27 results on '"Victoria Naipal"'
Search Results
2. Simulating Erosion‐Induced Soil and Carbon Delivery From Uplands to Rivers in a Global Land Surface Model
- Author
-
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Wenping Yuan, Victoria Naipal, Bertrand Guenet, Kristof Van Oost, and Marta Camino‐Serrano
- Subjects
soil erosion ,carbon cycle ,lateral carbon transport ,land surface model ,upscaling ,Physical geography ,GB3-5030 ,Oceanography ,GC1-1581 - Abstract
Abstract Global water erosion strongly affects the terrestrial carbon balance. However, this process is currently ignored by most global land surface models (LSMs) that are used to project the responses of terrestrial carbon storage to climate and land use changes. One of the main obstacles to implement erosion processes in LSMs is the high spatial resolution needed to accurately represent the effect of topography on soil erosion and sediment delivery to rivers. In this study, we present an upscaling scheme for including erosion‐induced lateral soil organic carbon (SOC) movements into the ORCHIDEE LSM. This upscaling scheme integrates information from high‐resolution (3″) topographic and soil erodibility data into a LSM forcing file at 0.5° spatial resolution. Evaluation of our model for the Rhine catchment indicates that it reproduces well the observed spatial and temporal (both seasonal and interannual) variations in river runoff and the sediment delivery from uplands to the river network. Although the average annual lateral SOC flux from uplands to the Rhine River network only amounts to 0.5% of the annual net primary production and 0.01% of the total SOC stock in the whole catchment, SOC loss caused by soil erosion over a long period (e.g., thousands of years) has the potential to cause a 12% reduction in the simulated equilibrium SOC stocks. Overall, this study presents a promising approach for including the erosion‐induced lateral carbon flux from the land to aquatic systems into LSMs and highlights the important role of erosion processes in the terrestrial carbon balance.
- Published
- 2020
- Full Text
- View/download PDF
3. Global rainfall erosivity assessment based on high-temporal resolution rainfall records
- Author
-
Panos Panagos, Pasquale Borrelli, Katrin Meusburger, Bofu Yu, Andreas Klik, Kyoung Jae Lim, Jae E. Yang, Jinren Ni, Chiyuan Miao, Nabansu Chattopadhyay, Seyed Hamidreza Sadeghi, Zeinab Hazbavi, Mohsen Zabihi, Gennady A. Larionov, Sergey F. Krasnov, Andrey V. Gorobets, Yoav Levi, Gunay Erpul, Christian Birkel, Natalia Hoyos, Victoria Naipal, Paulo Tarso S. Oliveira, Carlos A. Bonilla, Mohamed Meddi, Werner Nel, Hassan Al Dashti, Martino Boni, Nazzareno Diodato, Kristof Van Oost, Mark Nearing, and Cristiano Ballabio
- Subjects
Medicine ,Science - Abstract
Abstract The exposure of the Earth’s surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(
- Published
- 2017
- Full Text
- View/download PDF
4. Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level
- Author
-
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, Panos Panagos, European Commission - Joint Research Centre [Ispra] (JRC), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Sciences pour l'Action et le Développement : Activités, Produits, Territoires (SADAPT), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Dipartimento di Scienze della Terra e dell'Ambiente [Pavia], Università degli Studi di Pavia = University of Pavia (UNIPV), Department of Earth Sciences [Basel], University of Basel (Unibas), Kangwon National University, AgroParisTech, This research has been supported by the European Commission (grant no. 35403) and by the CLAND project, and ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016)
- Subjects
Europe ,Long-term ,Climat change ,carbon ,Impacts ,Futur ,land-use ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,Rainfall erosivity ,water erosion ,General Medicine ,Model - Abstract
Promoting sustainable soil management is a possible option for achieving net-zero greenhouse gas emissions in the future. Several efforts in this area exist, and the application of spatially explicit models to anticipate the effect of possible actions on soils at a regional scale is widespread. Currently, models can simulate the impacts of changes on land cover, land management, and the climate on the soil carbon stocks. However, existing modeling tools do not incorporate the lateral transport and deposition of soil material, carbon, and nutrients caused by soil erosion. The absence of these fluxes may lead to an oversimplified representation of the processes, which hinders, for example, a further understanding of how erosion has been affecting the soil carbon pools and nutrients through time. The sediment transport during deposition and the sediment loss to rivers create dependence among the simulation units, forming a cumulative effect through the territory. If, on the one hand, such a characteristic implies that calculations must be made for large geographic areas corresponding to hydrological units, on the other hand, it also can make models computationally expensive, given that erosion and redeposition processes must be modeled at high resolution and over long timescales. In this sense, the present work has a three-fold objective. First, we provide the development details to represent in matrix form a spatially explicit process-based model coupling sediment, carbon, and erosion, transport, and deposition (ETD) processes of soil material in hillslopes and valley bottoms (i.e., the CE-DYNAM model). Second, we illustrate how the model can be calibrated and validated for Europe, where high-resolution datasets of the factors affecting erosion are available. Third, we presented the results for a depositional site, which is highly affected by incoming lateral fluxes from upstream lands. Our results showed that the benefits brought by the matrix approach to CE-DYNAM enabled the before-precluded possibility of applying it on a continental scale. The calibration and validation procedures indicated (i) a close match between the erosion rates calculated and previous works in the literature at local and national scales, (ii) the physical consistency of the parameters obtained from the data, and (iii) the capacity of the model in predicting sediment discharge to rivers in locations observed and unobserved during its calibration (model efficiency (ME) =0.603, R2=0.666; and ME =0.152, R2=0.438, respectively). The prediction of the carbon dynamics on a depositional site illustrated the model's ability to simulate the nonlinear impact of ETD fluxes on the carbon cycle. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models such as ORCHIDEE. We also hope that the patterns obtained in this work can guide future ETD models at a European scale.
- Published
- 2022
- Full Text
- View/download PDF
5. Supplementary material to 'Estimating the lateral transfer of organic carbon through the European river network using a land surface model'
- Author
-
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
- Published
- 2022
- Full Text
- View/download PDF
6. Soil erosion modelling: A global review and statistical analysis
- Author
-
Pasquale Borrelli, Christine Alewell, Pablo Alvarez, Jamil Alexandre Ayach Anache, Jantiene Baartman, Cristiano Ballabio, Nejc Bezak, Marcella Biddoccu, Artemi Cerdà, Devraj Chalise, Songchao Chen, Walter Chen, Anna Maria De Girolamo, Gizaw Desta Gessesse, Detlef Deumlich, Nazzareno Diodato, Nikolaos Efthimiou, Gunay Erpul, Peter Fiener, Michele Freppaz, Francesco Gentile, Andreas Gericke, Nigussie Haregeweyn, Bifeng Hu, Amelie Jeanneau, Konstantinos Kaffas, Mahboobeh Kiani-Harchegani, Ivan Lizaga Villuendas, Changjia Li, Luigi Lombardo, Manuel López-Vicente, Manuel Esteban Lucas-Borja, Michael Märker, Chiyuan Miao, Matjaž Mikoš, Sirio Modugno, Markus Möller, Victoria Naipal, Mark Nearing, Stephen Owusu, Dinesh Panday, Edouard Patault, Cristian Valeriu Patriche, Laura Poggio, Raquel Portes, Laura Quijano, Mohammad Reza Rahdari, Mohammed Renima, Giovanni Francesco Ricci, Jesús Rodrigo-Comino, Sergio Saia, Aliakbar Nazari Samani, Calogero Schillaci, Vasileios Syrris, Hyuck Soo Kim, Diogo Noses Spinola, Paulo Tarso Oliveira, Hongfen Teng, Resham Thapa, Konstantinos Vantas, Diana Vieira, Jae Yang, Shuiqing Yin, Demetrio Zema, Guangju Zhao, and Panos Panagos
- Abstract
To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling 1994-2017. Our aim was to identify (i) processes and models most frequently addressed in the literature, (ii) regions within which models are primarily applied, (iii) what regions remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we merged the knowledge of a group of 66 soil-erosion scientists from 67 research institutions and 25 countries. The resulting database ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’ includes 3,030 individual modelling records from 126 counties encompassing all continents (except Antarctica). Out of 8,471 articles identified as potentially relevant, we reviewed 1,697 articles and transferred relevant information from each into the database. For each record reported in the GASEMT database, 42 attributes were evaluated. The GASEMT database provides insights into the state-of-the-art of soil- erosion models and model applications worldwide. The database is also intended to support the upcoming country-based United Nations global soil-erosion assessment. This database may help inform soil erosion research priorities in that it builds a foundation for future targeted in-depth analyses. GASEMT is an open-source database that anyone can use to develop research, rectify errors, and expand.
- Published
- 2022
- Full Text
- View/download PDF
7. Contributors
- Author
-
Anders Ahlström, Mariana Almeida, Robbie Andrew, Shawn Archibeque, Luana Basso, Ana Bastos, Francisco Gilney Bezerra, Richard Birdsey, Kevin Bowman, Lori M. Bruhwiler, Dominik Brunner, Rostyslav Bun, David E. Butman, Donovan Campbell, Josep G. Canadell, Manoel Cardoso, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Róisín Commane, Monica Crippa, Gisleine Cunha-Zeri, Grant M. Domke, Eugénie S. Euskirchen, Joshua B. Fisher, Dennis Gilfillan, Daniel J. Hayes, James R. Holmquist, Richard A. Houghton, Deborah Huntzinger, Tatiana Ilyina, Rajesh Janardanan, Greet Janssens-Maenhout, Matthew W. Jones, Lydia Keppler, Masayuki Kondo, Kevin D. Kroeger, Werner Kurz, Peter Landschützer, Ronny Lauerwald, Sebastiaan Luyssaert, Natasha MacBean, Shamil Maksyutov, Eric Marland, Gregg Marland, Marcela Miranda, Victoria Naipal, Kim Naudts, Christopher S.R. Neigh, Eráclito Souza Neto, Cynthia Nevison, Shuli Niu, Tomohiro Oda, Stephen M. Ogle, Jean Pierre Ometto, Lesley Ott, Felipe S. Pacheco, Frans-Jan W. Parmentier, Prabir K. Patra, A.M. Roxana Petrescu, Julia Pongratz, Benjamin Poulter, Thomas A.M. Pugh, Anu Ramaswami, Peter A. Raymond, Luiz Felipe Rezende, Kelly Ribeiro, Dustin Roten, Christina Schädel, Edward A.G. Schuur, Stephen Sitch, Pete Smith, William Kolby Smith, Miguel Taboada, Rona L. Thompson, Kangkang Tong, Tiffany G. Troxler, Francesco N. Tubiello, Alexander J. Turner, Yohanna Villalobos, Celso von Randow, Jennifer Watts, Lisa R. Welp, Lisamarie Windham-Myers, and Daniel Zavala-Araiza
- Published
- 2022
- Full Text
- View/download PDF
8. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands
- Author
-
Chao Yue, Shushi Peng, Michael Obersteiner, Philippe Ciais, Pete Smith, Daniel S. Goll, Chunjing Qiu, Thomas Gasser, Hanqin Tian, Dan Zhu, Jinfeng Chang, Nicolas Viovy, Victoria Naipal, Bertrand Guenet, Petr Havlik, Mario Herrero, Wei Li, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016), European Project: 610028,EC:FP7:ERC,ERC-2013-SyG,IMBALANCE-P(2014), European Project: 776613,Fighting and adapting to climate change,H2020-EU.3.5.1,EUCP(2017), European Project: 776810,H2020,H2020-SC5-2017-OneStageB,VERIFY(2018), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
010504 meteorology & atmospheric sciences ,Science ,General Physics and Astronomy ,Climate change ,010501 environmental sciences ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Grassland ,Attribution ,Environmental protection ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,0105 earth and related environmental sciences ,2. Zero hunger ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,geography ,Multidisciplinary ,geography.geographical_feature_category ,Soil organic matter ,Global warming ,Carbon sink ,Carbon cycle ,General Chemistry ,Soil carbon ,15. Life on land ,Radiative forcing ,13. Climate action ,Greenhouse gas ,Environmental science - Abstract
Grasslands absorb and release carbon dioxide (CO2), emit methane (CH4) from grazing livestock, and emit nitrous oxide (N2O) from soils. Little is known about how the fluxes of these three greenhouse gases, from managed and natural grasslands worldwide, have contributed to past climate change, or the roles of managed pastures versus natural grasslands. Here, global trends and regional patterns of the full greenhouse gas balance of grasslands are estimated for the period 1750 to 2012. A new spatially explicit land surface model is applied, to separate the direct effects of human activities from land management and the indirect effects from climate change, increasing CO2 and regional changes in nitrogen deposition. Direct human management activities are simulated to have caused grasslands to switch from a sink to a source of greenhouse gas, because of increased livestock numbers and accelerated conversion of natural lands to pasture. However, climate change drivers contributed a net carbon sink in soil organic matter, mainly from the increased productivity of grasslands due to increased CO2 and nitrogen deposition. The net radiative forcing of all grasslands is currently close to neutral, but has been increasing since the 1960s. Here, we show that the net global climate warming caused by managed grassland cancels the net climate cooling from carbon sinks in sparsely grazed and natural grasslands. In the face of future climate change and increased demand for livestock products, these findings highlight the need to use sustainable management to preserve and enhance soil carbon storage in grasslands and to reduce greenhouse gas emissions from managed grasslands., Grasslands, and the livestock that live there, are dynamic sources and sinks of greenhouse gases, but what controls these fluxes remains poorly characterized. Here the authors show that on the global level, grasslands are climate neutral owing to the cancelling effects of managed vs. natural systems.
- Published
- 2021
- Full Text
- View/download PDF
9. Soil erosion modelling: A bibliometric analysis
- Author
-
Chiyuan Miao, Markus Möller, Cristiano Ballabio, Peter Fiener, Ivan Lizaga Villuendas, Mark A. Nearing, Nikolaos Efthimiou, Jae E. Yang, Christine Alewell, Francesco Gentile, Anna Maria De Girolamo, Aliakbar Nazari Samani, Andreas Gericke, Paulo Tarso Sanches de Oliveira, Amelie Jeanneau, Pablo Alvarez, Konstantinos Kaffas, Diogo Noses Spinola, Marcella Biddoccu, Nejc Bezak, Pasquale Borrelli, Guangju Zhao, Michele Freppaz, Gizaw Desta Gessesse, Jesús Rodrigo-Comino, Sergio Saia, Luigi Lombardo, Diana Vieira, Hongfen Teng, Mahboobeh Kiani-Harchegani, Walter W. Chen, Nazzareno Diodato, Changjia Li, Calogero Schillaci, Detlef Deumlich, Shuiqing Yin, Raquel de Castro Portes, Gunay Erpul, Jamil Alexandre Ayach Anache, Laura Quijano, Konstantinos Vantas, Nigussie Haregeweyn, Artemi Cerdà, Mohammed Renima, Sirio Modugno, Laura Poggio, Cristian Valeriu Patriche, Edouard Patault, Manuel Esteban Lucas-Borja, Vasileios Syrris, Demetrio Antonio Zema, Jantiene Baartman, Mohammad Reza Rahdari, Michael Maerker, Devraj Chalise, Bifeng Hu, Hyuck Soo Kim, Giovanni Francesco Ricci, Dinesh Panday, Matjaž Mikoš, Stephen Owusu, Panos Panagos, Songchao Chen, Victoria Naipal, Manuel López-Vicente, Resham Thapa, Department of Earth Systems Analysis, UT-I-ITC-4DEarth, Faculty of Geo-Information Science and Earth Observation, Bezak, N., Mikos, M., Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Biddoccu, M., Cerda, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn, N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., Villuendas, I. L., Li, C., Lombardo, L., Lopez-Vicente, M., Lucas-Borja, M. E., Maerker, M., Miao, C., Modugno, S., Moller, M., Naipal, V., Nearing, M., Owusu, S., Panday, D., Patault, E., Patriche, C. V., Poggio, L., Portes, R., Quijano, L., Rahdari, M. R., Renima, M., Ricci, G. F., Rodrigo-Comino, J., Saia, S., Samani, A. N., Schillaci, C., Syrris, V., Kim, H. S., Spinola, D. N., Oliveira, P. T., Teng, H., Thapa, R., Vantas, K., Vieira, D., Yang, J. E., Yin, S., Zema, D. A., Zhao, G., Panagos, P., Slovenian Research Agency, Fundação para a Ciência e a Tecnologia (Portugal), Korea Environmental Industry & Technology Institute, Ministry of Science and Technology (Taiwan), Lizaga Villuendas, Iván [0000-0003-4372-5901], Quijano Gaudes, Laura [0000-0002-2334-2818], Lizaga Villuendas, Iván, Quijano Gaudes, Laura, University of Ljubljana, University of Pavia, Kangwon National University, University of Basel (Unibas), Karlsruhe Institute of Technology (KIT), National University of Loja, University of São Paulo (USP), FEDERAL UNIVERSITY OF MATO GROSSO DO SUL CAMPO GRANDE BRA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Wageningen University and Research [Wageningen] (WUR), European Commission - Joint Research Centre [Ispra] (JRC), Institute of Sciences and Technologies for Sustainable Energy and Mobility ( (STEMS)), National Research Council of Italy, University of Valencia,Valencia, SCHOOL OF ENVIRONMENTAL AND RURAL SCIENCE UNIVERSITY OF NEW ENGLAND ARMIDALE AUS, InfoSol (InfoSol), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), National Taipei University of technology [Taipei] (TAIPEI TECH), National Taipei University of Technology, WATER RESEARCH INSTITUTE NATIONAL RESEARCH COUNCIL ROME, ITA, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Leibniz-Center for Agricultural Landscape Research Muencheberg (ZALF), Met European Research Observatory (MetEROBS), Czech University of Life Sciences Prague (CZU), University of Ankara, Universität Augsburg [Augsburg], University of Turin, University of Bari Aldo Moro (UNIBA), Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Tottori University, Jiangxi University of Finance and Economics (JUFE), University of Adelaide, Free University of Bozen-Bolzano, Yazd University, Spanish National Research Council (CSIC), Beijing Normal University (BNU), University of Twente [Netherlands], Wageningen Environmental Research (Alterra), University of Castilla-La Mancha (UCLM), World Food Programme (WFP), United Nations, University of Leicester, Julius Kühn Institute (JKI), Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Southwest Watershed Research Center, USDA-ARS : Agricultural Research Service, Soil Research Institute, University of Nebraska [Lincoln], University of Nebraska System, Normandie Université (NU), Romanian Academy, World Soil Information (ISRIC), Minas Gerais State University, Université Catholique de Louvain = Catholic University of Louvain (UCL), University of Torbat Heydarieh, University Hassiba Benbouali of Chlef, Trier University of Applied Sciences, University of Pisa - Università di Pisa, University of Tehran, University of Milan, University of Alaska [Fairbanks] (UAF), Wuhan Institute of Technology, Wuhan University [China], University of Maryland [Baltimore], Aristotle University of Thessaloniki, Department of Environment and Planning (DAO), Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal, Mediterranean University of Reggio Calabria, and Northwest A and F University
- Subjects
Research impact ,Calibration (statistics) ,Geography & travel ,Decision tree ,Participatory network ,Agricultural engineering ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,010501 environmental sciences ,Participatory modeling ,01 natural sciences ,Biochemistry ,Bibliometric ,ITC-HYBRID ,03 medical and health sciences ,Soil ,0302 clinical medicine ,Citation analysis ,Benchmark (surveying) ,Soil erosion modelling ,Systematic literature review ,Agriculture ,Publications ,Bibliometrics ,Soil Erosion ,ddc:550 ,030212 general & internal medicine ,0105 earth and related environmental sciences ,General Environmental Science ,ddc:910 ,WIMEK ,Bodemfysica en Landbeheer ,15. Life on land ,PE&RC ,Bibliographic coupling ,Soil Physics and Land Management ,13. Climate action ,Citation analysi ,ITC-ISI-JOURNAL-ARTICLE ,Erosion ,Environmental science ,Publication ,Scale (map) ,ISRIC - World Soil Information - Abstract
16 Pags.- 12 Figs.- 8 Tabls., Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication's CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper., Nejc Bezak and Matjaž Mikoš would like to acknowledge the support of the Slovenian Research Agency through grant P2-0180. Diana Vieira is funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen - DL57/2016 (CDL-CTTRI-97-ARH/2018 - REF.191-97-ARH/2018), and acknowledges CESAM financial support of through (UIDP/50017/2020+UIDB/50017/2020). Jae E. Yang and Pasquale Borrelli are funded by the EcoSSSoil Project, Korea Environmental Industry & Technology Institute (KEITI), Korea (Grant No. 2019002820004). Walter Chen is funded by the Ministry of Science and Technology (Taiwan) Research Project (Grant Number MOST 109-2121-M-027-001).
- Published
- 2021
- Full Text
- View/download PDF
10. Soil erosion modelling: a global review and statistical analysis
- Author
-
Marcella Biddoccu, Matjaž Mikoš, Stephen Owusu, Panos Panagos, Songchao Chen, Cristian Valeriu Patriche, Amelie Jeanneau, Aliakbar Nazari Samani, Manuel Esteban Lucas-Borja, Shuiqing Yin, Raquel de Castro Portes, Mahboobeh Kiani-Harchegani, Artemi Cerdà, Laura Poggio, Bifeng Hu, Peter Fiener, Mark A. Nearing, Diogo Noses Spinola, Michele Freppaz, Francis Matthews, Jantiene Baartman, Walter W. Chen, Pablo Alvarez, Konstantinos Kaffas, Nejc Bezak, Pasquale Borrelli, Anna Maria De Girolamo, Guangju Zhao, Andreas Gericke, Nikolaos Efthimiou, Changjia Li, Hyuck Soo Kim, Konstantinos Vantas, Paulo Tarso Sanches de Oliveira, Sergio Saia, Luigi Lombardo, Nazzareno Diodato, Nigussie Haregeweyn, Michael Märker, Gizaw Desta Gessesse, Jesús Rodrigo-Comino, Jae E. Yang, Victoria Naipal, Markus Möller, Cristiano Ballabio, Christine Alewell, Detlef Deumlich, Resham Thapa, Devraj Chalise, Vasileios Syrris, Chiyuan Miao, Manuel López-Vicente, Francesco Gentile, Laura Quijano, Diana Vieira, Sirio Modugno, Gunay Erpul, Calogero Schillaci, Mohammed Renima, Edouard Patault, Giovanni Francesco Ricci, Jamil Alexandre Ayach Anache, Demetrio Antonio Zema, Mohammad Reza Rahdari, Dinesh Panday, Hongfen Teng, Ivan Lizaga Villuendas, Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerda, A., Chalise, D., Chen, S., Chen, W., De Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn, N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., Villuendas, I. L., Li, C., Lombardo, L., Lopez-Vicente, M., Lucas-Borja, M. E., Marker, M., Matthews, F., Miao, C., Mikos, M., Modugno, S., Moller, M., Naipal, V., Nearing, M., Owusu, S., Panday, D., Patault, E., Patriche, C. V., Poggio, L., Portes, R., Quijano, L., Rahdari, M. R., Renima, M., Ricci, G. F., Rodrigo-Comino, J., Saia, S., Samani, A. N., Schillaci, C., Syrris, V., Kim, H. S., Spinola, D. N., Oliveira, P. T., Teng, H., Thapa, R., Vantas, K., Vieira, D., Yang, J. E., Yin, S., Zema, D. A., Zhao, G., Panagos, P., InfoSol (InfoSol), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Korea Environmental Industry & Technology Institute, Fundação para a Ciência e a Tecnologia (Portugal), Ministry of Science and Technology (Taiwan), Slovenian Research Agency, Lizaga Villuendas, Iván, Quijano Gaudes, Laura, López-Vicente, Manuel, Lizaga Villuendas, Iván [0000-0003-4372-5901], Quijano Gaudes, Laura [0000-0002-2334-2818], and López-Vicente, Manuel [0000-0002-6379-8844]
- Subjects
Research literature ,Environmental Engineering ,Erosion rates ,010504 meteorology & atmospheric sciences ,Computer science ,Geography & travel ,Review ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,010501 environmental sciences ,Erosion rate ,01 natural sciences ,Policy support ,Modelling ,ITC-HYBRID ,GIS ,Land degradation ,Land sustainability ,ddc:550 ,Environmental Chemistry ,Statistical analysis ,Waste Management and Disposal ,0105 earth and related environmental sciences ,ddc:910 ,WIMEK ,business.industry ,Environmental resource management ,Collective intelligence ,Bodemfysica en Landbeheer ,15. Life on land ,PE&RC ,Pollution ,Soil Physics and Land Management ,ITC-ISI-JOURNAL-ARTICLE ,Sustainability ,Erosion ,business ,ISRIC - World Soil Information ,Predictive modelling - Abstract
40 Pags.- 10 Figs.- 2 Tabls.- Suppl. Informat. The definitive version is available at: https://www.sciencedirect.com/science/journal/00489697, To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions., Jae E. Yang and Pasquale Borrelli are funded by the EcoSSSoil Project, Korea Environmental Industry & Technology Institute (KEITI), Korea (Grant No. 2019002820004). Diana Vieira is funded by national funds (OE), through FCT – Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen - DL57/2016 (CDL-CTTRI-97-ARH/2018 - REF.191-97-ARH/2018), and acknowledges CESAM financial support of through (UIDP/50017/2020+UIDB/50017/2020). Walter Chen is funded by the Ministry of Science and Technology (Taiwan) Research Project (Grant Number MOST 109-2121-M-027-001). Nejc Bezak and Matjaž Mikoš would like to acknowledge the support of the Slovenian Research Agency through grant P2-0180.
- Published
- 2021
- Full Text
- View/download PDF
11. Les émissions de N2O peuvent-elles compenser les avantages du stockage du carbone organique dans le sol ?
- Author
-
David S. Powlson, Frédéric Rees, Victoria Naipal, Jérôme Balesdent, Rémi Cardinael, Julien Fouché, Emanuele Lugato, Elisa Bruni, Stefan Frank, Philippe Ciais, Dominique Arrouays, Catherine Hénault, Benoit Gabrielle, Hanqin Tian, Thomas Nesme, Sylvain Pellerin, Hugo Valin, Bertrand Guenet, Jean-Pierre Caliman, Michael Obersteiner, Claire Chenu, Feng Zhou, Yang Su, Jean-François Soussana, Dominique Desbois, Songchao Chen, Daniel P. Rasse, Martial Bernoux, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation des Surfaces et Interfaces Continentales (MOSAIC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), InfoSol (InfoSol), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO), Smart Research Institute [Indonésie] (SMARTRI), SMART agribusiness and food [Jakarta] (SMART), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Agroécologie et Intensification Durables des cultures annuelles (UPR AIDA), University of Zimbawe [Harare] (UZ), University of Zimbawe, ICOS-ATC (ICOS-ATC), Economie Publique (ECO-PUB), Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), International Institute for Applied Systems Analysis [Laxenburg] (IIASA), Agroécologie [Dijon], Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), European Commission - Joint Research Centre [Ispra] (JRC), Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Rothamsted Research, Norwegian Institute of Bioeconomy Research (NIBIO), Auburn University (AU), Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University [Beijing], This paper stemmed from a workshop 'Emerging challenges in large scale soil carbon sequestration' held in Paris on 8-10 October 2018. The workshop was financially supported by the French government under the ANR 'Investissements d'avenir' program with the reference CLAND ANR-16-CONV-0003. F.Z. acknowledges support from the National Natural Science Foundation of China (grant no. 41671464), ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Biotechnology and Biological Sciences Research Council (BBSRC), Norsk institutt for bioøkonomi=Norwegian Institute of Bioeconomy Research (NIBIO), Support from the National Natural Science Foundation of China (grant no. 41671464), Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
0106 biological sciences ,Atténuation de l'effet de serre ,010504 meteorology & atmospheric sciences ,Travail du sol ,[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/Agronomy ,greenhouse gases emissions ,Agroforesterie ,Carbone dans le sol ,7. Clean energy ,01 natural sciences ,agroforestry ,Interactions biologiques ,Environmental protection ,Biochar ,organic amendment ,General Environmental Science ,2. Zero hunger ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,Global and Planetary Change ,Ecology ,greenhouse gas emissions ,land based mitigation ,erosion ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,Tillage ,Gaz a effet de serre ,séquestration du carbone ,Cycle de l'azote ,réduction des émissions ,[SDE]Environmental Sciences ,tillage ,Culture de couverture ,P33 - Chimie et physique du sol ,Labour ,Land management ,Climate change ,érosion ,[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study ,010603 evolutionary biology ,12. Responsible consumption ,Matière organique du sol ,Fertilité du sol ,Environmental Chemistry ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,biochar ,Occupation des sols ,émissions de gaz à effet de serre ,0105 earth and related environmental sciences ,cover crops agroforestry ,Oxyde nitreux ,Global warming ,Soil carbon ,15. Life on land ,soil organic carbon ,land-based mitigation ,Amendement organique ,13. Climate action ,Greenhouse gas ,Soil water ,Environmental science ,cover crops ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Cycle du carbone - Abstract
This paper stemmed from a workshop 'Emerging challenges in large scale soil carbon sequestration' held in Paris on 8-10 October 2018; International audience; To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large‐scale deployment of other climate mitigation strategies are also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N$_2$O), a powerful greenhouse gas, and increasing SOC may influence N$_2$O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here, we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N$_2$O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta‐analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N$_2$O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g, biochar or non‐pyrogenic C amendment application) may even decrease N$_2$O emissions.; Pour respecter l'accord de Paris visant à limiter le réchauffement climatique à moins de 2°C d'ici 2100, et éventuellement à moins de 1,5°C, des réductions drastiques des émissions de gaz à effet de serre sont obligatoires mais pas suffisantes. Le déploiement à grande échelle d'autres stratégies d'atténuation du climat est également nécessaire. Parmi celles-ci, l'augmentation des stocks de carbone organique du sol (SOC) est un levier important car le carbone dans les sols peut être stocké pendant de longues périodes et les options de gestion des terres pour y parvenir existent déjà et ont été largement testées. Toutefois, les sols agricoles sont également une source importante d'oxyde nitreux (N$_2$O), un puissant gaz à effet de serre, et l'augmentation du SOC peut influer sur les émissions de N$_$O, provoquant probablement une augmentation dans de nombreux cas, tendant ainsi à compenser le bénéfice du changement climatique résultant du stockage accru du SOC. Nous passons ici en revue les principales options de gestion agricole pour l'augmentation des stocks de SOC. Nous évaluons la quantité de SOC qui peut être stockée ainsi que les changements qui en résultent dans les émissions de N$_2$O afin de mieux estimer les avantages climatiques de ces options de gestion. Sur la base des données quantitatives obtenues à partir de méta-analyses publiées et de notre niveau de compréhension actuel, nous concluons que l'atténuation du climat induite par un stockage accru du SOC est généralement surestimée si l'on ne tient pas compte des émissions de N$_2$O associées, mais, à l'exception du travail réduit du sol, n'est jamais totalement compensée. Certaines options (par exemple, le biochar ou l'application d'un amendement C non pyrogène) peuvent même réduire les émissions de N$_2$O.
- Published
- 2021
- Full Text
- View/download PDF
12. Supplementary material to 'A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine'
- Author
-
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
- Published
- 2020
- Full Text
- View/download PDF
13. A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine
- Author
-
Bowen Cao, Le Yu, Victoria Naipal, Philippe Ciais, Wei Li, Yuanyuan Zhao, Wei Wei, Die Chen, Zhuang Liu, and Peng Gong
- Abstract
The construction of terraces is a key soil conservation practice on agricultural land in China, providing multiple valuable ecosystem services. Accurate spatial information on terraces is needed for both management and research. In this study, the first 30 m resolution terracing map of the entire territory of China is produced by a supervised pixel-based classification using multi-source and multi-temporal data based on the Google Earth Engine (GEE) platform. We extracted time-series spectral features and topographic features from Landsat 8 images and the Shuttle Radar Topography Mission digital elevation model (SRTM DEM) data, classifying cropland area (cultivated land of Globeland30) into terraced and non-terraced type through a random forest classifier. The overall accuracy and kappa coefficient were evaluated by 10875 test samples and achieved values of 94 % and 0.72, respectively. The classification performed best in the Loess Plateau and southwestern China, where terraces are most numerous. Some northeastern, central eastern and southern area had relatively high uncertainty. Typical errors in the mapping results from the sloping cropland (non-terrace cropland with a slope of ≥ 5°), low-slope terraces, and non-crop vegetation. Terraces are widely distributed in China and the total terraced area was estimated to be 53.55 Mha (i.e., 26.43 % of China's cropland area) by pixel counting (PC) method and 58.46 ± 2.99 Mha (i.e., 28.85 % ± 1.48 % of China's cropland area) by error matrix-based model-assisted estimation (EM) method. Elevation and slope were identified as the main features in the terrace/non-terrace classification, and multi-temporal spectral features (such as percentiles of NDVI, TIRS2, BSI) were also essential. Terraces are more challenging to identify than other land use types because of the intra-class feature heterogeneity, inter-class feature similarity and fragmented patches, which should be the focus of future research. Our terrace mapping algorithm can be used to map large-scale terraces in other regions globally, and our terrace map will serve as a landmark for studies on multiple ecosystem services assessments including erosion control, carbon sequestration, and biodiversity conservation. The China terrace map is available to the public at https://doi.org/10.5281/zenodo.3895585 (Cao et al., 2020).
- Published
- 2020
- Full Text
- View/download PDF
14. Supplementary material to 'Global evaluation of nutrient enabled version land surface model ORCHIDEE-CNP v1.2 (r5986)'
- Author
-
Yan Sun, Daniel S. Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, Yuanyuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
- Published
- 2020
- Full Text
- View/download PDF
15. Can N
- Author
-
Bertrand, Guenet, Benoit, Gabrielle, Claire, Chenu, Dominique, Arrouays, Jérôme, Balesdent, Martial, Bernoux, Elisa, Bruni, Jean-Pierre, Caliman, Rémi, Cardinael, Songchao, Chen, Philippe, Ciais, Dominique, Desbois, Julien, Fouche, Stefan, Frank, Catherine, Henault, Emanuele, Lugato, Victoria, Naipal, Thomas, Nesme, Michael, Obersteiner, Sylvain, Pellerin, David S, Powlson, Daniel P, Rasse, Frédéric, Rees, Jean-François, Soussana, Yang, Su, Hanqin, Tian, Hugo, Valin, and Feng, Zhou
- Subjects
Greenhouse Gases ,Paris ,Soil ,Nitrous Oxide ,Agriculture ,Carbon - Abstract
To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N
- Published
- 2020
16. Global evaluation of the nutrient enabled version of land surface model ORCHIDEE-CNP (v1.2)
- Author
-
Haicheng Zhang, Betrand Guenet, Fabienne Maignan, Yan Sun, Daniel S. Goll, Yilong Wang, Ronny Lauerwald, Philippe Ciais, Jinfeng Chang, Victoria Naipal, Hui Yang, Julian Helfenstein, and Yuanyuan Huang
- Subjects
Nutrient ,Environmental science ,Atmospheric sciences - Abstract
Future land carbon (C) uptake under climate changes and rising atmospheric CO2 is influenced by nitrogen (N) and phosphorus (P) constraints. A few existing land surface models (LSMs) account for both N and P dynamics, but lack comprehensive evaluation. This will lead to large uncertainty in estimating the P effect on terrestrial C cycles. With the increasing number of measurements and data-driven products for N- and P- related variables, comprehensive model evaluations on large scale is becoming feasible.In this study, we evaluated the performance of ORCHIDEE-CNP (v1.2) which explicitly simulates N and P cycles in plant and soil, in four aspects: 1) terrestrial C fluxes, 2) N and P fluxes and budget, 3) leaf and soil stoichiometry and 4) resource use efficiencies. We found that ORCHIDEE-CNP improves the simulation of the magnitude of gross primary productivity (GPP) due to more realistic strength of the CO2 fertilization effect of GPP than the without-nutrient-version ORCHIDEE. However, ORCHIDEE-CNP cannot capture the positive and increasing C sink in North Hemisphere over past decades, which is mainly due to that a large fraction of N and P ‘locked’ in soil organic matter cannot be re-allocated into vegetation and leads to a strong N and P limitation on plant growth. ORCHIDEE-CNP generally simulates comparable global total N and P fluxes (e.g. N biofixation, P weathering, N and P uptake etc.) for both natural and agricultural biomes. Overall, ORCHIDEE-CNP doesn’t performance worse in C fluxes than ORCHIDEE, and gives reasonable N and P cycles, which is acceptable in simulating the coupling relationships between C, N and P cycles can be used to explore the nutrient limitations on land C sink from present to the future.
- Published
- 2020
- Full Text
- View/download PDF
17. Response to Reviewer 1
- Author
-
Victoria Naipal
- Published
- 2019
- Full Text
- View/download PDF
18. Response to Reviewer 2
- Author
-
Victoria Naipal
- Published
- 2019
- Full Text
- View/download PDF
19. CE-DYNAM (v1), a spatially explicit, process-based carbon erosion scheme for the use in Earth system models
- Author
-
Victoria Naipal, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, and Yilong Wang
- Abstract
Soil erosion by rainfall and runoff is an important process behind the redistribution of soil organic carbon (SOC) over land, hereby impacting the exchange of carbon (C) between land, atmosphere and rivers. However, the net role of soil erosion in the global C cycle is still unclear as it involves small-scale SOC removal, transport and re-deposition processes that can only be addressed over selected small regions with measurements and models. This leads to uncertainties in future projections of SOC stocks and complicates the evaluation of strategies to mitigate climate change through increased SOC sequestration. In this study we present the parsimonious process-based Carbon Erosion DYNAMics model (CE-DYNAM) that links sediment dynamics resulting from water erosion with the C cycle along a cascade of hillslopes, floodplains and rivers. The model simulates horizontal soil and C transfers triggered by erosion across landscapes and the resulting changes in land-atmosphere CO2 fluxes at a resolution of about 8 km at the catchment scale. CE-DYNAM is the result of the coupling of a previously developed coarse-resolution sediment budget model and the ecosystem C cycle and erosion removal model derived from the ORCHIDEE land surface model. CE-DYNAM is driven by spatially explicit historical land use change, climate forcing, and global atmospheric CO2 concentrations affecting ecosystem productivity, erosion rates and residence times of sediment and C in deposition sites. The main features of CE-DYNAM are (1) the spatially explicit simulation of sediment and C fluxes linking hillslopes and floodplains, (2) the low number of parameters that allow running the model at large spatial scales and over long-time scales, and (3) its compatibility with any global land surface model, hereby, providing opportunities to study the effect of soil erosion under global changes. We present the model structure, concepts, and evaluation at the scale of the Rhine catchment for the period 1850–2005 AD. Model results are validated against independent estimates of gross and net soil and C erosion rates, and the spatial variability of SOC stocks from high-resolution modeling studies and observational datasets. We show that despite local differences, the resulting soil and C erosion rates, and SOC stocks from our rather coarse-resolution modelling approach are comparable to high-resolution estimates and observations at sub-basin level. The model also shows that SOC storage increases exponentially with basin area for floodplains in contrast to hillslopes as is seen in observations. We find that soil erosion mobilized 159 Tg (1012 g) of C under changing climate and land use, assuming that the erosion loop of the C cycle was in near steady-state by 1850. This caused a net C sink equal to 1 % of the Net Primary Productivity of the Rhine catchment over 1850–2005 AD. This sink is a result of the dynamic replacement of C on eroding sites that increases in this period due to rising atmospheric CO2 concentrations enhancing the litter C input to the soil from primary production.
- Published
- 2019
- Full Text
- View/download PDF
20. Supplementary material to 'CE-DYNAM (v1), a spatially explicit, process-based carbon erosion scheme for the use in Earth system models'
- Author
-
Victoria Naipal, Ronny Lauerwald, Philippe Ciais, Bertrand Guenet, and Yilong Wang
- Published
- 2019
- Full Text
- View/download PDF
21. Author’s Response to Reviewer
- Author
-
Victoria Naipal
- Published
- 2018
- Full Text
- View/download PDF
22. Reply to interactive comment by P.Borrelli
- Author
-
Victoria Naipal
- Published
- 2018
- Full Text
- View/download PDF
23. Supplementary material to 'Global soil organic carbon removal by water erosion under climate change and land use change during 1850–2005 AD'
- Author
-
Victoria Naipal, Philippe Ciais, Yilong Wang, Ronny Lauerwald, Bertrand Guenet, and Kristof Van Oost
- Published
- 2018
- Full Text
- View/download PDF
24. Global soil organic carbon removal by water erosion under climate change and land use change during 1850–2005 AD
- Author
-
Victoria Naipal, Philippe Ciais, Yilong Wang, Ronny Lauerwald, Bertrand Guenet, and Kristof Van Oost
- Subjects
2. Zero hunger ,13. Climate action ,15. Life on land - Abstract
The onset and expansion of agriculture has accelerated soil erosion by rainfall and runoff substantially, mobilizing vast quantities of soil organic carbon (SOC) globally. Studies show that at timescales of decennia to millennia this mobilized SOC can significantly alter previously estimated carbon emissions from land use change (LUC). However, a full understanding of the impact of erosion on land-atmosphere carbon exchange is still missing. The aim of our study is to better constrain the terrestrial carbon fluxes by developing methods compatible with Earth System Models (ESMs) in order to explicitly represent the links between soil erosion by rainfall and runoff and carbon dynamics. For this we use an emulator that represents the carbon cycle of a land surface model, in combination with the Revised Universal Soil Loss Equation model. We applied this modeling framework at the global scale to evaluate the effects of potential soil erosion (soil removal only) in the presence of other perturbations of the carbon cycle: elevated atmospheric CO2, climate variability, and LUC. We found that over the period 1850–2005 AD acceleration of soil erosion leads to a total potential SOC removal flux of 100 Pg C of which 80 % occurs on agricultural, pasture and natural grass lands. Including soil erosion in the SOC-dynamics scheme results in a doubling of the cumulative loss of SOC over 1850–2005 due to the combined effects of climate variability, increasing atmospheric CO2 and LUC. This additional erosional loss decreases the cumulative global carbon sink on land by 5 Pg for this specific period, with the largest effects found for the tropics, where deforestation and agricultural expansion increased soil erosion rates significantly. We also show that the potential effects of soil erosion on the global SOC stocks cannot be ignored when compared to the effects of climate change or land use change on the carbon cycle. We conclude that it is necessary to include soil erosion in assessments of LUC and evaluations of the terrestrial carbon cycle.
- Published
- 2018
- Full Text
- View/download PDF
25. Global rainfall erosivity assessment based on high-temporal resolution rainfall records
- Author
-
Bofu Yu, Mark A. Nearing, Victoria Naipal, Yoav Levi, Katrin Meusburger, Paulo Tarso Sanches de Oliveira, Mohsen Zabihi, Cristiano Ballabio, Christian Birkel, N. Chattopadhyay, Andrey V. Gorobets, Seyed Hamidreza Sadeghi, Andreas Klik, Chiyuan Miao, Panos Panagos, Jinren Ni, Carlos A. Bonilla, Martino Boni, Werner Nel, Nazzareno Diodato, Pasquale Borrelli, Kristof Van Oost, Gennady A. Larionov, Sergey F. Krasnov, Jae E. Yang, Mohamed Meddi, Zeinab Hazbavi, Hassan Al Dashti, Natalia Hoyos, Gunay Erpul, Kyoung Jae Lim, European Commission - Joint Research Centre [Ispra] (JRC), University of Basel (Unibas), Griffith University [Brisbane], Universität für Bodenkultur Wien = University of Natural Resources and Life [Vienne, Autriche] (BOKU), Kangwon National University, College of Environmental Sciences and Engineering [Peking], Peking University [Beijing], College of Global Change and Earth System Science (GCESS), Beijing Normal University (BNU), India Meteorological Department, Partenaires INRAE, Tarbiat Modares University [Tehran], MSU Faculty of Geography [Moscow], Lomonosov Moscow State University (MSU), Israel Meteorological Service, Ankara University, Universidad de Costa Rica (UCR), Universidad del Norte, Barranquilla, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidade Federal de Mato Grosso do Sul (UFMS), Departamento de Ingenierıa Hidraulica y Ambiental, Pontificia Universidad Católica de Chile (UC), Université Saâd Dahlab Blida 1 (UB1), University of Fort Hare, Department of Meteorology [koweit], Met European Research Observatory (MetEROBS), Université Catholique de Louvain = Catholic University of Louvain (UCL), USDA Agricultural Research Service [Maricopa, AZ] (USDA), United States Department of Agriculture (USDA), University of Natural Resources and Life Sciences [Wien] (BOKU), Université médicale de Vienne, Autriche, University of Costa Rica, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Saâd Dahlab [Blida] (USDB ), UCL - SST/ELI/ELIC - Earth & Climate, Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V., Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P. T. S., Bonilla, C. A., Meddi, M., Nel, W., Al Dashti, H., Boni, M., Diodato, N., Van Oost, K., Nearing, M., and Ballabio, C.
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Cold climate ,Science ,010501 environmental sciences ,15. Life on land ,01 natural sciences ,Article ,13. Climate action ,Kriging ,Soil retrogression and degradation ,Tropical climate ,East africa ,Temperate climate ,Environmental science ,High temporal resolution ,Medicine ,South east asia ,Physical geography ,0105 earth and related environmental sciences - Abstract
The exposure of the Earth’s surface to the energetic input of rainfall is one of the key factors controlling water erosion. While water erosion is identified as the most serious cause of soil degradation globally, global patterns of rainfall erosivity remain poorly quantified and estimates have large uncertainties. This hampers the implementation of effective soil degradation mitigation and restoration strategies. Quantifying rainfall erosivity is challenging as it requires high temporal resolution(−1 h−1 yr−1, with the highest values in South America and the Caribbean countries, Central east Africa and South east Asia. The lowest values are mainly found in Canada, the Russian Federation, Northern Europe, Northern Africa and the Middle East. The tropical climate zone has the highest mean rainfall erosivity followed by the temperate whereas the lowest mean was estimated in the cold climate zone.
- Published
- 2017
- Full Text
- View/download PDF
26. Author’s Response to Referee B. Guenet
- Author
-
Victoria Naipal
- Published
- 2016
- Full Text
- View/download PDF
27. Author’s Response to Reviewer A. Chappell
- Author
-
Victoria Naipal
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.