T.J., De Juan Ovelar, M., Kaluna, H.M., Karlsson, T., Kawakita, H., Keane, J.V., Keller, L.D., Kelley, M.S., Kinoshita, D., Kiselev, N.N., Kleyna, J., Knight, M.M., Kobayashi, H., Kobulnicky, H.A., Kolokolova, L., Kreiny, M., Kuan, Y.-J., Küppers, M., Lacruz, J.M., Landsman, W.B., Lara, L.M., Lecacheux, A., Levasseur-Regourd, A.C., Li, B., Licandro, J., Ligustri, R., Lin, Z.-Y., Lippi, M., Lis, D.C., Lisse, C.M., Lovell, A.J., Lowry, S.C., Lu, H., Lundin, S., Magee-Sauer, K., Magain, P., Manfroid, J., Mazzotta Epifani, E., McKay, A., Melita, M.D., Mikuz, H., Milam, S.N., Milani, G., Min, M., Moreno, R., Mueller, B.E.A., Mumma, M.J., Nicolini, M., Nolan, M.C., Nordh, H.L., Nowajewski, P.B., Team, O., Ootsubo, T., Paganini, L., Perrella, C., Pittichová, J., Prosperi, E., Radeva, Y.L., Reach, W.T., Remijan, A.J., Rengel, M., Riesen, T.E., Rodenhuis, M., Rodríguez, D.P., Russell, R.W., Sahu, D.K., Samarasinha, N.H., Sánchez Caso, A., Sandqvist, A., Sarid, G., Sato, M., Schleicher, D.G., Schwieterman, E.W., Sen, A.K., Shenoy, D., Shi, J.-C., Shinnaka, Y., Skvarc, J., Snodgrass, C., Sitko, M.L., Sonnett, S., Sosseini, S., Sostero, G., Sugita, S., Swinyard, B.M., Szutowicz, S., Takato, N., Tanga, P., Taylor, P.A., Tozzi, G.-P., Trabatti, R., Trigo-Rodríguez, J.M., Tubiana, C., De Val-Borro, M., Vacca, W., Vandenbussche, B., Vaubaillion, J., Velichko, F.P., Velichko, S.F., Vervack, R.J., Vidal-Nunez, M.J., Villanueva, G.L., Vinante, C., Vincent, J.-B., Wang, M., Wasserman, L.H., Watanabe, J., Weaver, H.A., Weissman, P.R., Wolk, S., Wooden, D.H., Woodward, C.E., Yamaguchi, M., Yamashita, T., Yanamandra-Fischer, P.A., Yang, B., Yao, J.-S., Yeomans, D.K., Zenn, T., Zhao, H., Ziffer, J.E., Meech, K.J., A'Hearn, M.F., Adams, J.A., Bacci, P., Bai, J., Barrera, L., Battelino, M., Bauer, J.M., Becklin, E., Bhatt, B., Biver, N., Bockelée-Morvan, D., Bodewits, D., Böhnhardt, H., Boissier, J., Bonev, B.P., Borghini, W., Brucato, J.R., Bryssinck, E., Buie, M.W., Canovas, H., Castellano, D., Charnley, S.B., Chen, W.P., Chiang, P., Choi, Y.-J., Christian, D.J., Chuang, Y.-L., Cochran, A.L., Colom, P., Combi, M.R., Coulson, I.M., Crovisier, J., Dello Russo, N., Dennerl, K., DeWahl, K., DiSanti, M.A., Facchini, M., Farnham, T.L., Fernández, Y., Floren, H.G., Frisk, U., Fujiyoshi, T., Furusho, R., Fuse, T., Galli, G., Garcia-Hernández, D.A., Gersch, A., Getu, Z., Gibb, E.L., Gillon, M., Guido, E., Guillermo, R.A., Hadamcik, E., Hainaut, O., Hammel, H.B., Harker, D.E., Harmon, J.K., Harris, W.M., Hartogh, P., Hashimoto, M., Hausler, B., Herter, T., Hjalmarson, A., Holland, S.T., Honda, M., Hosseini, S., Howell, E.S., Howes, N., Hsieh, H.H., Hsiao, H.-Y., Hutsemékers, D., Immler, S.M., Jackson, W.M., Jeffers, S.V., Jehin, E., Jones, T.J., De Juan Ovelar, M., Kaluna, H.M., Karlsson, T., Kawakita, H., Keane, J.V., Keller, L.D., Kelley, M.S., Kinoshita, D., Kiselev, N.N., Kleyna, J., Knight, M.M., Kobayashi, H., Kobulnicky, H.A., Kolokolova, L., Kreiny, M., Kuan, Y.-J., Küppers, M., Lacruz, J.M., Landsman, W.B., Lara, L.M., Lecacheux, A., Levasseur-Regourd, A.C., Li, B., Licandro, J., Ligustri, R., Lin, Z.-Y., Lippi, M., Lis, D.C., Lisse, C.M., Lovell, A.J., Lowry, S.C., Lu, H., Lundin, S., Magee-Sauer, K., Magain, P., Manfroid, J., Mazzotta Epifani, E., McKay, A., Melita, M.D., Mikuz, H., Milam, S.N., Milani, G., Min, M., Moreno, R., Mueller, B.E.A., Mumma, M.J., Nicolini, M., Nolan, M.C., Nordh, H.L., Nowajewski, P.B., Team, O., Ootsubo, T., Paganini, L., Perrella, C., Pittichová, J., Prosperi, E., Radeva, Y.L., Reach, W.T., Remijan, A.J., Rengel, M., Riesen, T.E., Rodenhuis, M., Rodríguez, D.P., Russell, R.W., Sahu, D.K., Samarasinha, N.H., Sánchez Caso, A., Sandqvist, A., Sarid, G., Sato, M., Schleicher, D.G., Schwieterman, E.W., Sen, A.K., Shenoy, D., Shi, J.-C., Shinnaka, Y., Skvarc, J., Snodgrass, C., Sitko, M.L., Sonnett, S., Sosseini, S., Sostero, G., Sugita, S., Swinyard, B.M., Szutowicz, S., Takato, N., Tanga, P., Taylor, P.A., Tozzi, G.-P., Trabatti, R., Trigo-Rodríguez, J.M., Tubiana, C., De Val-Borro, M., Vacca, W., Vandenbussche, B., Vaubaillion, J., Velichko, F.P., Velichko, S.F., Vervack, R.J., Vidal-Nunez, M.J., Villanueva, G.L., Vinante, C., Vincent, J.-B., Wang, M., Wasserman, L.H., Watanabe, J., Weaver, H.A., Weissman, P.R., Wolk, S., Wooden, D.H., Woodward, C.E., Yamaguchi, M., Yamashita, T., Yanamandra-Fischer, P.A., Yang, B., Yao, J.-S., Yeomans, D.K., Zenn, T., Zhao, H., and Ziffer, J.E.
- Abstract
Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was 16.4hr. Starting in 2010 August the period changed from 16.6hr to near 19hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO2-driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production. © 2011. The American Astronomical Society. All rights reserved.
- Published
- 2011
15. A multi-instrument study of Comet C/2009 P1 (Garradd) at 2.1AU (pre-perihelion) from the Sun
- Author
-
Villanueva, G.L., primary, Mumma, M.J., additional, DiSanti, M.A., additional, Bonev, B.P., additional, Paganini, L., additional, and Blake, G.A., additional
- Published
- 2012
- Full Text
- View/download PDF
16. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models
- Author
-
Villanueva, G.L., primary, Mumma, M.J., additional, Bonev, B.P., additional, Novak, R.E., additional, Barber, R.J., additional, and DiSanti, M.A., additional
- Published
- 2012
- Full Text
- View/download PDF
17. The molecular composition of Comet C/2007 W1 (Boattini): Evidence of a peculiar outgassing and a rich chemistry
- Author
-
Villanueva, G.L., primary, Mumma, M.J., additional, DiSanti, M.A., additional, Bonev, B.P., additional, Gibb, E.L., additional, Magee-Sauer, K., additional, Blake, G.A., additional, and Salyk, C., additional
- Published
- 2011
- Full Text
- View/download PDF
18. The organic composition of Comet C/2001 A2 (LINEAR)
- Author
-
Magee-Sauer, Karen, primary, Mumma, Michael J., additional, DiSanti, Michael A., additional, Dello Russo, Neil, additional, Gibb, Erika L., additional, Bonev, Boncho P., additional, and Villanueva, G.L., additional
- Published
- 2008
- Full Text
- View/download PDF
19. A digital dispersive matching network for SAW devices in chirp transform spectrometers
- Author
-
Villanueva, G.L., primary, Hartogh, P., additional, and Reindl, L.M., additional
- Published
- 2006
- Full Text
- View/download PDF
20. Modeling of nitrogen compounds in cometary atmospheres: Fluorescence models of ammonia (NH3), hydrogen cyanide (HCN), hydrogen isocyanide (HNC) and cyanoacetylene (HC3N).
- Author
-
Villanueva, G.L., Magee-Sauer, K., and Mumma, M.J.
- Subjects
- *
NITROGEN compounds , *COMETARY nuclei , *FLUORESCENCE , *HYDROCYANIC acid , *NUCLEAR vibrational states , *DATABASES - Abstract
Abstract: We developed full cascade fluorescence models for NH3, HCN and HNC, and a new band model for the ν1 ro-vibrational band of HC3N. The models are based on ab-initio spectral databases containing millions of spectral lines and also include extremely precise spectral information contained in several high-resolution spectral databases. Using these new models we derive detailed cascade maps for these species, and obtain realistic fluorescence efficiencies applicable to high-resolution infrared spectra. The new models permit accurate synthesis of line-by-line spectra for a wide range of rotational temperatures. We validated the models by comparing simulated emissions of these nitrogen species with measured spectra of comet C/2007 W1 (Boattini) acquired with high-resolution infrared spectrometers at high altitude sites. The new models accurately describe the complex emission spectrum, providing distinct rotational temperatures and production rates at greatly improved accuracy compared with results derived from earlier fluorescence models. In addition, we made use of the completeness and scope of the new databases to investigate possible HCN↔HNC radiative isomerization mechanisms, obtaining estimates of conversion efficiencies under typical cometary conditions. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
21. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy
- Author
-
Villanueva, G.L., Mumma, M.J., Novak, R.E., Radeva, Y.L., Käufl, H.U., Smette, A., Tokunaga, A., Khayat, A., Encrenaz, T., and Hartogh, P.
- Subjects
- *
NITROGEN compounds , *ORGANIC compounds , *ATMOSPHERE , *SPECTROMETERS , *CLIMATE change , *DOPPLER effect - Abstract
Abstract: Is Mars actively releasing organic and other minor gases into the atmosphere? We present a comprehensive search for trace species on Mars, targeting multiple volatile organic species (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), several nitrogen compounds (N2O, NH3, HCN), and two chlorine species (HCl, CH3Cl) through their rovibrational spectra in the 2.8–3.7μm spectral region. The data were acquired over a period of 4years (2006–2010) using powerful infrared high-resolution spectrometers (CRIRES, NIRSPEC, CSHELL) at high-altitude observatories (VLT, Keck-2, NASA-IRTF), and span a broad range of seasons, Doppler shifts and spatial coverage. Here, we present results from a selection of high-quality spectra obtained on four separate dates, representing a fraction of our search space. For most of these species we derived the most stringent upper limits ever obtained, and because the targeted gases have substantially different resident lifetimes in the Martian atmosphere (from hours to centuries), our measurements not only test for current release but also provide stringent limits on the quiescent levels. In particular, we sampled the same regions where plumes of methane have been recently observed (e.g., Syrtis Major and Valles Marineris), allowing us to test for seasonal and temporal variability. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
22. Water in planetary and cometary atmospheres: H2O/HDO transmittance and fluorescence models
- Author
-
Villanueva, G.L., Mumma, M.J., Bonev, B.P., Novak, R.E., Barber, R.J., and DiSanti, M.A.
- Subjects
- *
PLANETARY water , *DEUTERIUM oxide , *TRANSMISSOMETERS , *PHYSICAL & theoretical chemistry , *FLUORESCENCE microscopy , *RADIATIVE transfer , *SPECTRUM analysis - Abstract
Abstract: We developed a modern methodology to retrieve water (H2O) and deuterated water (HDO) in planetary and cometary atmospheres, and constructed an accurate spectral database that combines theoretical and empirical results. On the basis of a greatly expanded set of spectroscopic parameters, we built a full non-resonance cascade fluorescence model and computed fluorescence efficiencies for H2O (500 million lines) and HDO (700 million lines). The new line list was also integrated into an advanced terrestrial radiative transfer code (LBLRTM) and adapted to the CO2 rich atmosphere of Mars, for which we adopted the complex Robert–Bonamy formalism for line shapes. We retrieved water and D/H in the atmospheres of Mars, comet C/2007 W1 (Boattini), and Earth by applying the new formalism to spectra obtained with the high-resolution spectrograph NIRSPEC/Keck II atop Mauna Kea (Hawaii). The new model accurately describes the complex morphology of the water bands and greatly increases the accuracy of the retrieved abundances (and the D/H ratio in water) with respect to previously available models. The new model provides improved agreement of predicted and measured intensities for many H2O lines already identified in comets, and it identifies several unassigned cometary emission lines as new emission lines of H2O. The improved spectral accuracy permits retrieval of more accurate rotational temperatures and production rates for cometary water. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
23. Scientific rationale for Uranus and Neptune in situ explorations
- Author
-
Mousis, O., Atkinson, D.H., Cavalié, T., Fletcher, L.N., Amato, M.J., Aslam, S., Ferri, F., Renard, J.-B., Spilker, T., Venkatapathy, E., Wurz, Peter, Aplin, K., Coustenis, A., Deleuil, M., Dobrijevic, M., Fouchet, T., Guillot, T., Hartogh, P., Hewagama, T., Hofstadter, M.D., Hue, V., Hueso, R., Lebreton, J.-P., Lellouch, E., Moses, J., Orton, G.S., Pearl, J.C., Sánchez-Lavega, A., Simon, A., Venot, O., Waite, J.H., Achterberg, R.K., Atreya, S., Billebaud, F., Blanc, M., Borget, F., Brugger, B., Charnoz, S., Chiavassa, T., Cottini, V., D'Hendecourt, L., Danger, G., Encrenaz, T., Gorius, N.J.P., Jorda, L., Marty, B., Moreno, R., Morse, A., Nixon, C., Reh, K., Ronnet, T., Schmider, F.-X., Sheridan, S., Sotin, C., Vernazza, P., and Villanueva, G.L.
- Subjects
13. Climate action ,520 Astronomy ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,620 Engineering ,7. Clean energy ,Physics::Atmospheric and Oceanic Physics - Abstract
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ~70% heavy elements surrounded by a more dilute outer envelope of H₂ and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
24. Scientific rationale for Uranus and Neptune in situ explorations
- Author
-
Mousis, O., Atkinson, D.H., Cavalié, T., Fletcher, L.N., Amato, M.J., Aslam, S., Ferri, F., Renard, J.-B., Spilker, T., Venkatapathy, E., Wurz, P., Aplin, K., Coustenis, A., Deleuil, M., Dobrijevic, M., Fouchet, T., Guillot, T., Hartogh, P., Hewagama, T., Hofstadter, M.D., Hue, V., Hueso, R., Lebreton, J.-P., Lellouch, E., Moses, J., Orton, G.S., Pearl, J.C., Sánchez-Lavega, A., Simon, A., Venot, O., Waite, J.H., Achterberg, R.K., Atreya, S., Billebaud, F., Blanc, M., Borget, F., Brugger, B., Charnoz, S., Chiavassa, T., Cottini, V., d'Hendecourt, L., Danger, G., Encrenaz, T., Gorius, N.J.P., Jorda, L., Marty, B., Moreno, R., Morse, A., Nixon, C., Reh, K., Ronnet, T., Schmider, F.-X., Sheridan, S., Sotin, C., Vernazza, P., Villanueva, G.L., Mousis, O., Atkinson, D.H., Cavalié, T., Fletcher, L.N., Amato, M.J., Aslam, S., Ferri, F., Renard, J.-B., Spilker, T., Venkatapathy, E., Wurz, P., Aplin, K., Coustenis, A., Deleuil, M., Dobrijevic, M., Fouchet, T., Guillot, T., Hartogh, P., Hewagama, T., Hofstadter, M.D., Hue, V., Hueso, R., Lebreton, J.-P., Lellouch, E., Moses, J., Orton, G.S., Pearl, J.C., Sánchez-Lavega, A., Simon, A., Venot, O., Waite, J.H., Achterberg, R.K., Atreya, S., Billebaud, F., Blanc, M., Borget, F., Brugger, B., Charnoz, S., Chiavassa, T., Cottini, V., d'Hendecourt, L., Danger, G., Encrenaz, T., Gorius, N.J.P., Jorda, L., Marty, B., Moreno, R., Morse, A., Nixon, C., Reh, K., Ronnet, T., Schmider, F.-X., Sheridan, S., Sotin, C., Vernazza, P., and Villanueva, G.L.
- Abstract
The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.