20 results on '"Vierendeels F"'
Search Results
2. The Yeast Genome Directory
- Author
-
Goffeau, A., Aert, R., Agostini-Carbone, M. L., Ahmed, A., Aigle, M., Alberghina, L., Albermann, K., Albers, M., Aldea, M., Alexandraki, D., Aljinovic, G., Allen, E., Alt-Mörbe, J., André, B., Andrews, S., Ansorge, W., Antoine, G., Anwar, R., Aparicio, A., Araujo, R., Arino, J., Arnold, F., Arroyo, J., Aviles, E., Backes, U., Baclet, M. C., Badcock, K., Bahr, A., Baladron, V., Ballesta, J. P. G., Bankier, A. T., Banrevi, A., Bargues, M., Baron, L., Barreiros, T., Barrell, B. G., Barthe, C., Barton, A. B., Baur, A., Bécam, A.-M., Becker, A., Becker, I., Beinhauer, J., Benes, V., Benit, P., Berben, G., Bergantino, E., Bergez, P., Berno, A., Bertani, I., Biteau, N., Bjourson, A. J., Blöcker, H., Blugeon, C., Bohn, C., Boles, E., Bolle, P. A., Bolotin-Fukuhara, M., Bordonné, R., Boskovic, J., Bossier, P., Botstein, D., Bou, G., Bowman, S., Boyer, J., Brandt, P., Brandt, T., Brendel, M., Brennan, T., Brinkman, R., Brown, A., Brown, A. J. P., Brown, D., Brückner, M., Bruschi, C. V., Buhler, J. M., Buitrago, M. J., Bussereau, F., Bussey, H., Camasses, A., Carcano, C., Carignani, G., Carpenter, J., Casamayor, A., Casas, C., Castagnoli, L., Cederberg, H., Cerdan, E., Chalwatzis, N., Chanet, R., Chen, E., Chéret, G., Cherry, J. M., Chillingworth, T., Christiansen, C., Chuat, J.-C., Chung, E., Churcher, C., Churcher, C. M., Clark, M. W., Clemente, M. L., Coblenz, A., Coglievina, M., Coissac, E., Colleaux, L., Connor, R., Contreras, R., Cooper, J., Copsey, T., Coster, F., Coster, R., Couch, J., Crouzet, M., Cziepluch, C., Daignan-Fornier, B., Dal Paro, F., Dang, D. V., D’Angelo, M., Davies, C. J., Davis, K., Davis, R. W., De Antoni, A., Dear, S., Dedman, K., Defoor, E., De Haan, M., Delaveau, Th., Del Bino, S., Delgado, M., Delius, H., Delneri, D., Del Rey, F., Demolder, J., Démolis, N., Devlin, K., de Wergifosse, P., Dietrich, F. S., Ding, H., Dion, C., Dipaolo, T., Doignon, F., Doira, C., Domdey, H., Dover, J., Du, Z., Dubois, E., Dujon, B., Duncan, M., Durand, P., Düsterhöft, A., Düsterhus, S., Eki, T., El Bakkoury, M., Eide, L. G., Entian, K.-D., Eraso, P., Erdmann, D., Erfle, H., Escribano, V., Esteban, M., Fabiani, L., Fabre, F., Fairhead, C., Fartmann, B., Favello, A., Faye, G., Feldmann, H., Fernandes, L., Feroli, F., Feuermann, M., Fiedler, T., Fiers, W., Fleig, U. N., Flöth, M., Fobo, G. M., Fortin, N., Foury, F., Francingues-Gaillard, M. C., Franco, L., Fraser, A., Friesen, J.D., Fritz, C., Frontali, L., Fukuhara, H., Fulton, L., Fuller, L. J., Gabel, C., Gaillardin, C., Gaillon, L., Galibert, F., Galisson, F., Galland, P., Gamo, F.-J., Gancedo, C., Garcia-Cantalejo, J. M., García-Gonzalez, M. I., Garcia-Ramirez, J. J., García-Saéz, M., Gassenhuber, H., Gatius, M., Gattung, S., Geisel, C., Gent, M. E., Gentles, S., Ghazvini, M., Gigot, D., Gilliquet, V., Glansdorff, N., Gómez-Peris, A., Gonzaléz, A., Goulding, S. E., Granotier, C., Greco, T., Grenson, M., Grisanti, P., Grivell, L. A., Grothues, D., Gueldener, U., Guerreiro, P., Guzman, E., Haasemann, M., Habbig, B., Hagiwara, H., Hall, J., Hallsworth, K., Hamlin, N., Hand, N. J., Hanemann, V., Hani, J., Hankeln, T., Hansen, M., Harris, D., Harris, D. E., Hartzell, G., Hatat, D., Hattenhorst, U., Hawkins, J., Hebling, U., Hegemann, J., Hein, C., Hennemann, A., Hennessy, K., Herbert, C. J., Hernandez, K., Hernando, Y., Herrero, E., Heumann, K., Heuss- Neitzel, D., Hewitt, N., Hiesel, R., Hilbert, H., Hilger, F., Hillier, L., Ho, C., Hoenicka, J., Hofmann, B., Hoheisel, J., Hohmann, S., Hollenberg, C. P., Holmstrøm, K., Horaitis, O., Horsnell, T. S., Huang, M.-E., Hughes, B., Hunicke-Smith, S., Hunt, S., Hunt, S. E., Huse, K., Hyman, R. W., Iborra, F., Indge, K. J., Iraqui Houssaini, I., Isono, K., Jacq, C., Jacquet, M., Jacquier, A., Jagels, K., Jäger, W., James, C. M., Jauniaux, J. C., Jia, Y., Jier, M., Jimenez, A., Johnson, D., Johnston, L., Johnston, M., Jones, M., Jonniaux, J.-L., Kaback, D. B., Kallesøe, T., Kalman, S., Kalogeropoulos, A., Karpfinger-Hartl, L., Kashkari, D., Katsoulou, C., Kayser, A., Kelly, A., Keng, T., Keuchel, H., Kiesau, P., Kirchrath, L., Kirsten, J., Kleine, K., Kleinhans, U., Klima, R., Komp, C., Kordes, E., Korol, S., Kötter, P., Krämer, C., Kramer, B., Kreisl, P., Kucaba, T., Kuester, H., Kurdi, O., Laamanen, P., Lafuente, M. J., Landt, O., Lanfranchi, G., Langston, Y., Lashkari, D., Latreille, P., Lauquin, G., Le, T., Legrain, P., Legros, Y., Lepingle, A., Lesveque, H., Leuther, H., Lew, H., Lewis, C., Li, Z. Y., Liebl, S., Lin, A., Lin, D., Logghe, M., Lohan, A. J. E., Louis, E. J., Lucchini, G., Lutzenkirchen, K., Lyck, R., Lye, G., Maarse, A. C., Maat, M. J., Macri, C., Madania, A., Maftahi, M., Maia e Silva, A., Maillier, E., Mallet, L., Mannhaupt, G., Manus, V., Marathe, R., Marck, C., Marconi, A., Mardis, E., Martegani, E., Martin, R., Mathieu, A., Maurer, C. T. C., Mazón, M. J., Mazzoni, C., McConnell, D., McDonald, S., McKee, R. A., McReynolds, A. D. K., Melchioretto, P., Menezes, S., Messenguy, F., Mewes, H. W., Michaux, G., Miller, N., Minenkova, O., Miosga, T., Mirtipati, S., Möller-Rieker, S., Möstl, D., Molemans, F., Monnet, A., Monnier, A-L., Montague, M. A., Moro, M., Mosedale, D., Möstl, D., Moule, S., Mouser, L., Murakami, Y., Müller-Auer, S., Mulligan, J., Murphy, L., Muzi Falconi, M., Naitou, M., Nakahara, K., Namath, A., Nasr, F., Navas, L., Nawrocki, A., Nelson, J., Nentwich, U., Netter, P., Neu, R., Newlon, C. S., Nhan, M., Nicaud, J.-M., Niedenthal, R. K., Nombela, C., Noone, D., Norgren, R., Nußbaumer, B., Obermaier, B., Odell, C., Öfner, P., Oh, C., Oliver, K., Oliver, S. G., Ouellette, B. F., Ozawa, M., Paces, V., Pallier, C., Pandolfo, D., Panzeri, L., Paoluzi, S., Parle-Mcdermott, A. G., Pascolo, S., Patricio, N., Pauley, A., Paulin, L., Pearson, B. M., Pearson, D., Peluso, D., Perea, J., Pérez-Alonso, M., Pérez-Ortin, J. E., Perrin, A., Petel, F. X., Pettersson, B., Pfeiffer, F., Philippsen, P., Piérard, A., Piravandi, E., Planta, R. J., Plevani, P., Poch, O., Poetsch, B., Pohl, F. M., Pohl, T. M., Pöhlmann, R., Poirey, R., Portetelle, D., Portillo, F., Potier, S., Proft, M., Prydz, H., Pujol, A., Purnelle, B., Puzos, V., Rajandream, M. A., Ramezani Rad, M., Rasmussen, S. W., Raynal, A., Rechmann, S., Remacha, M., Revuelta, J. L., Rice, P., Richard, G-F., Richterich, P., Rieger, M., Rifken, L., Riles, L., Rinaldi, T., Rinke, M., Roberts, A. B., Roberts, D., Rodriguez, F., Rodriguez-Belmonte, E., Rodriguez-Pousada, C., Rodriguez-Torres, A. M., Rose, M., Rossau, R., Rowley, N., Rupp, T., Ruzzi, M., Saeger, W., Saiz, J. E., Saliola, M., Salom, D., Saluz, H. P., Sánchez-Perez, M., Santos, M. A., Sanz, E., Sanz, J. E., Saren, A.-M., Sartorello, F., Sasanuma, M., Sasanuma, S-I., Scarcez, T., Schaaf-Gerstenschläger, I., Schäfer, B., Schäfer, M., Scharfe, M., Scherens, B., Schroff, N., Sen-Gupta, M., Shibata, T., Schmidheini, T., Schmidt, E. R., Schneider, C., Scholler, P., Schramm, S., Schreer, A., Schröder, M., Schwager, C., Schwarz, S., Schwarzlose, C., Schweitzer, B., Schweizer, M., Sdicu, A-M., Sehl, P., Sensen, C., Sgouros, J. G., Shogren, T., Shore, L., Shu, Y., Skala, J., Skelton, J., Slonimski, P. P., Smit, P. H. M., Smith, V., Soares, H., Soeda, E., Soler-Mira, A., Sor, F., Soriano, N., Souciet, J. L., Soustelle, C., Spiegelberg, R., Stateva, L. I., Steensma, H. Y., Stegemann, J., Steiner, S., Stellyes, L., Sterky, F., Storms, R. K., St. Peter, H., Stucka, R., Taich, A., Talla, E., Tarassov, I., Tashiro, H., Taylor, P., Teodoru, C., Tettelin, H., Thierry, A., Thireos, G., Tobiasch, E., Tovan, D., Trevaskis, E., Tsuchiya, Y., Tzermia, M., Uhlen, M., Underwood, A., Unseld, M., Urbanus, J. H. M., Urrestarazu, A., Ushinsky, S., Valens, M., Valle, G., Van Broekhoven, A., Vandenbol, M., Van Der Aart, Q. J. M., Van Der Linden, C. G., Van Dyck, L., Vanoni, M., Van Vliet-Reedijk, J. C., Vassarotti, A., Vaudin, M., Vaughan, K., Verhasselt, P., Vetter, I., Vierendeels, F., Vignati, D., Vilela, C., Vissers, S., Vleck, C., Vo, D. T., Vo, D. H., Voet, M., Volckaert, G., Von Wettstein, D., Voss, H., Vreken, P., Wagner, G., Walsh, S. V., Wambutt, R., Wang, H., Wang, Y., Warmington, J. R., Waterston, R., Watson, M. D., Weber, N., Wedler, E., Wedler, H., Wei, Y., Whitehead, S., Wicksteed, B. L., Wiemann, S., Wilcox, L., Wilson, C., Wilson, R., Winant, A., Winnett, E., Winsor, B., Wipfli, P., Wölfl, S., Wohldman, P., Wolf, K., Wolfe, K. H., Wright, L. F., Wurst, H., Xu, G., Yamasaki, M., Yelton, M. A., Yokohama, K., Yoshikawa, A., Yuping, S., Zaccaria, P., Zagulski, M., Zimmermann, F. K., Zimmermann, J., Zimmermann, M., Zhong, W-W., Zollner, A., and Zumstein, E.
- Published
- 1997
- Full Text
- View/download PDF
3. The nucleotide sequence of Saccharomyces cerevisiae chromosome XII
- Author
-
Mark Johnston, Hillier, L., Riles, L., Albermann, K., André, B., Ansorge, W., Benes, V., Brückner, M., Delius, H., Dubois, E., Düsterhöft, A., Entian, K. -D, Floeth, M., Goffeau, A., Hebling, U., Heumann, K., Heuss-Neitzel, D., Hilbert, H., Hilger, F., Kleine, K., Kötter, P., Louis, E. J., Messenguy, F., Mewes, H. W., Miosga, T., Möstl, D., Müller-Auer, S., Nentwich, U., Obermaier, B., Piravandi, E., Pohl, T. M., Portetelle, D., Purnelle, B., Rechmann, S., Rieger, M., Rinke, M., Rose, M., Scharfe, M., Scherens, B., Scholler, P., Schwager, C., Schwarz, S., Underwood, A. P., Urrestarazu, L. A., Vandenbol, M., Verhasselt, P., Vierendeels, F., Voet, M., Volckaert, G., Voss, H., Wambutt, R., Wedler, E., Wedler, H., Zimmermann, F. K., Zollner, A., Hani, J., and Hoheisel, J. D.
- Subjects
Base Sequence ,Molecular Sequence Data ,Saccharomyces cerevisiae ,Chromosomes, Fungal ,DNA, Fungal ,Article - Abstract
The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells(1). All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.
- Published
- 1997
4. In Saccharomyces cerevisiae, expression of arginine catabolic genes CAR1 and CAR2 in response to exogenous nitrogen availability is mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) complex.
- Author
-
Messenguy, Francine, Vierendeels, F, Scherens, B, Dubois, Evelyne, Messenguy, Francine, Vierendeels, F, Scherens, B, and Dubois, Evelyne
- Abstract
The products of three genes named CARGRI, CARGRII, and CARGRIII were shown to repress the expression of CAR1 and CAR2 genes, involved in arginine catabolism. CARGRI is identical to UME6 and encodes a regulator of early meiotic genes. In this work we identify CARGRII as SIN3 and CARGRIII as RPD3. The associated gene products are components of a high-molecular-weight complex with histone deacetylase activity and are recruited by Ume6 to promoters containing a URS1 sequence. Sap30, another component of this complex, is also required to repress CAR1 expression. This histone deacetylase complex prevents the synthesis of the two arginine catabolic enzymes, arginase (CAR1) and ornithine transaminase (CAR2), as long as exogenous nitrogen is available. Upon nitrogen depletion, repression at URS1 is released and Ume6 interacts with ArgRI and ArgRII, two proteins involved in arginine-dependent activation of CAR1 and CAR2, leading to high levels of the two catabolic enzymes despite a low cytosolic arginine pool. Our data also show that the deletion of the UME6 gene impairs cell growth more strongly than the deletion of the SIN3 or RPD3 gene, especially in the Sigma1278b background., Journal Article, SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2000
5. The complete DNA sequence of S. cerevisiae chromosome XII
- Author
-
Dubois, Evelyne, Johnston, Michael, Messenguy, Francine, Vierendeels, F, Scherens, B, Dubois, Evelyne, Johnston, Michael, Messenguy, Francine, Vierendeels, F, and Scherens, B
- Abstract
info:eu-repo/semantics/published
- Published
- 1997
6. The complete sequence of the 784 kb chromosome XIV of S. cerevisiae reveals an active evolutionary history highlighted by one recent and six ancient gene cluster duplications of 12 to 120 kb
- Author
-
Philippsen, P., Glansdorff, Nicolas, Piérard, A, Messenguy, Francine, Dubois, Evelyne, Vierendeels, F, Scherens, B, Philippsen, P., Glansdorff, Nicolas, Piérard, A, Messenguy, Francine, Dubois, Evelyne, Vierendeels, F, and Scherens, B
- Abstract
info:eu-repo/semantics/published
- Published
- 1997
7. Sequencing and functional analysis of a 32,560 bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIP1 and SEC17 genes.
- Author
-
Scherens, B, el Bakkoury, M, Vierendeels, F, Dubois, Evelyne, Messenguy, Francine, Scherens, B, el Bakkoury, M, Vierendeels, F, Dubois, Evelyne, and Messenguy, Francine
- Abstract
We report here the DNA sequence of a segment (alpha 1006.13: YBLO5) of chromosome II of Saccharomyces cerevisiae, extending over 32.5 kb. The segment contains 26 open reading frames (ORFs) from YBLO501 to YBLO526. YBL0505 corresponds to the SEC17 gene and YBL0521 to the KIP1 gene. YBL0516 contains an intron, YBL0513 shows homology with the RAT protein phosphatase and YBL0526 contains a zinc-finger motif. Disruption of 14 genes by insertion of a URA3 cassette has been performed and these mutants were analysed for their mating and sporulation ability, and for their growth on different carbon sources. YBL0515 and YBL0526 ORFs seem to be involved in the sporulation process., Comparative Study, Journal Article, Research Support, Non-U.S. Gov't, SCOPUS: ar.j, FLWNA, info:eu-repo/semantics/published
- Published
- 1993
8. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications
- Author
-
Philippsen, P., primary, Kleine, K., additional, Pöhlmann, R., additional, Düsterhöft, A., additional, Hamberg, K., additional, Hegemann, J. H., additional, Obermaier, B., additional, Urrestarazu, L. A., additional, Aert, R., additional, Albermann, K., additional, Altmann, R., additional, André, B., additional, Baladron, V., additional, Ballesta, J. P. G., additional, Bécam, A.-M., additional, Beinhauer, J., additional, Boskovic, J., additional, Buitrago, M. J., additional, Bussereau, F., additional, Coster, F., additional, Crouzet, M., additional, D’Angelo, M., additional, Dal Pero, F., additional, De Antoni, A., additional, Del Rey, F., additional, Doignon, F., additional, Domdey, H., additional, Dubois, E., additional, Fiedler, T., additional, Fleig, U., additional, Floeth, M., additional, Fritz, C., additional, Gaillardin, C., additional, Garcia-Cantalejo, J. M., additional, N Glansdorff, N., additional, Goffeau, A., additional, Gueldener, U., additional, Herbert, C., additional, Heumann, K., additional, Heuss-Neitzel, D., additional, Hilbert, H., additional, Hinni, K., additional, Iraqui Houssaini, I., additional, Jacquet, M., additional, Jimenez, A., additional, Jonniaux, J.-L., additional, Karpfinger, L., additional, Lanfranchi, G., additional, Lepingle, A., additional, Levesque, H., additional, Lyck, R., additional, Maftahi, M., additional, Mallet, L., additional, Maurer, K. C. T., additional, Messenguy, F., additional, Mewes, H. W., additional, Möstl, D., additional, Nasr, F., additional, Nicaud, J.-M., additional, Niedenthal, R. K., additional, Pandolfo, D., additional, Piérard, A., additional, Piravandi, E., additional, Planta, R. J., additional, Pohl, T. M., additional, Purnelle, B., additional, Rebischung, C., additional, Remacha, M., additional, Revuelta, J. L., additional, Rinke, M., additional, Saiz, J. E., additional, Sartorello, F., additional, Scherens, B., additional, Sen-Gupta, M., additional, Soler-Mira, A., additional, Urbanus, J. H. M., additional, Valle, G., additional, Van Dyck, L., additional, Verhasselt, P., additional, Vierendeels, F., additional, Vissers, S., additional, Voet, M., additional, Volckaert, G., additional, Wach, A., additional, Wambutt, R., additional, Wedler, H., additional, Zollner, A., additional, and Hani, J., additional
- Published
- 1997
- Full Text
- View/download PDF
9. Complete DNA sequence of yeast chromosome II
- Author
-
Feldmann, H., Aigle, M., Aljinovic, G., André, B., Baclet, M. C., Barthe, C., Baur, A., Bécam, A. -M, Biteau, N., Boles, E., Brandt, T., Brendel, M., Brückner, M., Bussereau, F., Christiansen, C., Contreras, R., Crouzet, M., Cziepluch, C., Démolis, N., Delaveau, Th, Doignon, F., Domdey, H., Düsterhus, S., Dubois, E., Dujon, B., El Bakkoury, M., Entian, K. -D, Feuermann, M., Fiers, W., Fobo, G. M., Fritz, C., Gassenhuber, H., Glansdorff, N., Goffeau, A., Grivell, L. A., Haan, M., Hein, C., Herbert, C. J., Hollenberg, C. P., Holmstrøm, K., Jacq, C., Jacquet, M., Jauniaux, J. C., Jonniaux, J. -L, Kallesøe, T., Kiesau, P., Kirchrath, L., Kötter, P., Korol, S., Liebl, S., Logghe, M., Lohan, A. J. E., Louis, E. J., Li, Z. Y., Maat, M. J., Mallet, L., Mannhaupt, G., Messenguy, F., Miosga, T., Molemans, F., Müller, S., Nasr, F., Obermaier, B., Perea, J., Piérard, A., Piravandi, E., Pohl, F. M., Pohl, T. M., Potier, S., Markus Proft, Purnelle, B., Ramezani Rad, M., Rieger, M., Rose, M., Schaaff-Gerstenschläger, I., Scherens, B., Schwarzlose, C., Skala, J., Slonimski, P. P., Smits, P. H. M., Souciet, J. L., Steensma, H. Y., Stucka, R., Urrestarazu, A., Aart, Q. J. M., Dyck, L., Vassarotti, A., Vetter, I., Vierendeels, F., Vissers, S., Wagner, G., Wergifosse, P., Wolfe, K. H., Zagulski, M., Zimmermann, F. K., Mewes, H. W., Kleine, K., and Molecular Biology and Microbial Food Safety (SILS, FNWI)
10. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast.
- Author
-
Georis I, Ronsmans A, Vierendeels F, and Dubois E
- Subjects
- Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Gene Expression Regulation, Fungal, Transcription, Genetic, Nitrogen metabolism, Saccharomyces cerevisiae Proteins genetics, Saccharomyces cerevisiae Proteins metabolism, Catabolite Repression
- Abstract
Nitrogen catabolite repression (NCR) is a means for yeast to adapt its transcriptome to changing nitrogen sources in its environment. In conditions of derepression (under poor nitrogen conditions, upon rapamycin treatment, or when glutamine production is inhibited), two transcriptional activators of the GATA family are recruited to NCR-sensitive promoters and activate transcription of NCR-sensitive genes. Earlier observations have involved the Spt-Ada-Gcn5 acetyltransferase (SAGA) chromatin remodeling complex in these transcriptional regulations. In this report, we provide an illustration of the varying NCR-sensitive responses and question whether differing SAGA recruitment could explain this diversity of responses., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
11. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae.
- Author
-
Georis I, Fayyad-Kazan M, Zaremba E, Vierendeels F, Roovers M, and Dubois E
- Subjects
- GATA Transcription Factors chemistry, GATA Transcription Factors genetics, GATA Transcription Factors metabolism, Gene Expression Regulation, Fungal, Glutamine genetics, Glutamine metabolism, Nitrogen metabolism, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Transcription Factors genetics, Transcription Factors metabolism, Amino Acid Transport Systems, Neutral genetics, Amino Acid Transport Systems, Neutral metabolism, Catabolite Repression, Saccharomyces cerevisiae Proteins genetics, Saccharomyces cerevisiae Proteins metabolism
- Abstract
Nitrogen catabolite repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion., (© 2022 John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
12. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.
- Author
-
Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, and Cooper TG
- Subjects
- Cell Nucleus metabolism, Cytoplasm metabolism, Genes, Reporter, Genotype, Glutamine metabolism, Mechanistic Target of Rapamycin Complex 1, Membrane Proteins genetics, Membrane Proteins metabolism, Monomeric GTP-Binding Proteins genetics, Monomeric GTP-Binding Proteins metabolism, Mutation, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae growth & development, Saccharomyces cerevisiae Proteins genetics, GATA Transcription Factors metabolism, Multiprotein Complexes metabolism, Nitrogen metabolism, Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae Proteins metabolism, TOR Serine-Threonine Kinases metabolism
- Abstract
The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment., (Copyright © 2015 Tate et al.)
- Published
- 2015
- Full Text
- View/download PDF
13. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production.
- Author
-
Georis I, Tate JJ, Vierendeels F, Cooper TG, and Dubois E
- Subjects
- 3' Untranslated Regions genetics, 5' Untranslated Regions genetics, Alternative Splicing, Amino Acid Sequence, Base Sequence, Blotting, Northern, Blotting, Western, GATA Transcription Factors metabolism, Gene Expression Regulation, Fungal, Models, Genetic, Molecular Sequence Data, Phylogeny, Protein Biosynthesis, RNA, Messenger metabolism, Reverse Transcriptase Polymerase Chain Reaction, Saccharomyces cerevisiae classification, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Saccharomyces cerevisiae Proteins metabolism, GATA Transcription Factors genetics, Nitrogen metabolism, RNA, Messenger genetics, Saccharomyces cerevisiae Proteins genetics, Transcription Termination, Genetic
- Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5' and/or 3' termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5' and 3' termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
- Published
- 2015
- Full Text
- View/download PDF
14. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors.
- Author
-
Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, and Georis I
- Subjects
- Culture Media chemistry, Saccharomyces cerevisiae Proteins metabolism, Transcription Factors metabolism, GATA Transcription Factors metabolism, Gene Expression Regulation, Fungal, Golgi Apparatus metabolism, Nitrogen metabolism, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Vacuoles metabolism
- Abstract
Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification., (© 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
15. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation.
- Author
-
Georis I, Feller A, Vierendeels F, and Dubois E
- Subjects
- GATA Transcription Factors genetics, Glutamine metabolism, Leucine Zippers, Proline metabolism, Promoter Regions, Genetic, Protein Binding, Saccharomyces cerevisiae Proteins genetics, Saccharomyces cerevisiae Proteins metabolism, Transcription Factors genetics, Transcription Factors metabolism, GATA Transcription Factors metabolism, Gene Expression Regulation, Fungal, Nitrogen metabolism, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Transcriptional Activation
- Abstract
Saccharomyces cerevisiae cells are able to adapt their metabolism according to the quality of the nitrogen sources available in the environment. Nitrogen catabolite repression (NCR) restrains the yeast's capacity to use poor nitrogen sources when rich ones are available. NCR-sensitive expression is modulated by the synchronized action of four DNA-binding GATA factors. Although the first identified GATA factor, Gln3, was considered the major activator of NCR-sensitive gene expression, our work positions Gat1 as a key factor for the integrated control of NCR in yeast for the following reasons: (i) Gat1 appeared to be the limiting factor for NCR gene expression, (ii) GAT1 expression was regulated by the four GATA factors in response to nitrogen availability, (iii) the two negative GATA factors Dal80 and Gzf3 interfered with Gat1 binding to DNA, and (iv) Gln3 binding to some NCR promoters required Gat1. Our study also provides mechanistic insights into the mode of action of the two negative GATA factors. Gzf3 interfered with Gat1 by nuclear sequestration and by competition at its own promoter. Dal80-dependent repression of NCR-sensitive gene expression occurred at three possible levels: Dal80 represses GAT1 expression, it competes with Gat1 for binding, and it directly represses NCR gene transcription.
- Published
- 2009
- Full Text
- View/download PDF
16. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
- Author
-
Scherens B, Feller A, Vierendeels F, Messenguy F, and Dubois E
- Subjects
- Binding Sites, GATA Transcription Factors metabolism, Gene Expression Regulation, Fungal, Glutamine metabolism, Glutathione Peroxidase, Oligonucleotide Array Sequence Analysis, Prions physiology, Proline metabolism, Promoter Regions, Genetic, Ribosomal Proteins genetics, Saccharomyces cerevisiae metabolism, Sirolimus pharmacology, GATA Transcription Factors physiology, Gene Expression Profiling, Nitrogen metabolism, Repressor Proteins physiology, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins physiology, Transcription Factors physiology
- Abstract
Nitrogen catabolite repression (NCR) consists in the specific inhibition of transcriptional activation of genes encoding the permeases and catabolic enzymes needed to degrade poor nitrogen sources. Under nitrogen limitation or rapamycin treatment, NCR genes are activated by Gln3 or Gat1, or by both factors. To compare the sets of genes responding to rapamycin or to nitrogen limitation, we used DNA microarrays to establishing the expression profiles of a wild type strain, and of a double gln3Delta-gat1Delta strain, grown on glutamine, after addition of rapamycin, on proline, or after a shift from glutamine to proline. Analysis of microarray data revealed 392 genes whose expression was dependent on the nitrogen source quality. 91 genes were activated in a GATA factor-dependent manner in all growth conditions, suggesting a direct role of Gln3 and Gat1 in their expression. Other genes were only transiently up-regulated (stress-responsive genes) or down-regulated (genes encoding ribosomal proteins and translational factors) upon nitrogen limitation, and this regulation was delayed in a gln3Delta-gat1Delta strain. Repression of amino acid and nucleotide biosynthetic genes after a nitrogen shift did not depend on Gcn4. Several transporter genes were repressed as a consequence of enhanced levels of NCR-responsive permeases present at the plasma membrane.
- Published
- 2006
- Full Text
- View/download PDF
17. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis.
- Author
-
Dubois E, Scherens B, Vierendeels F, Ho MM, Messenguy F, and Shears SB
- Subjects
- Cell Wall physiology, Fungal Proteins chemistry, Inositol Phosphates biosynthesis, Morphogenesis, Phosphotransferases (Phosphate Group Acceptor), Saccharomyces cerevisiae physiology, Fungal Proteins physiology, Saccharomyces cerevisiae enzymology, Saccharomyces cerevisiae Proteins, Sodium Chloride pharmacology, Vacuoles physiology
- Abstract
A problem for inositol signaling is to understand the significance of the kinases that convert inositol hexakisphosphate to diphosphoinositol polyphosphates. This kinase activity is catalyzed by Kcs1p in the yeast Saccharomyces cerevisiae. A kcs1Delta yeast strain that was transformed with a specifically "kinase-dead" kcs1p mutant did not synthesize diphosphoinositol polyphosphates, and the cells contained a fragmented vacuolar compartment. Biogenesis of the yeast vacuole also required another functional domain in Kcs1p, which contains two leucine heptad repeats. The kinase activity of Kcs1p was also found to sustain cell growth and integrity of the cell wall and to promote adaptive responses to salt stress. Thus, the synthesis of diphosphoinositol polyphosphates has wide ranging physiological significance. Furthermore, we showed that these phenotypic responses to Kcs1p deletion also arise when synthesis of precursor material for the diphosphoinositol polyphosphates is blocked in arg82Delta cells. This metabolic block was partially bypassed, and the phenotype was partially rescued, when Kcs1p was overexpressed in the arg82Delta cells. This was due, in part, to the ability of Kcs1p to phosphorylate a wider range of substrates than previously appreciated. Our results show that diphosphoinositol polyphosphate synthase activity is essential for biogenesis of the yeast vacuole and the cell's responses to certain environmental stresses.
- Published
- 2002
- Full Text
- View/download PDF
18. In Saccharomyces cerevisiae, expression of arginine catabolic genes CAR1 and CAR2 in response to exogenous nitrogen availability is mediated by the Ume6 (CargRI)-Sin3 (CargRII)-Rpd3 (CargRIII) complex.
- Author
-
Messenguy F, Vierendeels F, Scherens B, and Dubois E
- Subjects
- Bacterial Proteins metabolism, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Enzyme Induction, Fungal Proteins genetics, Gene Expression Regulation, Bacterial, Histone Deacetylases genetics, Histone Deacetylases metabolism, Membrane Proteins genetics, Minichromosome Maintenance 1 Protein, Nitrogen deficiency, Protein Binding, Repressor Proteins metabolism, Sequence Deletion, Transcription Factors genetics, Transcription Factors metabolism, Arginase genetics, Arginine metabolism, Genes, Fungal, Ornithine-Oxo-Acid Transaminase genetics, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins
- Abstract
The products of three genes named CARGRI, CARGRII, and CARGRIII were shown to repress the expression of CAR1 and CAR2 genes, involved in arginine catabolism. CARGRI is identical to UME6 and encodes a regulator of early meiotic genes. In this work we identify CARGRII as SIN3 and CARGRIII as RPD3. The associated gene products are components of a high-molecular-weight complex with histone deacetylase activity and are recruited by Ume6 to promoters containing a URS1 sequence. Sap30, another component of this complex, is also required to repress CAR1 expression. This histone deacetylase complex prevents the synthesis of the two arginine catabolic enzymes, arginase (CAR1) and ornithine transaminase (CAR2), as long as exogenous nitrogen is available. Upon nitrogen depletion, repression at URS1 is released and Ume6 interacts with ArgRI and ArgRII, two proteins involved in arginine-dependent activation of CAR1 and CAR2, leading to high levels of the two catabolic enzymes despite a low cytosolic arginine pool. Our data also show that the deletion of the UME6 gene impairs cell growth more strongly than the deletion of the SIN3 or RPD3 gene, especially in the Sigma1278b background.
- Published
- 2000
- Full Text
- View/download PDF
19. Complete DNA sequence of yeast chromosome II.
- Author
-
Feldmann H, Aigle M, Aljinovic G, André B, Baclet MC, Barthe C, Baur A, Bécam AM, Biteau N, Boles E, Brandt T, Brendel M, Brückner M, Bussereau F, Christiansen C, Contreras R, Crouzet M, Cziepluch C, Démolis N, Delaveau T, Doignon F, Domdey H, Düsterhus S, Dubois E, Dujon B, El Bakkoury M, Entian KD, Feurmann M, Fiers W, Fobo GM, Fritz C, Gassenhuber H, Glandsdorff N, Goffeau A, Grivell LA, de Haan M, Hein C, Herbert CJ, Hollenberg CP, Holmstrøm K, Jacq C, Jacquet M, Jauniaux JC, Jonniaux JL, Kallesøe T, Kiesau P, Kirchrath L, Kötter P, Korol S, Liebl S, Logghe M, Lohan AJ, Louis EJ, Li ZY, Maat MJ, Mallet L, Mannhaupt G, Messenguy F, Miosga T, Molemans F, Müller S, Nasr F, Obermaier B, Perea J, Piérard A, Piravandi E, Pohl FM, Pohl TM, Potier S, Proft M, Purnelle B, Ramezani Rad M, Rieger M, Rose M, Schaaff-Gerstenschläger I, Scherens B, Schwarzlose C, Skala J, Slonimski PP, Smits PH, Souciet JL, Steensma HY, Stucka R, Urrestarazu A, van der Aart QJ, van Dyck L, Vassarotti A, Vetter I, Vierendeels F, Vissers S, Wagner G, de Wergifosse P, Wolfe KH, Zagulski M, Zimmermann FK, Mewes HW, and Kleine K
- Subjects
- Base Composition, Base Sequence, Cloning, Molecular, Cosmids genetics, Molecular Sequence Data, Open Reading Frames, Quality Control, Repetitive Sequences, Nucleic Acid, Reproducibility of Results, Sequence Analysis, DNA, Sequence Homology, Amino Acid, Telomere genetics, Chromosome Mapping methods, Chromosomes, Fungal genetics, DNA, Fungal genetics, Genes, Fungal genetics, Saccharomyces cerevisiae genetics
- Abstract
In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.
- Published
- 1994
- Full Text
- View/download PDF
20. Sequencing and functional analysis of a 32,560 bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIP1 and SEC17 genes.
- Author
-
Scherens B, el Bakkoury M, Vierendeels F, Dubois E, and Messenguy F
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Chromosomes, Fungal, DNA, Fungal genetics, Fungal Proteins, Microtubule-Associated Proteins, Molecular Motor Proteins, Molecular Sequence Data, Open Reading Frames, Phosphoprotein Phosphatases genetics, Rats, Restriction Mapping, Sequence Homology, Amino Acid, Transcription, Genetic, Zinc Fingers genetics, Genes, Fungal, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae Proteins
- Abstract
We report here the DNA sequence of a segment (alpha 1006.13: YBLO5) of chromosome II of Saccharomyces cerevisiae, extending over 32.5 kb. The segment contains 26 open reading frames (ORFs) from YBLO501 to YBLO526. YBL0505 corresponds to the SEC17 gene and YBL0521 to the KIP1 gene. YBL0516 contains an intron, YBL0513 shows homology with the RAT protein phosphatase and YBL0526 contains a zinc-finger motif. Disruption of 14 genes by insertion of a URA3 cassette has been performed and these mutants were analysed for their mating and sporulation ability, and for their growth on different carbon sources. YBL0515 and YBL0526 ORFs seem to be involved in the sporulation process.
- Published
- 1993
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.