1. Performance of cough monitoring by Albus Home, a contactless and automated system for nocturnal respiratory monitoring at home
- Author
-
William Do, Richard Russell, Christopher Wheeler, Hamza Javed, Cihan Dogan, George Cunningham, Vikaran Khanna, Maarten De Vos, Imran Satia, Mona Bafadhel, and Ian Pavord
- Subjects
Medicine - Abstract
Introduction Objective cough frequency is a key clinical end-point but existing wearable monitors are limited to 24-h recordings. Albus Home uses contactless motion, acoustic and environmental sensors to monitor multiple metrics, including respiratory rate and cough without encroaching on patient lifestyle. The aim of this study was to evaluate measurement characteristics of nocturnal cough monitoring by Albus Home compared to manual counts. Methods Adults with respiratory conditions underwent overnight monitoring using Albus Home in their usual bedroom environments. Participants set-up the plug-and-play device themselves. For reference counts, each audio recording was counted by two annotators, and cough defined as explosive phases audio-visually labelled by both. In parallel, recordings were processed by a proprietary Albus system, comprising a deep-learning algorithm with a human screening step for verifying or excluding occasional events that mimic cough. Performance of the Albus system in detecting individual cough events and reporting hourly cough counts was compared against reference counts. Results 30 nights from 10 subjects comprised 375 hours of recording. Mean±sd coughs per night were 90±76. Coughs per hour ranged from 0 to 129. Albus counts were accurate across hours with high and low cough frequencies, with median sensitivity, specificity, positive predictive value and negative predictive values of 94.8, 100.0, 99.1 and 100.0%, respectively. Agreement between Albus and reference was strong (intra-class correlation coefficient (ICC) 0.99; 95% CI 0.99–0.99; p
- Published
- 2022
- Full Text
- View/download PDF