10 results on '"Vilar Fernández, José Antonio"'
Search Results
2. The Cemento-Dentino-Canal Junction, the Apical Foramen, and the Apical Constriction: Evaluation by Optical Microscopy
- Author
-
Ponce, Elías Harrán and Vilar Fernández, José Antonio
- Published
- 2003
- Full Text
- View/download PDF
3. Statistical learning in complex and temporal data: distances, two-sample testing, clustering, classification and Big Data
- Author
-
Vilar Fernández, José Antonio, Montero Manso, Pablo, Vilar Fernández, José Antonio, and Montero Manso, Pablo
- Abstract
[Resumo] Esta tesis trata sobre aprendizaxe estatístico en obxetos complexos, con énfase en series temporais. O problema abórdase introducindo coñecemento sobre o dominio do fenómeno subxacente, mediante distancias e características. Proponse un contraste de dúas mostras basado en distancias e estúdase o seu funcionamento nun gran abanico de escenarios. As distancias para clasificación e clustering de series temporais acadan un incremento da potencia estatística cando se aplican a contrastes de dúas mostras. O noso test compárase de xeito favorable con outros métodos gracias á súa flexibilidade ante diferentes alternativas. Defínese unha nova distancia entre series temporais mediante un xeito innovador de comparar as distribucións retardadas das series. Esta distancia herda o bo funcionamento empírico doutros métodos pero elimina algunhas das súas limitacións. Proponse un método de predicción baseada en características das series. O método combina diferentes algoritmos estándar de predicción mediante unha suma ponderada. Os pesos desta suma veñen dun modelo que se axusta a un conxunto de entrenamento de gran tamaño. Propónse un método de clasificación distribuida, baseado en comparar, mediante unha distancia, as funcións de distribución empíricas do conxuto de proba común e as dos datos que recibe cada nodo de cómputo., [Resumen] Esta tesis trata sobre aprendizaje estadístico en objetos complejos, con énfasis en series temporales. El problema se aborda introduciendo conocimiento del dominio del fenómeno subyacente, mediante distancias y características. Se propone un test de dos muestras basado en distancias y se estudia su funcionamiento en un gran abanico de escenarios. La distancias para clasificación y clustering de series temporales consiguen un incremento de la potencia estadística cuando se aplican al tests de dos muestras. Nuestro test se compara favorablemente con otros métodos gracias a su flexibilidad antes diferentes alternativas. Se define una nueva distancia entre series temporales mediante una manera innovadora de comparar las distribuciones retardadas de la series. Esta distancia hereda el buen funcionamiento empírico de otros métodos pero elimina algunas de sus limitaciones. Se propone un método de predicción basado en características de las series. El método combina diferentes algoritmos estándar de predicción mediante una suma ponderada. Los pesos de esta suma salen de un modelo que se ajusta a un conjunto de entrenamiento de gran tamaño. Se propone un método de clasificación distribuida, basado en comparar, mediante una distancia, las funciones de distribución empírica del conjuto de prueba común y las de los datos que recibe cada nodo de cómputo., [Abstract] This thesis deals with the problem of statistical learning in complex objects, with emphasis on time series data. The problem is approached by facilitating the introduction of domain knoweldge of the underlying phenomena by means of distances and features. A distance-based two sample test is proposed, and its performance is studied under a wide range of scenarios. Distances for time series classification and clustering are also shown to increase statistical power when applied to two-sample testing. Our test compares favorably to other methods regarding its flexibility against different alternatives. A new distance for time series is defined by considering an innovative way of comparing lagged distributions of the series. This distance inherits the good empirical performance of existing methods while removing some of their limitations. A forecast method based on times series features is proposed. The method works by combining individual standard forecasting algorithms using a weighted average. These weights come from a learning model fitted on a large training set. A distributed classification algorithm is proposed, based on comparing, using a distance, the empirical distribution functions between the dataset that each computing node receives and the test set.
- Published
- 2019
4. New methodological contributions in time series clustering
- Author
-
Vilar Fernández, José Antonio, Lafuente Rego, Borja Raúl, Vilar Fernández, José Antonio, and Lafuente Rego, Borja Raúl
- Abstract
[Abstract] This thesis presents new procedures to address the analysis cluster of time series. First of all a two-stage procedure based on comparing frequencies and magnitudes of the absolute maxima of the spectral densities is proposed. Assuming that the clustering purpose is to group series according to the underlying dependence structures, a detailed study of the behavior in clustering of a dissimilarity based on comparing estimated quantile autocovariance functions (QAF) is also carried out. A prediction-based resampling algorithm proposed by Dudoit and Fridlyand is adjusted to select the optimal number of clusters. The asymptotic behavior of the sample quantile autocovariances is studied and an algorithm to determine optimal combinations of lags and pairs of quantile levels to perform clustering is introduced. The proposed metric is used to perform hard and soft partitioning-based clustering. First, a broad simulation study examines the behavior of the proposed metric in crisp clustering using hierarchkal and PAM procedure. Then, a novel fuzzy C-mcdoids algorithm based on the QAF-dissimilarity is proposed. Three different robust versions of this fuzzy algorithm are also presented to deal with data containing outlier time series. Finally, other ways of soft clustering analysis are explored, namely probabilistic 0-clustering and clustering based on mixture models., [Resumo] Esta tese presenta novos procedementos para abordar a análise cluster de series temporais. En primeiro lugar proponse un procedemento en dúas etapas baseádo na comparación de frecuencias e magnitudes dos máximos absolutos das densidades espectrais. Supoñendo que o propósito é agrupar series dacordo coas estruturas de dependencia subxaccntes, tamén se leva a cabo un estudo detallado do comportamento en clustering dunha disimilaridade basea.da na comparación das funcións estimadas das autocovarianzas cuantil (QAF). Un algoritmo de remostraxe baseado na predición proposto por Dudoit e Fridlyand adáptase para selecionar o número óptimo de clusters. Tamén se estuda o comportamento asintótico das autocovarianzas cuantís e se introduce un algoritmo para determinar as combinacións óptimas de lags e pares de niveles de cuantís para levar a cabo a clasificación. A métrica proposta utilízase para realizar análise cluster baseado en particións "hard" e "soft". En primeiro lugar, un amplo estudo de simulación examina o comportamento da métrica proposta en clústering "hard" utilizando os procedementos xerárquico e PAM. A continuación, proponse un novo algoritmo "fuzzy" C-medoides baseado na disimilaridade QAF. Tamén se presentan tres versións robustas deste algoritmo "fuzzy" para tratar con datos que conteñan valores atípicos. Finalmente, explóranse outras vías de análise cluster "soft", concretamente, D-clustering probabilístico e clustering baseado en modelos mixtos., [Resumen] Esta tesis presenta nuevos procedimientos para abordar el análisis cluster de series temporales. En primer lugar se propone un procedimiento en dos etapas basado en la comparación de frecuencias y magnitudes de los máximos absolutos de las densidades espectrales. Suponiendo que el propósito es agrupar series de acuerdo con las estructuras de dependencia subyacentes, también se lleva. a cabo un estudio detallado del comportamiento en clustering de una disimilaridad basada en la comparación de las funciones estimadas de las autoco,'afiancias cuantil (QAF). Un algoritmo de remuestreo basado en predicción propuesto por Dudoit y Fridlyand se adapta para seleccionar el número óptimo de clusters. También se estudia el comportamiento asintótico de las autocovariancias cuantites y se introduce un algoritmo para determinar las combinaciones óptimas de lags y pares de niveles de cuantiles para llevar a cabo la clasificación. La. métrica propuesta se utiliza para realizar análisis cluster basado en particiones "hard" y ''soft". En primer lugar, un amplio elltudio de simulación examina el comportamiento de la métrica propuesta en clúster "hard" utilizando los procedimientos jerárquico y PAM. A continuación, se propone un nuevo algoritmo "fuzzy" Cmedoides basado en la disimilaridad QAF. También se presentan tres versiones robustas de este algoritmo "fuzzy" para tratar con datos que contengan atípicos. Finalmente, se exploran otras vías de análisis clus ter "soft", concretamente, D-clustering probabilístico y clustering basado en modelos mixtos.
- Published
- 2017
5. Distancia entre los orificios de entrada a los conductos radiculares en los primeros molares maxilares y mandibulares
- Author
-
Harrán-Ponce, Elías and Vilar-Fernández, José Antonio
- Subjects
Apertura del conducto ,Opening canal ,Pulpa cameral ,Pulp chamber ,Acceso a la camara ,Access chamber - Abstract
En el presente estudio in vivo, se evaluó en la cámara pulpar de los primeros molares maxilares y mandibulares, la distancia entre los orificios de entrada a los conductos radiculares. Se emplearon 60 primeros molares (30 maxilares y 30 mandibulares), con pulpa vital. Efectuada la apertura y localización de cada orificio de entrada a los conductos, con una cámara intraoral y su programa informático de mediciones, se obtuvieron fotos del piso de la cámara pulpar y sobre ellas, las medidas de las distancias entre cada orificio de entrada a los conductos radiculares. Los especímenes evaluados se agruparon en casos con tres y cuatro orificios de entrada. Los resultados estadísticos demostraron que en los molares inferiores con tres orificios de entrada se obtuvo un grupo homogéneo representado por las distancias MV-ML, ML-DL y MV-DV, las que resultaron significativamente superiores a la distancia DV-DL. En los molares superiores cuando los orificios de entrada fueron tres, las distancias obtenidas fueron diferentes. Cuando se localizaron cuatro orificios de entrada, las medias se agruparon en tres grupos homogéneos. This in vivo study evaluates the distance between the entrance to each root canal in 60 first molars, 30 maxillary and 30 mandibular, with vital pulp. Upon pulp chamber opening and canal orifice location, using an intraoral camera and measuring software, photographs were taken of the pulp floor and the distances between orifices determined. Specimens were grouped according to number of canal orifices found, 3 or 4. Statistical analyses showed that in lower molars having 3 canal orifices a homogeneous group was formed with 3 distances MB-ML, ML-DL and MB-DB, these being significantly larger than DB-DL. In upper molars with 3 orifices, the distances differed. Means of molars showing 4 orifices comprised 3 homogeneous groups.
- Published
- 2005
6. Estimación de la función de densidad con observaciones obtenidas en instantes aleatorios
- Author
-
Vilar Fernández, José Antonio and Vilar Fernández, Juan Manuel
- Subjects
Inference ,Inferència ,Procesos mixing de parámetro continuo ,Estimación recursiva de la densidad ,Muestro aleatorio ,62 Statistics::62G Nonparametric inference [Classificació AMS] - Abstract
Sea X(t) un proceso estacionario en tiempo continuo con función de densidad marginal univariante f(x). A partir de un conjunto de n observaciones; X(τ1), X(τ2), ..., X(τn) recogidas en instantes muestrales τi, espaciados irregularmente o aletorios, se estudia la estimación no paramétrica de f(x), utilizando un estimador recursivo tipo núcleo. Asumiendo condiciones débiles de dependencia (α-mixing) se obtiene la expresión del sesgo y varianza del estimador definido, así como propiedades de normalidad asintótica.
- Published
- 1993
7. Distancia entre los orificios de entrada a los conductos radiculares en los primeros molares maxilares y mandibulares
- Author
-
Harrán-Ponce, Elías, primary and Vilar-Fernández, José Antonio, additional
- Published
- 2005
- Full Text
- View/download PDF
8. Statistical learning in complex and temporal data: distances, two-sample testing, clustering, classification and Big Data
- Author
-
Montero Manso, Pablo and Vilar Fernández, José Antonio
- Subjects
Series cronológicas ,Estadística-Aplicaciones científicas ,Minería de datos ,Aprendizaje automático - Abstract
Programa Oficial de Doutoramento en Estatística e Investigación Operativa. 555V01 [Resumo] Esta tesis trata sobre aprendizaxe estatístico en obxetos complexos, con énfase en series temporais. O problema abórdase introducindo coñecemento sobre o dominio do fenómeno subxacente, mediante distancias e características. Proponse un contraste de dúas mostras basado en distancias e estúdase o seu funcionamento nun gran abanico de escenarios. As distancias para clasificación e clustering de series temporais acadan un incremento da potencia estatística cando se aplican a contrastes de dúas mostras. O noso test compárase de xeito favorable con outros métodos gracias á súa flexibilidade ante diferentes alternativas. Defínese unha nova distancia entre series temporais mediante un xeito innovador de comparar as distribucións retardadas das series. Esta distancia herda o bo funcionamento empírico doutros métodos pero elimina algunhas das súas limitacións. Proponse un método de predicción baseada en características das series. O método combina diferentes algoritmos estándar de predicción mediante unha suma ponderada. Os pesos desta suma veñen dun modelo que se axusta a un conxunto de entrenamento de gran tamaño. Propónse un método de clasificación distribuida, baseado en comparar, mediante unha distancia, as funcións de distribución empíricas do conxuto de proba común e as dos datos que recibe cada nodo de cómputo. [Resumen] Esta tesis trata sobre aprendizaje estadístico en objetos complejos, con énfasis en series temporales. El problema se aborda introduciendo conocimiento del dominio del fenómeno subyacente, mediante distancias y características. Se propone un test de dos muestras basado en distancias y se estudia su funcionamiento en un gran abanico de escenarios. La distancias para clasificación y clustering de series temporales consiguen un incremento de la potencia estadística cuando se aplican al tests de dos muestras. Nuestro test se compara favorablemente con otros métodos gracias a su flexibilidad antes diferentes alternativas. Se define una nueva distancia entre series temporales mediante una manera innovadora de comparar las distribuciones retardadas de la series. Esta distancia hereda el buen funcionamiento empírico de otros métodos pero elimina algunas de sus limitaciones. Se propone un método de predicción basado en características de las series. El método combina diferentes algoritmos estándar de predicción mediante una suma ponderada. Los pesos de esta suma salen de un modelo que se ajusta a un conjunto de entrenamiento de gran tamaño. Se propone un método de clasificación distribuida, basado en comparar, mediante una distancia, las funciones de distribución empírica del conjuto de prueba común y las de los datos que recibe cada nodo de cómputo. [Abstract] This thesis deals with the problem of statistical learning in complex objects, with emphasis on time series data. The problem is approached by facilitating the introduction of domain knoweldge of the underlying phenomena by means of distances and features. A distance-based two sample test is proposed, and its performance is studied under a wide range of scenarios. Distances for time series classification and clustering are also shown to increase statistical power when applied to two-sample testing. Our test compares favorably to other methods regarding its flexibility against different alternatives. A new distance for time series is defined by considering an innovative way of comparing lagged distributions of the series. This distance inherits the good empirical performance of existing methods while removing some of their limitations. A forecast method based on times series features is proposed. The method works by combining individual standard forecasting algorithms using a weighted average. These weights come from a learning model fitted on a large training set. A distributed classification algorithm is proposed, based on comparing, using a distance, the empirical distribution functions between the dataset that each computing node receives and the test set.
- Published
- 2019
9. New methodological contributions in time series clustering
- Author
-
Lafuente Rego, Borja Raúl and Vilar Fernández, José Antonio
- Subjects
Algoritmos borrosos ,Análisis multivariante - Abstract
Programa Oficial de Doutoramento en Estatística e Investigación Operativa. 555V01, [Abstract] This thesis presents new procedures to address the analysis cluster of time series. First of all a two-stage procedure based on comparing frequencies and magnitudes of the absolute maxima of the spectral densities is proposed. Assuming that the clustering purpose is to group series according to the underlying dependence structures, a detailed study of the behavior in clustering of a dissimilarity based on comparing estimated quantile autocovariance functions (QAF) is also carried out. A prediction-based resampling algorithm proposed by Dudoit and Fridlyand is adjusted to select the optimal number of clusters. The asymptotic behavior of the sample quantile autocovariances is studied and an algorithm to determine optimal combinations of lags and pairs of quantile levels to perform clustering is introduced. The proposed metric is used to perform hard and soft partitioning-based clustering. First, a broad simulation study examines the behavior of the proposed metric in crisp clustering using hierarchkal and PAM procedure. Then, a novel fuzzy C-mcdoids algorithm based on the QAF-dissimilarity is proposed. Three different robust versions of this fuzzy algorithm are also presented to deal with data containing outlier time series. Finally, other ways of soft clustering analysis are explored, namely probabilistic 0-clustering and clustering based on mixture models., [Resumo] Esta tese presenta novos procedementos para abordar a análise cluster de series temporais. En primeiro lugar proponse un procedemento en dúas etapas baseádo na comparación de frecuencias e magnitudes dos máximos absolutos das densidades espectrais. Supoñendo que o propósito é agrupar series dacordo coas estruturas de dependencia subxaccntes, tamén se leva a cabo un estudo detallado do comportamento en clustering dunha disimilaridade basea.da na comparación das funcións estimadas das autocovarianzas cuantil (QAF). Un algoritmo de remostraxe baseado na predición proposto por Dudoit e Fridlyand adáptase para selecionar o número óptimo de clusters. Tamén se estuda o comportamento asintótico das autocovarianzas cuantís e se introduce un algoritmo para determinar as combinacións óptimas de lags e pares de niveles de cuantís para levar a cabo a clasificación. A métrica proposta utilízase para realizar análise cluster baseado en particións "hard" e "soft". En primeiro lugar, un amplo estudo de simulación examina o comportamento da métrica proposta en clústering "hard" utilizando os procedementos xerárquico e PAM. A continuación, proponse un novo algoritmo "fuzzy" C-medoides baseado na disimilaridade QAF. Tamén se presentan tres versións robustas deste algoritmo "fuzzy" para tratar con datos que conteñan valores atípicos. Finalmente, explóranse outras vías de análise cluster "soft", concretamente, D-clustering probabilístico e clustering baseado en modelos mixtos., [Resumen] Esta tesis presenta nuevos procedimientos para abordar el análisis cluster de series temporales. En primer lugar se propone un procedimiento en dos etapas basado en la comparación de frecuencias y magnitudes de los máximos absolutos de las densidades espectrales. Suponiendo que el propósito es agrupar series de acuerdo con las estructuras de dependencia subyacentes, también se lleva. a cabo un estudio detallado del comportamiento en clustering de una disimilaridad basada en la comparación de las funciones estimadas de las autoco,'afiancias cuantil (QAF). Un algoritmo de remuestreo basado en predicción propuesto por Dudoit y Fridlyand se adapta para seleccionar el número óptimo de clusters. También se estudia el comportamiento asintótico de las autocovariancias cuantites y se introduce un algoritmo para determinar las combinaciones óptimas de lags y pares de niveles de cuantiles para llevar a cabo la clasificación. La. métrica propuesta se utiliza para realizar análisis cluster basado en particiones "hard" y ''soft". En primer lugar, un amplio elltudio de simulación examina el comportamiento de la métrica propuesta en clúster "hard" utilizando los procedimientos jerárquico y PAM. A continuación, se propone un nuevo algoritmo "fuzzy" Cmedoides basado en la disimilaridad QAF. También se presentan tres versiones robustas de este algoritmo "fuzzy" para tratar con datos que contengan atípicos. Finalmente, se exploran otras vías de análisis clus ter "soft", concretamente, D-clustering probabilístico y clustering basado en modelos mixtos.
- Published
- 2017
10. Pointwise forecast, confidence and prediction intervals in electricity demand and price
- Author
-
Raña Míguez, Paula, Vilar Fernández, José Antonio, Aneiros Pérez, Germán, and Universidade da Coruña. Departamento de Matemáticas
- Subjects
Electricidad-Consumo ,Electricidad-Precios - Abstract
Programa Oficial de Doutoramento en Estatística e Investigación Operativa. 555V01, [Abstract] Analysis of the electricity demand and price is presented, within the Spanish Electricity Market, applying statistical tools from the field of functional data. It begins with a descriptive analysis of the electrical data, studying its particular features. This kind of data conform a functional time series. Functional outlier detection methods are proposed to deal specifically with functional time series, taking dependence in this data structure into account. Then, a comparative study among different prediction techniques for next-day electricity demand and price is performed. It includes naïve procedures, time series ARIMA models and robust functional principal components analysis. The use of functional regression methods is proposed in this field. Specifically, the functional nonparametric regression model is used together with the semi-functional partial linear regression model, which allows incorporating external covariates as temperature and wind power production. Bootstrap procedures are proposed to build confidence intervals for the considered functional regression models. Validity of these bootstrap procedures is proved theoretically and they are applied to both a simulation study and the electricity demand and price data. Finally, bootstrap procedures are proposed to build prediction intervals and prediction density, which are also applied to the electrical data., [Resumen] Se presenta un análisis de la demanda y el precio de la electricidad, dentro del Mercado Eléctrico Español, aplicando técnicas estadísticas del ámbito de los datos funcionales. En primer lugar, se realiza un análisis descriptivo de los datos eléctricos, en el que se estudian sus principales características. Este tipo de datos conforman una serie de tiempo funcional. Se proponen métodos de detección de atípicos diseñados específicamente para series de tiempo funcionales, teniendo en cuenta la dependencia presente en esta estructura de datos. A continuación, se realiza un estudio comparativo de diferentes técnicas para la predicción de la demanda y precio de la electricidad al día siguiente. Este estudio incluye métodos naïve, modelos ARIMA de series de tiempo y métodos basados en componentes principales funcionales robustas. Se propone el uso de métodos de regresión funcional en este ámbito. En concreto, se utiliza el modelo de regresión funcional no paramétrico y el modelo semi-funcional parcialmente lineal, en el que se incorporan covariables externas como la temperatura y la producción de energía eólica. Considerando los métodos de regresión funcional indicados, se proponen procedimientos bootstrap para el cálculo de intervalos de confianza, cuya validez se prueba teóricamente y se aplican en un estudio de simulación y en los datos eléctricos de demanda y precio. Finalmente, se proponen procedimientos bootstrap para construir intervalos y densidades de predicción, los cuales se aplican al mismo conjunto de datos eléctricos., [Resumo] Preséntase unha análise da demanda e prezo da electricidade, dentro do Mercado Eléctrico Español, aplicando técnicas do ámbito dos datos funcionais. En primeiro lugar, realízase unha análise descritiva dos datos eléctricos, estudando as súas principais características. Este tipo de datos conforman unha serie de tempo funcional. Propóñense métodos de detección de atípicos dese ñados especificamente para series de tempo funcionais, tendo en conta a dependencia presente nesa estrutura de datos. A continuación, lévase a cabo un estudo comparativo de diferentes técnicas para predición da demanda e prezo da electricidade no día seguinte. Este estudo inclúe métodos naïve, modelos ARIMA de series de tempo e métodos baseados en compoñentes principais funcionais robustas. Proponse o uso de métodos de regresión funcional neste ámbito. En concreto, utilízase o modelo de regresión funcional non paramétrico e o modelo semi-funcional parcialmente lineal, no que se incorporan covariables externas como a temperatura e a produción de enerxía eólica. Considerando os métodos de regresión funcional indicados, propóñense procedementos bootstrap para o cálculo de intervalos de confi- anza, nos que a súa validez se proba na teoría e que son aplicados tanto nun estudo de simulación como nos datos eléctricos de demanda e prezo. Finalmente, propóñense procedementos bootstrap para construír intervalos e densidades de predición, que se aplican ao mesmo conxunto de datos eléctricos.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.