103 results on '"Victor Silva Aguirre"'
Search Results
2. Dynamical heating across the Milky Way disc using APOGEE and Gaia
- Author
-
J Ted Mackereth, Jo Bovy, Henry W Leung, Ricardo P Schiavon, Wilma H Trick, William J Chaplin, Katia Cunha, Diane K Feuillet, Steven R Majewski, Marie Martig, Andrea Miglio, David Nidever, Marc H Pinsonneault, Victor Silva Aguirre, Jennifer Sobeck, Jamie Tayar, and Gail Zasowski
- Published
- 2019
- Full Text
- View/download PDF
3. TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star
- Author
-
Brett C. Addison, Duncan J. Wright, Belinda A. Nicholson, Bryson Cale, Teo Mocnik, Daniel Huber, Peter Plavchan, Robert A. Wittenmyer, Andrew Vanderburg, William J. Chaplin, Ashley Chontos, Jake T. Clark, Jason D. Eastman, Carl Ziegler, Rafael Brahm, Bradley D. Carter, Mathieu Clerte, Nestor Espinoza, Jonathan Horner, John Bentley, Andres Jordan, Stephen R. Kane, John F. Kielkopf, Emilie Laychock, Matthew W. Mengel, Jack Okumura, Keivan G. Stassun, Timothy R. Bedding, Brendan P. Bowler, Andrius Burnelis, Sergi Blanco-Cuaresma, Michaela Collins, Ian Crossfield, Allen B. Davis, Dag Evensberget, Alexis Heitzmann, Steve B. Howell, Nicholas Law, Andrew W. Mann, Stephen C. Marsden, Rachel A. Matson, James H. O’Connor, Avi Shporer, Catherine Stevens, C. G. Tinney, Christopher Tylor, Songhu Wang, Hui Zhang, Thomas Henning, Diana Kossakowski, George Ricker, Paula Sarkis, Martin Schlecker, Pascal Torres, Roland Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Ismael Mireles, Pam Rowden, Joshua Pepper, Tansu Daylan, Joshua E. Schlieder, Karen A. Collins, Kevin I. Collins, Thiam-Guan Tan, Warrick H. Ball, Sarbani Basu, Derek L. Buzasi, Tiago L. Campante, Enrico Corsaro, L. Gonz´alez-Cuesta, Guy R. Davies, Leandro de Almeida, Jose-Dias do Nascimento Jr, Rafael A. Garcpıa, Zhao Guo, Rasmus Handberg, Saskia Hekker, Daniel R. Hey, Thomas Kallinger, Steven D. Kawaler, Cenk Kayhan, James S. Kuszlewicz, Mikkel N. Lund, Alexander Lyttle, Savita Mathur, Andrea Miglio, Benoit Mosser, Martin B. Nielsen, Aldo M. Serenelli, Victor Silva Aguirre, and Nathalie Themeßl
- Subjects
Astrophysics - Abstract
We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M(P) = 0.138 ± 0.023 M(J) (43.9 ± 7.3 Mꚛ), a radius of R(P) = 0.639 ± 0.013 R(J) (7.16 ± 0.15 Rꚛ), bulk density of 0.65 (+0.12,−0.11) (cgs), and period 18.38818 (+0.00085,−0.00084) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M⁎ = 1.390 ± 0.046 M(sun), R⁎ = 1.888 ± 0.033 R(sun), T(eff) = 6075 ± 90 K, and 𝜈sin 𝑖 = 11.3 ± 0.5 km/s. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
- Published
- 2020
- Full Text
- View/download PDF
4. Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite
- Author
-
Victor Silva Aguirre, Dennis Stello, Amalie Stokholm, Jakob R. Mosumgaard, Warrick H. Ball, Sarbani Basu, Diego Bossini, Lisa Bugnet, Derek Buzasi, Tiago L. Campante, Lindsey Carboneau, William J. Chaplin, Enrico Corsaro, Guy R. Davies, Yvonne Elsworth, Rafael A. Garcia, Patrick Gaulme, Oliver J. Hall, Rasmus Handberg, Marc Hon, Thomas Kallinger, Liu Kang, Mikkel N. Lund, Savita Mathur, Alexey Mints, Benoit Mosser, Zeynep Celik Orhan, Thaise S. Rodrigues, Mathieu Vrard, Mutlu Yıldız, Joel C. Zinn, Sibel Ortel, Paul G. Beck, Keaton J. Bell, Zhao Guo, Chen Jiang, James S. Kuszlewicz, Charles A. Kuehn, Tanda Li, Mia S. Lundkvist, Marc Pinsonneault, Jamie Tayar, Margarida S. Cunha, Saskia Hekker, Daniel Huber, Andrea Miglio, Mario J. P. F. G. Monteiro, Ditte Slumstrup, Mark L. Winther, George Angelou, Othman Benomar, Attila Bodi, Bruno L. De Moura, Sebastien Deheuvels, Aliz Derekas, Maria Pia Di Mauro, Marc-Antoine Dupret, Antonio Jimenez, Yveline Lebreton, Jaymie Matthews, Nicolas Nardetto, Jose D. do Nascimento Jr, Filipe Pereira, Luisa F. Rodriguez Díaz, Aldo M. Serenelli, Emanuele Spitoni, Edita Stonkute, Juan Carlos Suarez, Robert Szabo, Vincent Van Eylen, Rita Ventura, Kuldeep Verma, Achim Weiss, Tao Wu, Thomas Barclay, Jorgen Christensen-Dalsgaard, Jon M Jenkins, Hans Kjeldsen, George R Ricker, Sara Seager, and Roland Vanderspek
- Subjects
Astrophysics ,Astronomy - Abstract
Since the onset of the “space revolution” of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky— providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%–10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data.
- Published
- 2020
- Full Text
- View/download PDF
5. The K2 Galactic Archaeology Program Data Release 3: Age-abundance Patterns in C1–C8 and C10–C18
- Author
-
Joel C. Zinn, Dennis Stello, Yvonne Elsworth, Rafael A. García, Thomas Kallinger, Savita Mathur, Benoît Mosser, Marc Hon, Lisa Bugnet, Caitlin Jones, Claudia Reyes, Sanjib Sharma, Ralph Schönrich, Jack T. Warfield, Rodrigo Luger, Andrew Vanderburg, Chiaki Kobayashi, Marc H. Pinsonneault, Jennifer A. Johnson, Daniel Huber, Sven Buder, Meridith Joyce, Joss Bland-Hawthorn, Luca Casagrande, Geraint F. Lewis, Andrea Miglio, Thomas Nordlander, Guy R. Davies, Gayandhi De Silva, William J. Chaplin, and Victor Silva Aguirre
- Published
- 2022
- Full Text
- View/download PDF
6. An observational testbed for cosmological zoom-in simulations: constraining stellar migration in the solar cylinder using asteroseismology
- Author
-
Victor Silva Aguirre, Robert J. J. Grand, Amalie Stokholm, and Kuldeep Verma
- Subjects
Physics ,Field (physics) ,AURIGA ,010308 nuclear & particles physics ,Star formation ,Metallicity ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Asteroseismology ,Galaxy ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Dispersion (water waves) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
Large-scale stellar surveys coupled with recent developments in magneto-hydrodynamical simulations of the formation of Milky Way-mass galaxies provide an unparalleled opportunity to unveil the physical processes driving the evolution of the Galaxy. We developed a framework to compare a variety of parameters with their corresponding predictions from simulations in an unbiased manner, taking into account the selection function of a stellar survey. We applied this framework to a sample of over 7000 stars with asteroseismic, spectroscopic, and astrometric data available, together with 6 simulations from the Auriga project. We found that some simulations are able to produce abundance dichotomies in the $[{\rm Fe}/{\rm H}]-[\alpha/{\rm Fe}]$ plane which look qualitatively similar to observations. The peak of their velocity distributions match the observed data reasonably well, however they predict hotter kinematics in terms of the tails of the distributions and the vertical velocity dispersion. Assuming our simulation sample is representative of Milky Way-like galaxies, we put upper limits of 2.21 and 3.70 kpc on radial migration for young ($< 4$ Gyr) and old ($\in [4, 8]$ Gyr) stellar populations in the solar cylinder. Comparison between the observed and simulated metallicity dispersion as a function of age further constrains migration to about 1.97 and 2.91 kpc for the young and old populations. These results demonstrate the power of our technique to compare numerical simulations with high-dimensional datasets, and paves the way for using the wider field TESS asteroseismic data together with the future generations of simulations to constrain the subgrid models for turbulence, star formation and feedback processes., Comment: 19 pages, 18 figures (including 8 in the appendix), 1 table, MNRAS in press
- Published
- 2021
7. A 20 Second Cadence View of Solar-type Stars and Their Planets with TESS: Asteroseismology of Solar Analogs and a Recharacterization of pi Men c
- Author
-
Daniel Huber, Timothy R. White, Travis S. Metcalfe, Ashley Chontos, Michael M. Fausnaugh, Cynthia S. K. Ho, Vincent Van Eylen, Warrick H. Ball, Sarbani Basu, Timothy R. Bedding, Othman Benomar, Diego Bossini, Sylvain Breton, Derek L. Buzasi, Tiago L. Campante, William J. Chaplin, Jørgen Christensen-Dalsgaard, Margarida S. Cunha, Morgan Deal, Rafael A. García, Antonio García Muñoz, Charlotte Gehan, Lucía González-Cuesta, Chen Jiang, Cenk Kayhan, Hans Kjeldsen, Mia S. Lundkvist, Stéphane Mathis, Savita Mathur, Mário J. P. F. G. Monteiro, Benard Nsamba, Jia Mian Joel Ong, Erika Pakštienė, Aldo M. Serenelli, Victor Silva Aguirre, Keivan G. Stassun, Dennis Stello, Sissel Norgaard Stilling, Mark Lykke Winther, Tao Wu, Thomas Barclay, Tansu Daylan, Maximilian N. Günther, J. J. Hermes, Jon M. Jenkins, David W. Latham, Alan M. Levine, George R. Ricker, Sara Seager, Avi Shporer, Joseph D. Twicken, Roland K. Vanderspek, Joshua N. Winn, National Aeronautics and Space Administration (US), National Science Foundation (US), Australian Research Council, Danish National Research Foundation, Fundação para a Ciência e a Tecnologia (Portugal), European Commission, Research Council of Lithuania, Alexander von Humboldt Foundation, Ministerio de Ciencia e Innovación (España), Chinese Academy of Sciences, and Kavli Foundation
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Radial velocity ,010308 nuclear & particles physics ,Exoplanets ,Asteroseismology ,FOS: Physical sciences ,Astronomy and Astrophysics ,Light curves ,01 natural sciences ,G stars ,Transits ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present an analysis of the first 20 second cadence light curves obtained by the TESS space telescope during its extended mission. We find improved precision of 20 second data compared to 2 minute data for bright stars when binned to the same cadence (˜10%-25% better for T ? 8 mag, reaching equal precision at T ˜ 13 mag), consistent with pre-flight expectations based on differences in cosmic-ray mitigation algorithms. We present two results enabled by this improvement. First, we use 20 second data to detect oscillations in three solar analogs (? Pav, ? Tuc, and p Men) and use asteroseismology to measure their radii, masses, densities, and ages to ˜1%, ˜3%, ˜1%, and ˜20% respectively, including systematic errors. Combining our asteroseismic ages with chromospheric activity measurements, we find evidence that the spread in the activity-age relation is linked to stellar mass and thus the depth of the convection zone. Second, we combine 20 second data and published radial velocities to recharacterize p Men c, which is now the closest transiting exoplanet for which detailed asteroseismology of the host star is possible. We show that p Men c is located at the upper edge of the planet radius valley for its orbital period, confirming that it has likely retained a volatile atmosphere and that the "asteroseismic radius valley"remains devoid of planets. Our analysis favors a low eccentricity for p Men c (, D.H. acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC19K0379, 80NSSC21K0652), and the National Science Foundation (AST-1717000). T.S.M. acknowledges support from NASA grant 80NSSC20K0458. Computational time at the Texas Advanced Computing Center was provided through XSEDE allocation TG-AST090107. A.C. acknowledges support from the National Science Foundation through the Graduate Research Fellowship Program (DGE 1842402). W.H.B. performed computations using the University of Birmingham's BlueBEAR High Performance Computing service. T.R.B. acknowledges support from the Australian Research Council through Discovery Project DP210103119. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). M.S.C. and M.D. acknowledge the support by FCT/MCTES through the research grants UIDB/04434/2020, UIDP/04434/2020 and PTDC/FIS-AST/30389/2017, and by FEDER—Fundo Europeu de Desenvolvimento Regional through COMPETE2020—Programa Operacional Competitividade e Internacionalização (grant: POCI-01-0145-FEDER-030389). T.L.C. is supported by Fundação para a Ciência e a Tecnologia (FCT) in the form of a work contract (CEECIND/00476/2018). M.S.C. is supported by national funds through FCT in the form of a work contract. H.K. and E.P. acknowledge the grant from the European Social Fund via the Lithuanian Science Council (LMTLT) grant No. 09.3.3-LMT-K-712-01-0103. R.A.G. and S.N.B. acknowledge the support received from the CNES with the PLATO and GOLF grants. B.N. acknowledges postdoctoral funding from the Alexander von Humboldt Foundation and "Branco Weiss fellowship Science in Society" through the SEISMIC stellar interior physics group. S.M. acknowledges support by the Spanish Ministry of Science and Innovation with the Ramon y Cajal fellowship number RYC-2015-17697 and the grant number PID2019-107187GB-I00. T.W. acknowledges support from the B-type Strategic Priority Program of the Chinese Academy of Sciences (grant No. XDB41000000) from the NSFC of China (grant Nos. 11773064, 11873084, and 11521303), from the Youth Innovation Promotion Association of Chinese Academy of Sciences, and from the Ten Thousand Talents Program of Yunnan for Top-notch Young Talents. T.W. also gratefully acknowledges the computing time granted by the Yunnan Observatories and provided by the facilities at the Yunnan Observatories Supercomputing Platform. T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow.
- Published
- 2022
8. The SAPP pipeline for the determination of stellar abundances and atmospheric parameters of stars in the core program of the PLATO mission
- Author
-
Denis Mourard, Maria Bergemann, Luca Casagrande, Kevin Belkacem, Regner Trampedach, Nicolas Nardetto, Daniel R. Reese, Carlos del Burgo, Marie-Jo Goupil, Victor Silva Aguirre, Andrea Chiavassa, Thierry Morel, Matthew Raymond Gent, Bertrand Plez, Douglas J. Marshall, Martin Asplund, Maria Tsantaki, Jonay I. González Hernández, Aldo Serenelli, Mikhail Kovalev, Luisa Fernanda Rodríguez Díaz, Lionel Bigot, Ulrike Heiter, Vardan Adibekyan, Szabolcs Mészáros, Jeffrey M. Gerber, Rhita-Maria Ouazzani, Thibault Merle, European Space Agency, Centre National D'Etudes Spatiales (France), German Research Foundation, University of Heidelberg, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Swedish National Space Agency, Fundação para a Ciência e a Tecnologia (Portugal), Hungarian Academy of Sciences, European Commission, European Research Council, Agence Nationale de la Recherche (France), Max Planck Society, Ministero dell'Istruzione, dell'Università e della Ricerca, Max Planck Institute for Astronomy (MPIA), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
solar-type [stars] ,Metallicity ,fundamental parameters [stars] ,FOS: Physical sciences ,Core sample ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Surveys ,01 natural sciences ,Astronomical spectroscopy ,Luminosity ,Astronomi, astrofysik och kosmologi ,surveys ,0103 physical sciences ,Stars: solar-type ,Astronomy, Astrophysics and Cosmology ,Astrophysics::Solar and Stellar Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Stars: fundamental parameters ,atmospheres [stars] ,Physics ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,010308 nuclear & particles physics ,Stars: abundances ,low-mass. Techniques: spectroscopic. Surveys ,Astronomy and Astrophysics ,Observable ,Effective temperature ,Surface gravity ,abundances [stars] ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Stars: atmospheres ,Astrophysics - Instrumentation and Methods for Astrophysics ,fundamental parameters - Abstract
We introduce the SAPP (Stellar Abundances and atmospheric Parameters Pipeline), the prototype of the code that will be used to determine parameters of stars observed within the core program of the PLATO space mission. The pipeline is based on the Bayesian inference and provides effective temperature, surface gravity, metallicity, chemical abundances, and luminosity. The code in its more general version has a much wider range of potential applications. It can also provide masses, ages, and radii of stars and can be used with stellar types not targeted by the PLATO core program, such as red giants. We validate the code on a set of 27 benchmark stars that includes 19 FGK-type dwarfs, 6 GK-type subgiants, and 2 red giants. Our results suggest that combining various observables is the optimal approach, as this allows the degeneracies between different parameters to be broken and yields more accurate values of stellar parameters and more realistic uncertainties. For the PLATO core sample, we obtain a typical uncertainty of 27 (syst.) ± 37 (stat.) K for Teff, 0.00 ± 0.01 dex for log g, 0.02 ± 0.02 dex for metallicity [Fe/H], −0.01 ± 0.03 R⊙ for radii, −0.01 ± 0.05 M⊙ for stellar masses, and −0.14 ± 0.63 Gyr for ages. We also show that the best results are obtained by combining the νmax scaling relation with stellar spectra. This resolves the notorious problem of degeneracies, which is particularly important for F-type stars., This work presents results from the European Space Agency (ESA) space mission PLATO. The PLATO payload, the PLATO Ground Segment and PLATO data processing are joint developments of ESA and the PLATO Mission Consortium (PMC). Funding for the PMC is provided at national levels, in particular by countries participating in the PLATO Multilateral Agreement (Austria, Belgium, Czech Republic, Denmark, France, Germany, Italy, Netherlands, Portugal, Spain, Sweden, Switzerland, Norway, and United Kingdom) and institutions from Brazil. Members of the PLATO Consortium can be found at https://platomission.com. The ESA PLATO mission website is https://www.cosmos.esa.int/plato. We thank the teams working for PLATO for all their work. We thank P.E. Nissen for providing the reduced spectra of the Kepler legacy stars. M.R.G., M.B., J.G., and M.K. are supported by the Lise Meitner grant from the Max Planck Society. B.P. is partially supported by CNES, the Centre National d’Études Spatiales. We acknowledge support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). We thank C. Aerts for providing helpful comments to this study. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. A.S. acknowledges support from MICINN grant PID2019-108709GB-I00. T.M. acknowledges financial support from Belspo for contract PRODEX PLATO mission development. U.H. acknowledges support from the Swedish National Space Agency (SNSA/Rymdstyrelsen). S.M. has been supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the ÚNKP-20-5 New National Excellence Program of the Ministry for Innovation and Technology. N.N. acknowledges Anthony Salsi for useful discussions. V.A. is supported by FCT – Fundação para a Ciência e Tecnologia (FCT) through national grants: UID/FIS/04434/2019; UIDB/04434/2020; UIDP/04434/2020. V.A. also acknowledges the support from FCT through Investigador FCT contract nr. IF/00650/2015/CP1273/CT0001. M.T. acknowledges the funding from MIUR Premiale 2016: MITIC. L.C. is the recipient of the ARC Future Fellowship FT160100402. M.B. is supported through the Lise Meitner grant from the Max Planck Society. We acknowledge support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 949173).
- Published
- 2022
9. The Kepler Smear Campaign: Light Curves for 102 Very Bright Stars
- Author
-
Benjamin J. S. Pope, Guy R. Davies, Keith Hawkins, Timothy R. White, Amalie Stokholm, Allyson Bieryla, David W. Latham, Madeline Lucey, Conny Aerts, Suzanne Aigrain, Victoria Antoci, Timothy R. Bedding, Dominic M. Bowman, Douglas A. Caldwell, Ashley Chontos, Gilbert A. Esquerdo, Daniel Huber, Paula Jofré, Simon J. Murphy, Timothy van Reeth, Victor Silva Aguirre, and Jie Yu
- Published
- 2019
- Full Text
- View/download PDF
10. TESS Asteroseismology of α Mensae: Benchmark Ages for a G7 Dwarf and Its M Dwarf Companion
- Author
-
M. L. Winther, Zeynep Çelik Orhan, Jennifer L. van Saders, Richard H. D. Townsend, Daniel Huber, Maïssa Salama, Sibel Örtel, Victor Silva Aguirre, R. Paul Butler, Savita Mathur, Travis A. Berger, Keivan G. Stassun, Aldo Serenelli, Hans Kjeldsen, Ashley Chontos, Timothy R. Bedding, Jia Mian Joel Ong, Mia S. Lundkvist, Zachary R. Claytor, Steve B. Howell, Robert A. Wittenmyer, Warrick H. Ball, Martin Bo Nielsen, C. G. Tinney, Sarbani Basu, Travis S. Metcalfe, Mutlu Yildiz, Rafael A. García, Enrico Corsaro, William J. Chaplin, Alfred P. Sloan Foundation, Ministerio de Ciencia, Innovación y Universidades (España), Independent Research Fund Denmark, Carlsberg Foundation, Danish National Research Foundation, and National Aeronautics and Space Administration (US)
- Subjects
Fundamental Parameters ,Stellar physics ,Stellar Evolution Code ,Fundamental parameters of stars ,M dwarf stars ,01 natural sciences ,Asteroseismology ,Ca-Ii Emission ,Photometry ,Solar-Like Oscillations ,Stellar properties ,0103 physical sciences ,010303 astronomy & astrophysics ,Stellar activity ,Chromospheric Variations ,Physics ,Lower Main-Sequence ,010308 nuclear & particles physics ,Solar oscillations ,Astronomy ,Multisite Campaign ,Astronomy and Astrophysics ,Astrometry ,Nearby Stars ,P-Mode Oscillations ,Stellar ages ,Solar analogs ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Benchmark (computing) ,Low mass stars ,Magnetic Activity ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in alpha Men A, a naked-eye (V = 5.1) G7 dwarf in TESS's southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog alpha Men A (T-eff = 5569 +/- 62 K, R-star = 0.960 +/- 0.016 R-circle dot, M-star = 0.964 +/- 0.045 M-circle dot). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M-star = 0.169 +/- 0.006 M (circle dot), R-star = 0.19 +/- 0.01 R-circle dot, and T-eff = 3054 +/- 44 K. Our asteroseismic age of 6.2 +/- 1.4 (stat) +/- 0.6 (sys) Gyr for the primary places alpha Men B within a small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 +/- 1.1 yr for alpha Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of similar to 30 days for the primary. Alpha Men A is now the closest (d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs., National Science Foundation under the Graduate Research Fellowship Program [DGE 1842402]; Alfred P. Sloan Foundation; National Aeronautics and Space Administration [80NSSC18K1585, 80NSSC19K0379]; National Science Foundation [AST-1717000]; NASA FINESST award [80NSSC19K1424]; MICINN project [PRPPID2019-108709GBI00]; Independent Research Fund Denmark [7027-00096B]; Carlsberg Foundation [CF19-0649, CF17-0760]; Australian Research Council [DP210103119]; UK Science and Technology Facilities Council (STFC) [ST/R0023297/1]; PLATO CNES grant; GOLF CNES grant; Danish National Research Foundation [DNRF106]; Spanish Ministry of Science and Innovation; Ramon y Cajal fellowship [RYC-201517697]; NASA [80NSSC20K0458, 80NSSC20K0515]; XSEDE [TG-AST090107]; NSF [ACI-1663696, AST1716436, PHY-1748958]; NASA Exoplanet Exploration Program; [PID2019-107187GB-I00], We acknowledge the traditional owners of the land on which the Anglo-Australian Telescope stands, the Gamilaraay people, and pay our respects to elders past, present, and emerging. The authors would like to thank the staff at the Gemini South Observatory for follow-up observations. A.C. acknowledges support from the National Science Foundation under the Graduate Research Fellowship Program (DGE 1842402). D.H. acknowledges support from the Alfred P. Sloan Foundation, the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379), and the National Science Foundation (AST-1717000). T.A.B. acknowledges support from a NASA FINESST award (80NSSC19K1424). A.S. is partially supported by MICINN project PRPPID2019-108709GBI00. V.S.A. acknowledges support from the Independent Research Fund Denmark (research grant 7027-00096B) and the Carlsberg Foundation (grant agreement CF19-0649). T.R.B. acknowledges support from the Australian Research Council (DP210103119). W.H.B., W.J.C., and M.B.N. thank the UK Science and Technology Facilities Council (STFC) for support under grant ST/R0023297/1. R.A.G. acknowledges the support of the PLATO and GOLF CNES grants. M.S.L. is supported by the Carlsberg Foundation (grant agreement No. CF17-0760). Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (grant DNRF106). S.M. acknowledges support from the Spanish Ministry of Science and Innovation with Ramon y Cajal fellowship No. RYC-201517697 and from grant No. PID2019-107187GB-I00. T.S.M. acknowledges support from NASA grant 80NSSC20K0458. Computational time at the Texas Advanced Computing Center was provided through XSEDE allocation TG-AST090107. R.H. D.T. acknowledges support from NSF grants ACI-1663696, AST1716436, and PHY-1748958 and NASA grant 80NSSC20K0515. Some of the observations in the paper made use of the highresolution imaging instrument Zorro obtained under Gemini LLP proposal No. GN/S-2021A-LP-105. Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA AMES Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.
- Published
- 2021
11. The K2 Galactic Archaeology Program Data Release 2:Asteroseismic Results from Campaigns 4, 6, and 7
- Author
-
Thomas Kallinger, Jack T. Warfield, Daniel Huber, Caitlin D. Jones, Sanjib Sharma, Marc Hon, Jennifer A. Johnson, L. Bugnet, Guy R. Davies, Joel C. Zinn, Dennis Stello, William J. Chaplin, Ralph Schönrich, Marc H. Pinsonneault, Benoit Mosser, Andrea Miglio, Yvonne Elsworth, Rafael A. García, Rodrigo Luger, Victor Silva Aguirre, Savita Mathur, Joel C. Zinn, Dennis Stello, Yvonne Elsworth, Rafael A. García, Thomas Kallinger, Savita Mathur, Benoît Mosser, Lisa Bugnet, Caitlin Jones, Marc Hon, Sanjib Sharma, Ralph Schönrich, Jack T. Warfield, Rodrigo Luger, Marc H. Pinsonneault, Jennifer A. Johnson, Daniel Huber, Victor Silva Aguirre, William J. Chaplin, Guy R. Davies, Andrea Miglio, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Red giant ,01 natural sciences ,Red giant branch ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Red giant clump ,[PHYS]Physics [physics] ,Physics ,05 social sciences ,Asteroseismology ,050301 education ,Radius ,Red-giant branch ,Astrophysics - Solar and Stellar Astrophysics ,Physical Sciences ,Catalog ,Astrophysics::Earth and Planetary Astrophysics ,Data release ,PIPELINE ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,AGE ,Stellar radii ,0103 physical sciences ,OSCILLATIONS ,PHOTOMETRY ,Stellar masses ,Red clump ,DISTANCES ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Science & Technology ,Astronomy and Astrophysics ,Effective temperature ,RED ,Archaeology ,Astrophysics - Astrophysics of Galaxies ,Stars ,Stellar masse ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,High Energy Physics::Experiment ,Catalogs ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,0503 education ,STARS - Abstract
Studies of Galactic structure and evolution have benefitted enormously from Gaia kinematic information, though additional, intrinsic stellar parameters like age are required to best constrain Galactic models. Asteroseismology is the most precise method of providing such information for field star populations $\textit{en masse}$, but existing samples for the most part have been limited to a few narrow fields of view by the CoRoT and Kepler missions. In an effort to provide well-characterized stellar parameters across a wide range in Galactic position, we present the second data release of red giant asteroseismic parameters for the K2 Galactic Archaeology Program (GAP). We provide $\nu_{\mathrm{max}}$ and $\Delta \nu$ based on six independent pipeline analyses; first-ascent red giant branch (RGB) and red clump (RC) evolutionary state classifications from machine learning; and ready-to-use radius & mass coefficients, $\kappa_R$ & $\kappa_M$, which, when appropriately multiplied by a solar-scaled effective temperature factor, yield physical stellar radii and masses. In total, we report 4395 radius and mass coefficients, with typical uncertainties of $3.3\% \mathrm{\ (stat.)} \pm 1\% \mathrm{\ (syst.)}$ for $\kappa_R$ and $7.7\% \mathrm{\ (stat.)} \pm 2\% \mathrm{\ (syst.)}$ for $\kappa_M$ among RGB stars, and $5.0\% \mathrm{\ (stat.)} \pm 1\% \mathrm{\ (syst.)}$ for $\kappa_R$ and $10.5\% \mathrm{\ (stat.)} \pm 2\% \mathrm{\ (syst.)}$ for $\kappa_M$ among RC stars. We verify that the sample is nearly complete -- except for a dearth of stars with $\nu_{\mathrm{max}} \lesssim 10-20\mu$Hz -- by comparing to Galactic models and visual inspection. Our asteroseismic radii agree with radii derived from Gaia Data Release 2 parallaxes to within $2.2 \pm 0.3\%$ for RGB stars and $2.0 \pm 0.6\%$ for RC stars., Comment: Published in ApJS
- Published
- 2020
12. Chronos - take the pulse of our galactic neighbourhood. After Gaia: Time domain information, masses and ages for stars
- Author
-
Sébastien Deheuvels, Kevin Belkacem, T. L. Campante, Jérôme Ballot, Victor Silva Aguirre, D. Katz, B. Mosser, Andy Moya, Margarida S. Cunha, Hans Kjeldsen, Misha Haywood, Juan Carlos Suárez, Benoit Famaey, Rafael A. García, Mário J. P. F. G. Monteiro, R. Samadi, Eric Michel, Andrea Miglio, Michel E., Haywood M., Famaey B., Mosser B., Samadi R., Monteiro M.J.P.F.G., Kjeldsen H., Belkacem K., Miglio A., Garcia R., Katz D., Suarez J.C., Deheuvels S., Campante T., Cunha M., Aguirre V.S., Ballot J., and Moya A.
- Subjects
Red giant ,Computer science ,Milky Way ,Milky way galaxy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Stellar age estimation ,Observatory ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Seismology ,010308 nuclear & particles physics ,Astronomy ,Astronomy and Astrophysics ,Time domain astrophysics ,Galaxy ,Stars ,Stellar ages ,Stellar age ,13. Climate action ,Space and Planetary Science ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Understanding our Galaxy’s structure, formation, and evolution will, over the next decades, continue to benefit from the wonderful large survey by Gaia, for astrometric, kinematic, and spectroscopic characterization, and by large spectroscopic surveys for chemical characterization. The weak link for full exploitation of these data is age characterization, and stellar age estimation relies predominantly on mass estimates. The ideas presented in this White Paper shows that a seismology survey is the way out of this situation and a natural complement to existing and planned surveys. These ideas are strongly rooted in the past decade’s experience of the so-called Seismology revolution, initiated with CoRoT and Kepler. The case of red giant stars is used here as the best current illustration of what we can expect from seismology for large samples, but premises for similar developments exist in various other classes of stars covering other ranges of age or mass. Whatever the star considered, the first information provided by stellar pulsations is always related to the mean density and thus to the mass (and age). In order to satisfy the need for long-duration and allsky coverage, we rely on a new instrumental concept which decouples integration time and sampling time. We thus propose a long (~1 year) all-sky survey which would perfectly fit between TESS, PLATO, and the Rubin Observatory (previously known as LSST) surveys to offer a time domain complement to the current and planned astrometric and spectroscopic surveys. The fine characterization of host stars is also a key aspect for the interpretation and exploitation of the various projects – anticipated in the framework of the Voyage 2050 programme – searching for atmospheric characterization of terrestrial planets or, more specifically, looking for a signature of life, in distant planets.
- Published
- 2021
13. Mending the structural surface effect of 1D stellar structure models with non-solar metallicities based on interpolated 3D envelopes
- Author
-
George C. Angelou, Achim Weiss, Victor Silva Aguirre, and Andreas Christ Sølvsten Jørgensen
- Subjects
Physics ,010308 nuclear & particles physics ,Metallicity ,Asteroseismology ,interiors [Stars] ,FOS: Physical sciences ,Astronomy and Astrophysics ,Effective temperature ,Surface gravity ,01 natural sciences ,Exoplanet ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Stellar structure ,helioseismology [Sun] ,Astrophysics::Earth and Planetary Astrophysics ,Statistical physics ,atmospheres [Stars] ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
1D stellar evolution codes employ rudimentary treatments of turbulent convection. For stars with convective envelopes, this leads to systematic errors in the predicted oscillation frequencies needed for asteroseismology. One way of mending these structural inadequacies is through patching, whereby the outermost layers of 1D models are replaced by the mean stratifications from 3D simulations. In order to viably implement this approach in asteroseismic analysis, interpolation throughout precomputed 3D envelopes is required. We present a method that interpolates throughout precomputed 3D envelopes as a function of effective temperature, surface gravity, and metallicity. We conduct a series of validation tests that demonstrate that the scheme reliably and accurately reproduces the structures of stellar envelopes and apply our method to the Sun as well as two stars observed by Kepler. We parameterize the frequency shift that results from patching and show that the functional forms are evolutionary dependent. In addition we find that neglecting modal effects, such as non-adiabatic energetics, introduces systematic errors in asteroseimically obtained stellar parameters. Both these results suggest that a cautious approach is necessary when utilizing empirical surface corrections in lieu of patching models. Our results have important implications, particularly for characterizing exoplanet systems, where accuracy is of utmost concern., Comment: 17 pages, 14 figures
- Published
- 2019
14. Weighing stars from birth to death: mass determination methods across the HRD
- Author
-
Paul G. Beck, M. G. Pedersen, Maria Bergemann, Vincent Van Eylen, Ignasi Ribas, Conny Aerts, Ian Czekala, Nicolas Lodieu, Eline Tolstoy, Marie Martig, Nate Bastian, Benard Nsamba, Davide Gandolfi, Ana Escorza, Keivan G. Stassun, Aldo Serenelli, George C. Angelou, Y. Lebreton, J. M. Bestenlehner, A. Moya, Krešimir Pavlovski, Achim Weiss, M. M. Miller Bertolami, J. S. G. Mombarg, D. Baroch, Victor Silva Aguirre, Diane Feuillet, Fabian Schneider, Juan Carlos Morales, Konstanze Zwintz, Mark Gieles, Nancy Elias-Rosa, Léo Girardi, Pier-Emmanuel Tremblay, University of Leuven, University of Heidelberg, Ministerio de Ciencia, Innovación y Universidades (España), National Aeronautics and Space Administration (US), Alexander von Humboldt Foundation, European Commission, Royal Society (UK), German Research Foundation, Fundação para a Ciência e a Tecnologia (Portugal), Generalitat de Catalunya, Ministerio de Economía y Competitividad (España), Max Planck Society, Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), Max Planck Institute for Astronomy (MPIA), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Institute of Astronomy [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Radboud university [Nijmegen], Liverpool John Moores University (LJMU), Karl-Franzens-Universität Graz, Instituto de Astrofisica de Canarias (IAC), University of Sheffield [Sheffield], University of California, INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Institut d'Astronomie et d'Astrophysique [Bruxelles] (IAA), Université libre de Bruxelles (ULB), European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), University College of London [London] (UCL), Lund Observatory, Lund University [Lund], Università degli studi di Torino (UNITO), Universitat de Barcelona (UB), Institució Catalana de Recerca i Estudis Avançats (ICREA), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Universidad de La Laguna [Tenerife - SP] (ULL), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), Universidad Nacional de la Plata [Argentine] (UNLP), Universidad Politécnica de Madrid (UPM), University of Birmingham [Birmingham], Universidade do Porto, University of Zagreb, University of California [Santa Barbara] (UCSB), Heidelberger Institut für Theoretische Studien (H-ITS), Universität Heidelberg, Aarhus University [Aarhus], Vanderbilt University [Nashville], University of Groningen [Groningen], University of Warwick [Coventry], Universität Innsbruck [Innsbruck], A.S. acknowledges support from Grants ESP2017-82674-R and PID2019-108709GB-I00 (MICINN) and 2017-SGR-1131 (AGAUR). C.A., J.S.G.M., and M.G.P. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement no. 670519: MAMSIE) and from the KU Leuven Research Council (grant C16/18/005: PARADISE). M.B. is supported through the Lise Meitner grant from the Max Planck Society and acknowledges support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). V.S.A. acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B) and the Carlsberg foundation (Grant agreement CF19-0649). Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant agreement No. DNRF106). D.B., J.C.M., and I.R. acknowledge support from the Spanish Ministry of Science, Innovation and Universities (MICIU), and the Fondo Europeo de Desarrollo Regional (FEDER) through Grants ESP2016-80435-C2-1-R and PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya (CERCA programme). N.B. gratefully acknowledge financial support from the Royal Society (University Research Fellowships) and from the European Research Council (ERC-CoG-646928, Multi-Pop). A.E. acknowledges support from the Research Foundation Flanders (FWO) under contract ZKD1501-00-W01 (Grant no. 792848). D.K.F. acknowledges funds from the Alexander von Humboldt Foundation in the framework of the Sofia Kovalevskaja Award endowed by the Federal Ministry of Education and Research and grant 2016-03412 from the Swedish Research Council. D.G. gratefully acknowledges financial support from the CRT foundation under Grant no. 2018.2323 'Gaseous or rocky? Unveiling the nature of small worlds'. L.G. acknowledges funding from LSST-Italy and from project MITiC 2015. N.L. was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under Grant number AYA2015-69350-C3-2-P. A.M. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 749962 (project THOT). B.N. is supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) under Grant PD/BD/113744/2015 from PhD::SPACE, an FCT PhD program, and by the Alexander von Humboldt Foundation. Further support from FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia in the framework of the Project POCI-01-0145-FEDER-030389 is also acknowledged. K.P. acknowledges support from the Croatian Science Foundation (HRZZ research Grant IP-2014-09-8656). P-E.T. has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme n. 677706 (WD3D). The authors thank our colleagues G. Bono, T.L. Campante, M.S. Cunha, P. Das, C. Johnston, F. Kiefer, P. Maxted, M.J.P.F.G. Monteiro, Th. Rodrigues, V. Schaffenroth, M. Vučković for helpful comments and useful discussions. This work presents results from the European Space Agency (ESA) space mission Gaia and from the American National Aeronautics and Space Administration (NASA) space missions Kepler and TESS., Radboud University [Nijmegen], University of California (UC), Università degli studi di Torino = University of Turin (UNITO), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universidade do Porto = University of Porto, and University of California [Santa Barbara] (UC Santa Barbara)
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Astrophysics ,01 natural sciences ,planetary systems [Stars] ,Range (statistics) ,stellar content [Galaxy] ,Astrophysics::Solar and Stellar Astrophysics ,PRECISION RADIAL-VELOCITIES ,010303 astronomy & astrophysics ,QC ,Stars: fundamental parameters ,Complement (set theory) ,QB ,Physics ,Sequence ,Galaxy: stellar content ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,BROWN DWARF CANDIDATES ,Methods: numerical ,Asteroseismology ,Exoplanet ,Stars: evolution ,LINED SPECTROSCOPIC BINARIES ,Astrophysics - Solar and Stellar Astrophysics ,Physical Sciences ,INTERMEDIATE ASTROMETRIC DATA ,Determination methods ,Astrophysics::Earth and Planetary Astrophysics ,Solar and stellar Astrophysics ,FOS: Physical sciences ,evolution [Stars] ,Astronomy & Astrophysics ,fundamental parameters [Stars] ,binaries: eclipsing [Stars] ,Stars: planetary systems ,0103 physical sciences ,GALACTIC GLOBULAR-CLUSTERS ,Stars: binaries: eclipsing ,Stellar archaeology ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Science & Technology ,numerical [Methods] ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,FUNDAMENTAL STELLAR PARAMETERS ,Astronomy and Astrophysics ,TRANSITING EXTRASOLAR PLANETS ,COMMON ENVELOPE BINARY ,Astronomía ,Stars ,DETACHED ECLIPSING BINARIES ,RED GIANT BRANCH ,Space and Planetary Science - Abstract
The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 , 2] % for the covered mass range of M∈[0.1,16]M⊙, 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars., The authors are much indebted to all colleagues participating in the workshop, even though they were not involved in the textual contributions for this review paper. A.S. acknowledges support from Grants ESP2017-82674-R and PID2019-108709GB-I00 (MICINN) and 2017-SGR-1131 (AGAUR). C.A., J.S.G.M., and M.G.P. received funding from the European Research Council (ERC) under the European Union?s Horizon 2020 research and innovation programme (Grant agreement no.?670519: MAMSIE) and from the KU?Leuven Research Council (grant C16/18/005: PARADISE). M.B. is supported through the Lise Meitner grant from the Max Planck Society and acknowledges support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). V.S.A. acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B) and the Carlsberg foundation (Grant agreement CF19-0649). Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant agreement No.?DNRF106). D.B., J.C.M., and I.R. acknowledge support from the Spanish Ministry of Science, Innovation and Universities (MICIU), and the Fondo Europeo de Desarrollo Regional (FEDER) through Grants ESP2016-80435-C2-1-R and PGC2018-098153-B-C33, as well as the support of the Generalitat de Catalunya (CERCA programme). N.B. gratefully acknowledge financial support from the Royal Society (University Research Fellowships) and from the European Research Council (ERC-CoG-646928, Multi-Pop). A.E. acknowledges support from the Research Foundation Flanders (FWO) under contract ZKD1501-00-W01 (Grant no. 792848). D.K.F. acknowledges funds from the Alexander von Humboldt Foundation in the framework of the Sofia Kovalevskaja Award endowed by the Federal Ministry of Education and Research and grant 2016-03412 from the Swedish Research Council. D.G. gratefully acknowledges financial support from the CRT foundation under Grant no. 2018.2323 ?Gaseous or rocky? Unveiling the nature of small worlds ?. L.G. acknowledges funding from LSST-Italy and from project MITiC 2015. N.L. was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under Grant number AYA2015-69350-C3-2-P. A.M. acknowledges funding from the European Union?s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No?749962 (project THOT). B.N. is supported by Funda??o para a Ci?ncia e a Tecnologia (FCT, Portugal) under Grant PD/BD/113744/2015 from PhD::SPACE, an FCT PhD program, and by the Alexander von?Humboldt Foundation. Further support from FEDER ? Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 ? Operacional Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT ? Funda??o para a Ci?ncia e a Tecnologia in the framework of the Project POCI-01-0145-FEDER-030389 is also acknowledged. K.P. acknowledges support from the Croatian Science Foundation (HRZZ research Grant IP-2014-09-8656). P-E.T. has received funding from the European Research Council under the European Union?s Horizon 2020 research and innovation programme n.?677706 (WD3D). The authors thank our colleagues G.?Bono, T.L.?Campante, M.S.?Cunha, P. Das, C.?Johnston, F.?Kiefer, P.?Maxted, M.J.P.F.G.?Monteiro, Th.?Rodrigues, V. Schaffenroth, M. Vu?kovi? for helpful comments and useful discussions. This work presents results from the European Space Agency (ESA) space mission Gaia and from the American National Aeronautics and Space Administration (NASA) space missions Kepler and TESS.
- Published
- 2021
15. Updated BaSTI stellar evolution models and isochrones. II. α-enhanced Calculations
- Author
-
Santi Cassisi, Victor Silva Aguirre, Kuldeep Verma, A. Savino, Maurizio Salaris, Alessio Mucciarelli, Adriano Pietrinferni, Antonio Aparicio, Sebastian L. Hidalgo, Jason W. Ferguson, Pietrinferni A., Hidalgo S., Cassisi S., Salaris M., Savino A., Mucciarelli A., Verma K., Aguirre V.S., Aparicio A., Ferguson J.W., and GBR
- Subjects
Physics ,Population II star ,Halo star ,Enrichment ratio ,Metallicity ,Theoretical models ,FOS: Physical sciences ,Stellar population ,Astronomy and Astrophysics ,Astrophysics ,Stellar evolution ,Stellar physic ,Astrophysics - Solar and Stellar Astrophysics ,Stellar evolutionary track ,Space and Planetary Science ,Astronomy database ,Stellar physics ,Range (statistics) ,Heavy element ,Stellar evolutionary model ,Solar and Stellar Astrophysics (astro-ph.SR) ,QC ,QB - Abstract
This is the second paper of a series devoted to present an updated release of the BaSTI ( a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library. Following the publication of the updated solar scaled library, here we present the library for a $\alpha-$enhanced heavy element distribution. These new alpha-enhanced models account for all improvements and updates in the reference solar metal distribution and physics inputs, as in the new solar scaled library. The models cover a mass range between 0.1 and $15~M_{\odot}$, 18 metallicities between [Fe/H]=-3.20 and +0.06 with [alpha/Fe]=+0.4 , and a helium to metal enrichment ratio Delta{Y}\Delta{Z}=1.31. For each metallicity, He-enhanced stellar models are also provided. The isochrones cover (typically) an age range between 20Myr and 14.5Gyr, including consistently the pre-main sequence phase. Asteroseismic properties of the theoretical models have also been calculated. Models and isochrones have been compared with results from independent calculations, with the previous BaSTI release, and also with selected observations, to test the accuracy/reliability of these new calculations. All stellar evolution tracks, asteroseismic properties and isochrones are made publicly available at http://basti-iac.oa-teramo.inaf.it, Comment: 24 pages, 18 figures, The Astrophysical Journal, in press
- Published
- 2021
16. On the impact of the structural surface effect on global stellar properties and asteroseismic analyses
- Author
-
Richard Scuflaire, George C. Angelou, Andrea Miglio, Achim Weiss, Arlette Noels, Jakob Rørsted Mosumgaard, Victor Silva Aguirre, Andreas Christ Sølvsten Jørgensen, Josefina Montalbán, Jorgensen A.C.S., Montalban J., Angelou G.C., Miglio A., Weiss A., Scuflaire R., Noels A., Mosumgaard J.R., and Aguirre V.S.
- Subjects
Monte Carlo method ,statistical [methods] ,FOS: Physical sciences ,Stratification (water) ,asteroseismology ,stars: interiors ,01 natural sciences ,Asteroseismology ,stars: atmosphere ,Mixing length model ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Stellar structure ,Boundary value problem ,Statistical physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,atmospheres [stars] ,interiors [stars] ,methods: statistical ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics - Abstract
In a series of papers, we have recently demonstrated that it is possible to construct stellar structure models that robustly mimic the stratification of multi-dimensional radiative magneto-hydrodynamic simulations at every time-step of the computed evolution. The resulting models offer a more realistic depiction of the near-surface layers of stars with convective envelopes than parameterizations, such as mixing length theory, do. In this paper, we explore how this model improvement impacts on seismic and non-seismic properties of stellar models across the Hertzsprung-Russell diagram. We show that the improved description of the outer boundary layers alters the predicted global stellar properties at different evolutionary stages. In a hare and hound exercise, we show that this plays a key role for asteroseismic analyses, as it, for instance, often shifts the inferred stellar age estimates by more than 10 per cent. Improper boundary conditions may thus introduce systematic errors that exceed the required accuracy of the PLATO space mission. Moreover, we discuss different approximations for how to compute stellar oscillation frequencies. We demonstrate that the so-called gas $\Gamma_1$ approximation performs reasonably well for all main-sequence stars. Using a Monte Carlo approach, we show that the model frequencies of our hybrid solar models are consistent with observations within the uncertainties of the global solar parameters when using the so-called reduced $\Gamma_1$ approximation., Comment: Submitted to MNRAS
- Published
- 2021
17. Prospects for Galactic and stellar astrophysics with asteroseismology of giant stars in the TESS continuous viewing zones and beyond
- Author
-
Jennifer L. van Saders, Léo Girardi, Johanna Teske, Emma Willett, Dennis Stello, Tiago L. Campante, M. Vrard, William J. Chaplin, Marc H. Pinsonneault, Savita Mathur, Andreas Christ Sølvsten Jørgensen, Paul G. Beck, Andrea Miglio, Martin Bo Nielsen, B. Mosser, Aldo Serenelli, Thaíse S. Rodrigues, Rafael A. García, Maria Bergemann, Josefina Montalbán, Jamie Tayar, Oliver J. Hall, Sarbani Basu, Luca Casagrande, Domenico Nardiello, Yvonne Elsworth, Rachael L. Beaton, Saniya Khan, Warrick H. Ball, Christina Chiappini, Victor Silva Aguirre, J. Ted Mackereth, Diego Bossini, Government of Canada, University of Toronto, Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Australian Research Council, Generalitat de Catalunya, National Aeronautics and Space Administration (US), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Mackereth, Ted, Miglio, Andrea, Elsworth, Yvonne, Mosser, Benoit, Mathur, Savita, Garcia, Rafael A, Nardiello, Domenico, Hall, Oliver J, Vrard, Mathieu, Ball, Warrick H, Basu, Sarbani, Beaton, Rachael L, Beck, Paul G, Bergemann, Maria, Bossini, Diego, Casagrande, Luca, Campante, Tiago L, Chaplin, William J, Chiappini, Cristina, Girardi, Léo, Jørgensen, Andreas Christ Sølvsten, Khan, Saniya, Montalbán, Josefina, Nielsen, Martin B, Pinsonneault, Marc H, Rodrigues, Thaíse S, Serenelli, Aldo, Silva Aguirre, Victor, Stello, Denni, Tayar, Jamie, Teske, Johanna, van Saders, Jennifer L, and Willett, Emma
- Subjects
Red giant ,Star (game theory) ,Milky Way ,oscillations [Stars] ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Asteroseismology ,fundamental parameters [Stars] ,0103 physical sciences ,Stars: oscillations ,Astrophysics::Solar and Stellar Astrophysics ,Asymptotic giant branch ,stellar content [Galaxy] ,010303 astronomy & astrophysics ,Galaxy: structure ,Astrophysics::Galaxy Astrophysics ,Stars: fundamental parameters ,Physics ,Galaxy: stellar content ,stars: oscillation ,010308 nuclear & particles physics ,Star formation ,Galaxy: fundamental parameter ,fundamental parameters [Galaxy] ,Astronomy and Astrophysics ,stars: fundamental parameter ,Galaxy: fundamental parameters ,kinematics and dynamics [Galaxy] ,Giant star ,Astrophysics - Astrophysics of Galaxies ,Stars ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,Galaxy: kinematics and dynamic ,Astrophysics::Earth and Planetary Astrophysics ,Galaxy: kinematics and dynamics ,structure [Galaxy] - Abstract
Mackereth, J. Ted, et al., The NASA Transiting Exoplanet Survey Satellite (NASA-TESS) mission presents a treasure trove for understanding the stars it observes and the Milky Way, in which they reside. We present a first look at the prospects for Galactic and stellar astrophysics by performing initial asteroseismic analyses of bright (G < 11) red giant stars in the TESS southern continuous viewing zone (SCVZ). Using three independent pipelines, we detect νmax and Δν in 41 per cent of the 15 405 star parent sample (6388 stars), with consistency at a level of ∼2 per cent in νmax and ∼5 per cent in Δν. Based on this, we predict that seismology will be attainable for ∼3 × 105 giants across the whole sky and at least 104 giants with ≥1 yr of observations in the TESS-CVZs, subject to improvements in analysis and data reduction techniques. The best quality TESS-CVZ data, for 5574 stars where pipelines returned consistent results, provide high-quality power spectra across a number of stellar evolutionary states. This makes possible studies of, for example, the asymptotic giant branch bump. Furthermore, we demonstrate that mixed ℓ = 1 modes and rotational splitting are cleanly observed in the 1-yr data set. By combining TESS-CVZ data with TESS-HERMES, SkyMapper, APOGEE, and Gaia, we demonstrate its strong potential for Galactic archaeology studies, providing good age precision and accuracy that reproduces well the age of high [α/Fe] stars and relationships between mass and kinematics from previous studies based on e.g. Kepler. Better quality astrometry and simpler target selection than the Kepler sample makes this data ideal for studies of the local star formation history and evolution of the Galactic disc. These results provide a strong case for detailed spectroscopic follow-up in the CVZs to complement that which has been (or will be) collected by current surveys., JTM and AM acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. n. 772293). JTM acknowledges support from the Banting Postdoctoral Fellowship programme administered by the Government of Canada, and a CITA/Dunlap Institute fellowship. The Dunlap Institute is funded through an endowment established by the David Dunlap family and the University of Toronto. SM acknowledges support from the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. RAG acknowledges the support from the PLATO CNES grant. DB acknowledges supported by FCT through the research grants UIDB/04434/2020, UIDP/04434/2020, and PTDC/FIS-AST/30389/2017, and by FEDER – Fundo Europeu de Desenvolvimento Regional through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (grant: POCI-01-0145-FEDER-030389). LC acknowledges support from the Australian Research Council grant FT160100402. TC acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 792848 (PULSATION). AS is partially supported by grants ESP2017-82674-R (Spanish Government) and 2017-SGR-1131 (Generalitat de Catalunya). MHP and MV acknowledge support from NASA grant 80NSSC18K1582.
- Published
- 2021
18. Chronos - take the pulse of our galactic neighbourhood
- Author
-
Eric Michel, Misha Haywood, Benoit Famaey, Benoit Mosser, Reza Samadi, Mario J.P.F.G. Monteiro, Hans Kjeldsen, Kevin Belkacem, Andréa Miglio, Rafael Garcia, David Katz, Juan Carlos Suarez, Sébastien Deheuvels, Tiago Campante, Margarida Cunha, Victor Silva Aguirre, Jerôme Ballot & Andy Moya
- Published
- 2021
- Full Text
- View/download PDF
19. Robust asteroseismic properties of the bright planet host HD 38529
- Author
-
William J. Chaplin, Sibel Örtel, Stephen R. Kane, Tiago L. Campante, Rafael A. García, Savita Mathur, Jakob Rørsted Mosumgaard, Joel Ong, Warrick H. Ball, B. Mosser, M. Deal, M. S. Cunha, Amalie Stokholm, Keivan G. Stassun, Ângela R. G. Santos, Sarbani Basu, Daniel Huber, Martin Bo Nielsen, Victor Silva Aguirre, Benard Nsamba, Derek Buzasi, Z. Çelik Orhan, L. González-Cuesta, Mutlu Yildiz, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and Ege Üniversitesi
- Subjects
oscillations [stars] ,media_common.quotation_subject ,Brown dwarf ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,media_common ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,Subgiant ,Astronomy and Astrophysics ,Radius ,Exoplanet ,Orbit ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,stars: individual (HD 38529) ,13. Climate action ,Space and Planetary Science ,Sky ,individual (HD 38529) [stars] ,stars: oscillations ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Transiting Exoplanet Survey Satellite (TESS) is recording short-cadence, high duty-cycle timeseries across most of the sky, which presents the opportunity to detect and study oscillations in interesting stars, in particular planet hosts. We have detected and analysed solar-like oscillations in the bright G4 subgiant HD 38529, which hosts an inner, roughly Jupiter-mass planet on a 14.3d orbit and an outer, low-mass brown dwarf on a 2136 d orbit. We combine results frommultiple stellarmodelling teams to produce robust asteroseismic estimates of the star's properties, including its mass M = 1.48 +/- 0.04 M-circle dot, radius R = 2.68 +/- 0.03 R-circle dot, and age t = 3.07 +/- 0.39 Gyr. Our results confirm that HD 38529 has a mass near the higher end of the range that can be found in the literature and also demonstrate that precise stellar properties can be measured given shorter timeseries than produced by CoRoT, Kepler, or K2., UK Science and Technology Facilities Council (STFC)UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/R0023297/1]; Danish National Research FoundationDanmarks Grundforskningsfond [DNRF106]; grant FPI-SO from the Spanish Ministry of Economy and Competitiveness (MINECO) [SEV-2015-0548-17-2, BES-2017-082610]; Spanish Ministry with the Ramon y Cajal fellowship [RYC-2015-17697]; NASANational Aeronautics & Space Administration (NASA) [NNX17AF27G, NNX16AI09G, 80NSSC19K0374]; TESS GI Program under NASA [80NSSC18K1585, 80NSSC19K0385]; Carlsberg FoundationCarlsberg Foundation [CF19-0649]; Independent Research Fund Denmark [7027-00096B]; Alexander von Humboldt Foundation at the Max-Planck-Institut fur Astrophysik; national funds through Fundacao para a Ciencia e Tecnologia (FCT); FCT/MCTES through national funds (PIDDAC) [UIDB/04434/2020, UIDP/04434/2020, PTDC/FIS-AST/30389/2017]; Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020: Programa Operacional Competitividade e Internacionalizacao [POCI01-0145-FEDER-030389]; European Union's Horizon 2020 research and innovation programme under the H2020 Marie Sklodowska-Curie Actions grant [792848]; Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TUBITAK:118F352]; NASA Explorer ProgramNational Aeronautics & Space Administration (NASA); PLATO-CNES grant, WHB, WJC, and MBN thank the UK Science and Technology Facilities Council (STFC) for support under grant ST/R0023297/1. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant DNRF106). LGC thanks the support from grant FPI-SO from the Spanish Ministry of Economy and Competitiveness (MINECO; research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610). SM acknowledges support from the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. ARGS acknowledges the support from NASA under grant NNX17AF27G. RAG acknowledges the support of the PLATO-CNES grant. DLB acknowledges support from the TESS GI Program under NASA awards 80NSSC18K1585 and 80NSSC19K0385. JRM acknowledges support from the Carlsberg Foundation (grant CF19-0649). VSA acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B). BN acknowledges postdoctoral funding from the Alexander von Humboldt Foundation taken at the Max-Planck-Institut fur Astrophysik. MSC and MD are supported in the form of work contracts funded by national funds through Fundacao para a Ciencia e Tecnologia (FCT). MSC and MD acknowledge support by FCT/MCTES through national funds (PIDDAC) by grants UIDB/04434/2020, UIDP/04434/2020, and PTDC/FIS-AST/30389/2017 and by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE2020: Programa Operacional Competitividade e Internacionalizacao by grant POCI01-0145-FEDER-030389. TC acknowledges support from the European Union's Horizon 2020 research and innovation programme under the H2020 Marie Sklodowska-Curie Actions grant 792848 (PULSATION). SB acknowledges NASA grants NNX16AI09G and 80NSSC19K0374. ZCO, MY, and SO acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK:118F352) This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Funding for the TESS mission is provided by the NASA Explorer Program. Calculations in this paper had used the University of Birmingham's BlueBEAR High-Performance Computing service.1
- Published
- 2020
20. Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi
- Author
-
William J. Chaplin, Aldo M. Serenelli, Andrea Miglio, Thierry Morel, J. Ted Mackereth, Fiorenzo Vincenzo, Hans Kjeldsen, Sarbani Basu, Warrick H. Ball, Amalie Stokholm, Kuldeep Verma, Jakob Rørsted Mosumgaard, Victor Silva Aguirre, Anwesh Mazumdar, Pritesh Ranadive, H. M. Antia, Yveline Lebreton, Joel Ong, Thierry Appourchaux, Timothy R. Bedding, Jørgen Christensen-Dalsgaard, Orlagh Creevey, Rafael A. García, Rasmus Handberg, Daniel Huber, Steven D. Kawaler, Mikkel N. Lund, Travis S. Metcalfe, Keivan G. Stassun, Michäel Bazot, Paul G. Beck, Keaton J. Bell, Maria Bergemann, Derek L. Buzasi, Othman Benomar, Diego Bossini, Lisa Bugnet, Tiago L. Campante, Zeynep Çelik Orhan, Enrico Corsaro, Lucía González-Cuesta, Guy R. Davies, Maria Pia Di Mauro, Ricky Egeland, Yvonne P. Elsworth, Patrick Gaulme, Hamed Ghasemi, Zhao Guo, Oliver J. Hall, Amir Hasanzadeh, Saskia Hekker, Rachel Howe, Jon M. Jenkins, Antonio Jiménez, René Kiefer, James S. Kuszlewicz, Thomas Kallinger, David W. Latham, Mia S. Lundkvist, Savita Mathur, Josefina Montalbán, Benoit Mosser, Andres Moya Bedón, Martin Bo Nielsen, Sibel Örtel, Ben M. Rendle, George R. Ricker, Thaíse S. Rodrigues, Ian W. Roxburgh, Hossein Safari, Mathew Schofield, Sara Seager, Barry Smalley, Dennis Stello, Róbert Szabó, Jamie Tayar, Nathalie Themeßl, Alexandra E. L. Thomas, Roland K. Vanderspek, Walter E. van Rossem, Mathieu Vrard, Achim Weiss, Timothy R. White, Joshua N. Winn, Mutlu Yıldız, European Commission, European Research Council, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, Chaplin W.J., Serenelli A.M., Miglio A., Morel T., Mackereth J.T., Vincenzo F., Kjeldsen H., Basu S., Ball W.H., Stokholm A., Verma K., Mosumgaard J.R., Silva Aguirre V., Mazumdar A., Ranadive P., Antia H.M., Lebreton Y., Ong J., Appourchaux T., Bedding T.R., Christensen-Dalsgaard J., Creevey O., Garcia R.A., Handberg R., Huber D., Kawaler S.D., Lund M.N., Metcalfe T.S., Stassun K.G., Bazot M., Beck P.G., Bell K.J., Bergemann M., Buzasi D.L., Benomar O., Bossini D., Bugnet L., Campante T.L., Orhan Z.C., Corsaro E., Gonzalez-Cuesta L., Davies G.R., Di Mauro M.P., Egeland R., Elsworth Y.P., Gaulme P., Ghasemi H., Guo Z., Hall O.J., Hasanzadeh A., Hekker S., Howe R., Jenkins J.M., Jimenez A., Kiefer R., Kuszlewicz J.S., Kallinger T., Latham D.W., Lundkvist M.S., Mathur S., Montalban J., Mosser B., Bedon A.M., Nielsen M.B., Ortel S., Rendle B.M., Ricker G.R., Rodrigues T.S., Roxburgh I.W., Safari H., Schofield M., Seager S., Smalley B., Stello D., Szabo R., Tayar J., Themessl N., Thomas A.E.L., Vanderspek R.K., van Rossem W.E., Vrard M., Weiss A., White T.R., Winn J.N., Yildiz M., Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Psychology, St John's University, Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), School of Physics and Astronomy, University of Birmingham [Birmingham], Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Danish AsteroSeismology Centre (DASC), Aarhus University [Aarhus], Department of Astronomy, Yale University [New Haven], Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Sydney Institute for Astronomy (SIfA), The University of Sydney, Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Research institute of Computer Vision and Robotics [Girona] (VICOROB), Universitat de Girona (UdG), Department of Physics and Astronomy [Aarhus], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa City], Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), Centre for Automation and Robotics (CAR), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Politécnica de Madrid (UPM), Kiepenheuer-Institut für Sonnenphysik (KIS), Stellar Astrophysics Centre [Aarhus] (SAC), Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), High Altitude Observatory (HAO), National Center for Atmospheric Research [Boulder] (NCAR), Département des Sciences et Gestion de l'Environnement/Océanologie [Liège], Université de Liège, Center for Space Research [Cambridge] (CSR), Massachusetts Institute of Technology (MIT), High Speed Networks Laboratory, Dept. of Telecommunications and Media Informatics, Budapest University of Technology and Economics [Budapest] (BME), Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), Observatoire de Paris, Université Paris sciences et lettres (PSL), Ege Üniversitesi, CERFACS [Toulouse], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Universidad Politécnica de Madrid (UPM)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), PSL Research University (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, and COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Milky Way ,Population ,GAIA ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,MASS ,CHEMICAL-COMPOSITION ,Q1 ,01 natural sciences ,Asteroseismology ,0103 physical sciences ,QB460 ,Satellite galaxy ,STELLAR HALOES ,Astrophysics::Solar and Stellar Astrophysics ,10. No inequality ,education ,010303 astronomy & astrophysics ,QB600 ,QC ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Dwarf galaxy ,QB ,Physics ,[PHYS]Physics [physics] ,education.field_of_study ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,ACCRETION HISTORY ,Astronomy and Astrophysics ,DISC ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,MODEL ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,DARK-MATTER HALOES ,ROTATION ,Halo ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,SOLAR-LIKE OSCILLATIONS ,QB799 - Abstract
This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). et al., Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a population of stars that were accreted via the collision of a dwarf galaxy, called Gaia–Enceladus, leading to substantial pollution of the chemical and dynamical properties of the Milky Way. Here we identify the very bright, naked-eye star ν Indi as an indicator of the age of the early in situ population of the Galaxy. We combine asteroseismic, spectroscopic, astrometric and kinematic observations to show that this metal-poor, alpha-element-rich star was an indigenous member of the halo, and we measure its age to be 11.0±0.7 (stat) ±0.8 (sys) billion years. The star bears hallmarks consistent with having been kinematically heated by the Gaia–Enceladus collision. Its age implies that the earliest the merger could have begun was 11.6 and 13.2 billion years ago, at 68% and 95% confidence, respectively. Computations based on hierarchical cosmological models slightly reduce the above limits., J.M. acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement number 772293). A.M.S. is partially supported by the Spanish Government (ESP2017-82674-R) and Generalitat de Catalunya (2017-SGR-1131). T.L.C. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 792848 (PULSATION). K.J.B., S.H., J.S.K. and N.T. are supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 338251 (StellarAges). E.C. is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 664931. L.G.-C. acknowledges support from the MINECO FPI-SO doctoral research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610. S.M. acknowledges support from the Spanish ministry through the Ramon y Cajal fellowship number RYC-2015-17697. This work was supported by FEDER through COMPETE2020 (POCI-01-0145-FEDER-030389. A.M.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 749962 (project THOT).
- Published
- 2020
21. TOI-257b (HD 19916b): A Warm sub-Saturn Orbiting an Evolved F-type Star
- Author
-
Andrés Jordán, Derek Buzasi, K. I. Collins, Joshua Pepper, Jon M. Jenkins, Alexander Lyttle, Martin Schlecker, Ismael Mireles, Sara Seager, Brett C. Addison, Andrea Miglio, Jack Okumura, Savita Mathur, Christopher Tylor, Daniel R. Hey, Victor Silva Aguirre, Zhao Guo, Tansu Daylan, Paula Sarkis, Mikkel N. Lund, J. S. Bentley, Martin Bo Nielsen, Joshua E. Schlieder, Keivan G. Stassun, Aldo Serenelli, Jonathan Horner, Stephen R. Kane, Tiago L. Campante, B. D. Carter, Joshua N. Winn, Hui Zhang, Diana Kossakowski, Thomas Henning, Brendan P. Bowler, Rasmus Handberg, Jake T. Clark, Warrick H. Ball, Matthew W. Mengel, Pamela Rowden, L. González-Cuesta, Karen A. Collins, Andrew W. Mann, Nicholas M. Law, John F. Kielkopf, B. Mosser, Daniel Huber, Ian J. M. Crossfield, Mathieu Clerte, Michaela Collins, Ashley Chontos, Songhu Wang, Belinda A. Nicholson, Pascal Torres, Thomas Kallinger, Robert A. Wittenmyer, Stephen C. Marsden, Andrew Vanderburg, Dag Evensberget, N. Themeßl, Rachel A. Matson, José Dias do Nascimento, David W. Latham, Cenk Kayhan, Timothy R. Bedding, Allen B. Davis, Emilie Laychock, J. O'Connor, Néstor Espinoza, B. Cale, Andrius Burnelis, S. Hekker, Steven D. Kawaler, Avi Shporer, Duncan J. Wright, Sarbani Basu, Peter Plavchan, James S. Kuszlewicz, Guy R. Davies, Teo Mocnik, Leandro de Almeida, Jason D. Eastman, Carl Ziegler, Rafael Brahm, Enrico Corsaro, William J. Chaplin, C. G. Tinney, Catherine Stevens, Rafael A. García, Sergi Blanco-Cuaresma, Steve B. Howell, Alexis Heitzmann, Roland Vanderspek, Thiam-Guan Tan, George R. Ricker, Addison, Brett C, Wright, Duncan J, Nicholson, Belinda A, Cale, Bryson, Mocnik, Teo, Huber, Daniel, Plavchan, Peter, Wittenmyer, Robert A, Vanderburg, Andrew, Chaplin, William J, Chontos, Ashley, Clark, Jake T, Eastman, Jason D, Ziegler, Carl, Brahm, Rafael, Carter, Bradley D, Clerte, Mathieu, Espinoza, Néstor, Horner, Jonathan, Bentley, John, Jordán, André, Kane, Stephen R, Kielkopf, John F, Laychock, Emilie, Mengel, Matthew W, Okumura, Jack, Stassun, Keivan G, Bedding, Timothy R, Bowler, Brendan P, Burnelis, Andriu, Blanco-Cuaresma, Sergi, Collins, Michaela, Crossfield, Ian, Davis, Allen B, Evensberget, Dag, Heitzmann, Alexi, Howell, Steve B, Law, Nichola, Mann, Andrew W, Marsden, Stephen C, Matson, Rachel A, O’Connor, James H, Shporer, Avi, Stevens, Catherine, Tinney, C G, Tylor, Christopher, Wang, Songhu, Zhang, Hui, Henning, Thoma, Kossakowski, Diana, Ricker, George, Sarkis, Paula, Schlecker, Martin, Torres, Pascal, Vanderspek, Roland, Latham, David W, Seager, Sara, Winn, Joshua N, Jenkins, Jon M, Mireles, Ismael, Rowden, Pam, Pepper, Joshua, Daylan, Tansu, Schlieder, Joshua E, Collins, Karen A, Collins, Kevin I, Tan, Thiam-Guan, Ball, Warrick H, Basu, Sarbani, Buzasi, Derek L, Campante, Tiago L, Corsaro, Enrico, González-Cuesta, L, Davies, Guy R, de Almeida, Leandro, do Nascimento, Jose-Dia, García, Rafael A, Guo, Zhao, Handberg, Rasmu, Hekker, Saskia, Hey, Daniel R, Kallinger, Thoma, Kawaler, Steven D, Kayhan, Cenk, S. Kuszlewicz, Jame, Lund, Mikkel N, Lyttle, Alexander, Mathur, Savita, Miglio, Andrea, Mosser, Benoit, Nielsen, Martin B, Serenelli, Aldo M, Aguirre, Victor Silva, Themeßl, Nathalie, National Aeronautics and Space Administration (US), National Science Foundation (US), Danish National Research Foundation, National Natural Science Foundation of China, Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, European Commission, Centre National D'Etudes Spatiales (France), Ministerio de Economía y Competitividad (España), Kavli Institute for Theoretical Physics, Independent Research Fund Denmark, Carlsberg Foundation, Addison, Brett C., Wright, Duncan J., Nicholson, Belinda A., Wittenmyer, Robert A., Chaplin, William J., Clark, Jake T., Eastman, Jason D., Carter, Bradley D., Kane, Stephen R., Kielkopf, John F., Mengel, Matthew W., Stassun, Keivan G., Bedding, Timothy R., Bowler, Brendan P., Davis, Allen B., Howell, Steve B., Mann, Andrew W., Marsden, Stephen C., Matson, Rachel A., O'Connor, Jame, Tinney, C. G., Latham, David W., Winn, Joshua N., Jenkins, Jon M., Schlieder, Joshua E., Collins, Karen A., Collins, Kevin I., Ball, Warrick H., Buzasi, Derek L., Campante, Tiago L., González-Cuesta, Lucía, Davies, Guy R., do Nascimento, Jose-Dias, Jr., García, Rafael A., Hey, Daniel R., Kawaler, Steven D., Kuszlewicz, James S., Lund, Mikkel N., Nielsen, Martin B., Serenelli, Aldo M., and Silva Aguirre, Victor
- Subjects
astro-ph.SR ,Star (game theory) ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,asteroseismology ,Type (model theory) ,01 natural sciences ,Asteroseismology ,spectroscopic [Techniques] ,techniques: photometric ,stars: individual (TIC 200723869/TOI-257) ,0103 physical sciences ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,individual (TIC 200723869/TOI-257) [Stars] ,radial velocities [Techniques] ,010308 nuclear & particles physics ,photometric [Techniques] ,techniques: radial velocitie ,Astronomy and Astrophysics ,Planetary system ,planetary system ,Exoplanet ,Radial velocity ,Stars ,Planetary systems ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Techniques: radial velocities ,astro-ph.EP ,techniques: spectroscopic ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 M J (43.9 ± 7.3, M⊕), a radius of RP = 0.639 ± 0.013 R J (7.16 ± 0.15, R ⊕), bulk density of 0.65+0.12-0.11 (cgs), and period 18.38818 +0.00085 -0.00084 days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M∗ = 1.390 ± 0.046 rm M sun, R∗ = 1.888 ± 0.033 Rsun, Teff = 6075 ± 90 rm K, and vsin i = 11.3 ± 0.5 km s-1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems., Daniel Huber acknowledges support by the National Aeronautics and Space Administration through the TESS Guest Investigator Program (80NSSC18K1585) and by the National Science Foundation (AST-1717000). Ashley Chontos acknowledges support from the National Science Foundation through the Graduate Research Fellowship Program (DGE 1842402). William J. Chaplin, Warrick H. Ball, Martin B. Nielsen, and Andrea Miglio. acknowledge support from the Science and Technology Facilities Council and UK Space Agency. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). Rafael Brahm acknowledges support from National Fund for Scientific and Technological Development Post-doctoral Fellowship Project 3180246, and from the Millennium Institute of Astrophysics (MAS). H.Z. Hui Zhang is supported by the Natural Science Foundation of China (NSFC grants 11673011, 11933001). Andres Jordan acknowledges support from FONDECYT project 1171208 and by the Ministry for the Economy, Development, and Tourism’s Programa Iniciativa Científica Milenio through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS). Aldo M. Serenelli is partially supported by grants ESP2017-82674-R (Spanish Government) and 2017-SGR-1131 (Generalitat de Catalunya). Andrea Miglio acknowledges support from the European Research Council Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. number 772293). Rafael A. Garcia acknowledges the support of the PLAnetary Transits and Oscillations of stars grant from the Centre National d'Études Spatiales. Savita Mathur acknowledges support from the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. Tiago L. Campante acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 792848 (PULSATION). This work was supported by Foundation of Science and Technology/Ministry of Science, Technology and Higher Education through national funds (UID/FIS/04434/2019). Enrico Corsaro is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 664931. L. González-Cuesta thanks the support from grant FPI-SO from the Spanish Ministry of Economy and Competitiveness (MINECO) (research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610). Sarbani Basu acknowledges NASA grant NNX16AI09G and NSF grant AST-1514676. Ian J. M. Crossfield acknowledges support from the NSF through grant AST-1824644, and from NASA through Caltech/JPL grant RSA-1610091. Tansu Daylan acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. Derek L. Buzasi acknowledges support from NASA through the TESS Guest Investigator program (80NSSC19K0385). Cenk Kayhan acknowledges support by Erciyes University Scientific Research Projects Coordination Unit under grant number MAP-2020-9749. Emilie Laychock and Michaela Collins acknowledge support by the National Science Foundation under grant 1559487. Victor Silva Aguirre acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B) and the Carlsberg Foundation (grant agreement CF19-0649).
- Published
- 2020
- Full Text
- View/download PDF
22. Asteroseismic radii of dwarfs: new accuracy constraints from Gaia DR2 parallaxes
- Author
-
Victor Silva Aguirre and Christian L. Sahlholdt
- Subjects
Offset (computer science) ,fundamental parameters [stars] ,KEPLER ,FOS: Physical sciences ,asteroseismology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Asteroseismology ,0103 physical sciences ,OSCILLATIONS ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Scaling ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,SOLAR-TYPE ,Astronomy and Astrophysics ,Negative bias ,AGES ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,STARS - Abstract
Precise stellar masses and radii can be determined using asteroseismology, but their accuracy must be tested against independent estimates. Using radii derived from Gaia DR2 parallaxes, we test the accuracy of asteroseismic radii for a sample of 93 dwarfs based on both individual frequency fitting and the seismic scaling relations. Radii from frequency fitting are about 1 per cent smaller than Gaia radii on average; however, this difference may be explained by a negative bias of 30 $\mu$as in the Gaia parallaxes. This indicates that the radii derived from frequency fitting are accurate to within 1 per cent. The scaling relations are found to overestimate radii by more than 5 per cent, compared to the Gaia radii, at the highest temperatures. We demonstrate that this offset is reduced to 3 per cent after applying corrections based on model frequencies to the scaling relation for $\Delta\nu$, but only when the model frequencies are corrected for the surface effect. With corrections to $\Delta\nu$, the scaling relation gives radii accurate to about 2--3 per cent for dwarfs in the temperature range $5400$--$6700$ K. The remaining offset at the highest temperatures may indicate the need for a correction to the scaling relation for $\nu_{\mathrm{max}}$., Comment: 5 pages, 4 figures, MNRAS Letter
- Published
- 2018
23. Coupling 1D stellar evolution with 3D-hydrodynamical simulations on the fly – I. A new standard solar model
- Author
-
Achim Weiss, Andreas Christ Sølvsten Jørgensen, Victor Silva Aguirre, J. R. Mosumgaard, and Jørgen Christensen-Dalsgaard
- Subjects
Physics ,Coupling ,Convection ,Standard solar model ,010308 nuclear & particles physics ,Oscillation ,interiors [Stars] ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,evolution [Sun] ,Computational physics ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Stellar structure ,helioseismology [Sun] ,Boundary value problem ,atmospheres [Stars] ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Standard 1D stellar evolution models do not correctly reproduce the structure of the outermost layers of stars with convective envelopes. This has been a long-standing problem in stellar modelling affecting both the predicted evolutionary paths and the attributed oscillation frequencies, and indirectly biasing numerous quantities derived from stellar evolution calculations. We present a novel method that mostly eliminates these structural defects by appending mean 3D simulations of stellar envelopes. In contrast to previous attempts we impose the complete structure derived from 3D simulations at each time step during the entire evolution. For this purpose, we interpolate in grids of pre-computed 3D simulations and use the resulting structure as boundary conditions, in order to solve the stellar structure equations for the 1D interior at each time step. Our method provides a continuous transition in many quantities from the interior to the imposed interpolated 3D surface layers. We present a solar calibration model and show that the obtained structure of the surface layers reliably mimics that of the underlying 3D simulations for the present Sun. Moreover, we perform a helioseismic analysis, showing that our method mostly eliminates the structural contribution to the discrepancy between model frequencies and observed p-mode frequencies., 5 pages, 5, figures, MNRAS Letter
- Published
- 2018
24. Age-dating Red Giant Stars Associated with Galactic Disk and Halo Substructures
- Author
-
Victor Silva Aguirre, Daniel Huber, Adrian M. Price-Whelan, Jamie Tayar, Joel C. Zinn, Ruth Angus, Nicholas Saunders, Sarah L. Martell, Marc Hon, Amalie Stokholm, Benoit Mosser, Emily C. Cunningham, Earl P. Bellinger, J. L. Rørsted, and Samuel K. Grunblatt
- Subjects
SOLAR NEIGHBORHOOD ,Stellar kinematics ,Red giant ,DATA RELEASE ,Milky Way ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,ABUNDANCES ,OSCILLATIONS ,Astrophysics::Solar and Stellar Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Dwarf galaxy ,Physics ,Science & Technology ,STELLAR HALO ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ASTEROSEISMOLOGY ,Accretion (astrophysics) ,Galaxy ,GAIA DR2 ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Physical Sciences ,MILKY ,POPULATIONS ,Astrophysics::Earth and Planetary Astrophysics ,Halo ,SCALING RELATION - Abstract
The vast majority of Milky Way stellar halo stars were likely accreted from a small number ($\lesssim$3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained, relying predominantly on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be associated with the stellar halo, a subset of which are associated with the Gaia-Enceladus-Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined by this work, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia-Enceladus-Sausage stars in our sample of 8 $\pm$ 3 (stat.) $\pm$ 1 (sys.) Gyr. We also determine hierarchical ages for the populations of Gaia-Enceladus-Sausage, in situ halo and disk stars, finding a Gaia-Enceladus-Sausage population age of 8.0$^{+3.2}_{-2.3}$ Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near future., 28 pages, 21 figures. Published by AAS Journals
- Published
- 2021
25. TESS asteroseismology of the known red-giant host stars HD 212771 and HD 203949
- Author
-
Filipe Pereira, S. G. Sousa, Daniel Huber, S. Stock, James S. Kuszlewicz, Marc Hon, Mário J. P. F. G. Monteiro, Stephen R. Kane, Rafael A. García, Vardan Adibekyan, Tiago L. Campante, Sabine Reffert, Dennis Stello, Zeynep Çelik Orhan, Guy R. Davies, Martin Bo Nielsen, Timothy R. Bedding, Mutlu Yildiz, Benard Nsamba, Jørgen Christensen-Dalsgaard, Elisa Delgado Mena, H. M. Antia, Sibel Örtel, Maria Tsantaki, Victor Silva Aguirre, Rasmus Handberg, Miles Lucas, Margarida S. Cunha, Sarbani Basu, Savita Mathur, Enrico Corsaro, Nicolas Nardetto, William J. Chaplin, Warrick H. Ball, Mathieu Vrard, Hans Kjeldsen, Jacob L. Bean, Travis S. Metcalfe, Benoit Mosser, Keivan G. Stassun, Aldo Serenelli, Steven D. Kawaler, Margaret C. Turnbull, Mikkel N. Lund, Marc H. Pinsonneault, Dimitri Veras, Andrea Miglio, Diego Bossini, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Department of Astronomy, Yale University [New Haven], Sydney Institute for Astronomy (SIfA), The University of Sydney, Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa City], Stellar Astrophysics Centre [Aarhus] (SAC), High Altitude Observatory (HAO), National Center for Atmospheric Research [Boulder] (NCAR), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), Landessternwarte Königstuhl [ZAH] (LSW), Universität Heidelberg [Heidelberg], Observatoire de Paris, Université Paris sciences et lettres (PSL), Department of Psychology, St John's University, Danish AsteroSeismology Centre (DASC), School of Physics and Astronomy, University of Birmingham [Birmingham], Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Universität Heidelberg [Heidelberg] = Heidelberg University, Universidade do Porto = University of Porto, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Gemini (LG), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL), Universidade do Porto [Porto], and Ege Üniversitesi
- Subjects
010504 meteorology & atmospheric sciences ,Red giant ,Star (game theory) ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Asteroseismology ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Transit (astronomy) ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,QB ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,Exoplanets ,Astronomy and Astrophysics ,Exoplanet ,Stars ,Evolved stars ,Amplitude ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Orhan, Zeynep Celik/0000-0002-9424-2339; Serenelli, Aldo/0000-0001-6359-2769; Monteiro, Mario J. P. F. G./0000-0003-0513-8116; Huber, Daniel/0000-0001-8832-4488; Adibekyan, Vardan/0000-0002-0601-6199; Reffert, Sabine/0000-0002-0460-8289; Stock, Stephan/0000-0002-1166-9338; Stassun, Keivan/0000-0002-3481-9052; Cunha, Margarida/0000-0001-8237-7343; Kuszlewicz, James/0000-0002-3322-5279; Lund, Mikkel Norup/0000-0001-9214-5642; Mathur, Savita/0000-0002-0129-0316; Nielsen, Martin Bo/0000-0001-9169-2599; Mosser, Benoit/0000-0002-7547-1208; Pereira, Filipe/0000-0002-2157-7146; Lucas, Miles/0000-0001-6341-310X; miglio, andrea/0000-0001-5998-8533; Ball, Warrick/0000-0002-4773-1017; Basu, Sarbani/0000-0002-6163-3472; Veras, Dimitri/0000-0001-8014-6162; Handberg, Rasmus/0000-0001-8725-4502; Christensen-Dalsgaard, Jorgen/0000-0001-5137-0966; Delgado Mena, Elisa/0000-0003-4434-2195, WOS: 000498546800001, The Transiting Exoplanet Survey Satellite (TESS) is performing a near all-sky survey for planets that transit bright stars. in addition, its excellent photometric precision enables asteroseismology of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. Simulations predict that TESS will detect solar-like oscillations in nearly 100 stars already known to host planets. in this paper, we present an asteroseismic analysis of the known red-giant host stars HD;212771 and HD;203949, both systems having a long-period planet detected through radial velocities. These are the first detections of oscillations in previously known exoplanet-host stars by TESS, further showcasing the mission?s potential to conduct asteroseismology of red-giant stars. We estimate the fundamental properties of both stars through a grid-based modeling approach that uses global asteroseismic parameters as input. We discuss the evolutionary state of HD;203949 in depth and note the large discrepancy between its asteroseismic mass (M-* = 1.23 0.15 MM* = 1.00 0.16 M if in the clump) and the mass quoted in the discovery paper (M-* = 2.1 0.1 M), implying a change >30% in the planet?s mass. Assuming HD;203949 to be in the clump, we investigate the planet?s past orbital evolution and discuss how it could have avoided engulfment at the tip of the red-giant branch. Finally, HD;212771 was observed by K2 during its Campaign 3, thus allowing for a preliminary comparison of the asteroseismic performances of TESS and K2. We estimate the ratio of the observed oscillation amplitudes for this star to be, NASA Explorer ProgramNational Aeronautics & Space Administration (NASA); ESA PRODEXEuropean Space Agency [PEA 4000119301]; Stellar Astrophysics Centre (SAC) - Danish National Research Foundation [DNRF106]; European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grantEuropean Union (EU) [792848, 664931]; FCT/MCTESPortuguese Foundation for Science and Technology [UID/FIS/04434/2019]; FCTPortuguese Foundation for Science and Technology [PTDC/FIS-AST/30389/2017, PTDC/FIS-AST/28953/2017, PTDC/FIS-AST/32113/2017, CEECIND/02619/2017, IF/00650/2015/CP1273/CT0001, IF/00028/2014/CP1215/CT0002]; FEDER through COMPETE2020 [POCI-01-0145-FEDER-030389, POCI-01-0145-FEDER-028953, POCI-01-0145-FEDER-032113]; National Science Foundation under the Kavli Institute for Theoretical Physics program "Better Stars, Better Planets" [NSF PHY-1748958]; European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant [338251]; ESA PRODEX programme; CNES through the PLATO grants; Spanish GovernmentSpanish Government [ESP2017-82674-R]; Generalitat de CatalunyaGeneralitat de Catalunya [2017-SGR-1131]; STFC via an Ernest Rutherford Fellowship [ST/P003850/1]; NSFNational Science Foundation (NSF) [AST-1514676]; NASANational Aeronautics & Space Administration (NASA) [NNX16AI09G]; Spanish Ministry through the Ramon y Cajal fellowship [RYC-2015-17697]; NYUAD Institute [G1502]; DFGGerman Research Foundation (DFG) [SPP 1992, RE 2694/5-1]; Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [TUBITAK:118F352]; National Aeronautics and Space Administration through the TESS Guest Investigator Program [80NSSC18K1585, 80NSSC19K0379]; European Social Fund via the Lithuanian Science Council [09.3.3-LMT-K-712-01-0103], This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by the NASA Explorer Program. Funding for the TESS Asteroseismic Science Operations Center at Aarhus University is provided by ESA PRODEX (PEA 4000119301) and Stellar Astrophysics Centre (SAC), funded by the Danish National Research Foundation (Grant agreement No.: DNRF106). the project leading to this publication has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No..792848 (PULSATION). This work was supported by FCT/MCTES through national funds (UID/FIS/04434/2019). This work was supported by FCT through national funds (PTDC/FIS-AST/30389/2017, PTDC/FIS-AST/28953/2017, and PTDC/FIS-AST/32113/2017) and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-030389, POCI-01-0145-FEDER-028953, and POCI-01-0145-FEDER-032113). This research was supported in part by the National Science Foundation under grant No.NSF PHY-1748958 through the Kavli Institute for Theoretical Physics program "Better Stars, Better Planets". the research leading to the presented results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No..338251 (StellarAges). E.C.is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No..664931. M.N.L.acknowledges support from the ESA PRODEX programme. B.M.and R.A.G. acknowledge the support received from CNES through the PLATO grants. A. S.is partially supported by grants ESP2017-82674-R (Spanish Government) and 2017-SGR-1131 (Generalitat de Catalunya). D.V.gratefully acknowledges the support of the STFC via an Ernest Rutherford Fellowship (grant ST/P003850/1). V. A.and S.G.S. acknowledge support from FCT through Investigador FCT contracts No..IF/00650/2015/CP1273/CT0001 and No..IF/00028/2014/CP1215/CT0002, respectively. S. B. acknowledges NSF grant AST-1514676 and NASA grant NNX16AI09G. S.M..acknowledges support from the Spanish Ministry through the Ramon y Cajal fellowship No. RYC-2015-17697. M.B.N..acknowledges support from NYUAD Institute grant G1502. S.R..acknowledges support from the DFG priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets (RE 2694/5-1)". M.Y., Z.C.O., and S. O. acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK:118F352). D.H. acknowledges support by the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379) awarded through the TESS Guest Investigator Program. M.S.C. is supported in the form of a work contract funded by FCT (CEECIND/02619/2017). H.K. acknowledges support from the European Social Fund via the Lithuanian Science Council grant No. 09.3.3-LMT-K-712-01-0103.
- Published
- 2019
26. Coupling 1D stellar evolution with 3D-hydrodynamical simulations on-the-fly II: Stellar Evolution and Asteroseismic Applications
- Author
-
Achim Weiss, Victor Silva Aguirre, Jørgen Christensen-Dalsgaard, J. R. Mosumgaard, and Andreas Christ Sølvsten Jørgensen
- Subjects
Physics ,Standard solar model ,astro-ph.SR ,010308 nuclear & particles physics ,Hertzsprung–Russell diagram ,FOS: Physical sciences ,Stratification (water) ,Astronomy and Astrophysics ,01 natural sciences ,Asteroseismology ,Computational physics ,symbols.namesake ,Stars ,Transition point ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,symbols ,Astrophysics::Solar and Stellar Astrophysics ,Stellar structure ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Models of stellar structure and evolution are an indispensable tool in astrophysics, yet they are known to incorrectly reproduce the outer convective layers of stars. In the first paper of this series, we presented a novel procedure to include the mean structure of 3D hydrodynamical simulations on-the-fly in stellar models, and found it to significantly improve the outer stratification and oscillation frequencies of a standard solar model. In the present work, we extend the analysis of the method; specifically how the transition point between envelope and interior affects the models. We confirm the versatility of our method by successfully repeating the entire procedure for a different grid of 3D hydro-simulations. Furthermore, the applicability of the procedure was investigated across the HR diagram and an accuracy comparable to the solar case was found. Moreover, we explored the implications on stellar evolution and find that the red-giant branch is shifted about 40 K to higher effective temperatures. Finally, we present for the first time an asteroseismic analysis based on stellar models fully utilising the stratification of 3D simulations on-the-fly. These new models significantly reduce the asteroseismic surface term for the two selected stars in the Kepler field. We extend the analysis to red giants and characterise the shape of the surface effect in this regime. Lastly, we stress that the interpolation required by our method would benefit from new 3D simulations, resulting in a finer sampling of the grid., 14 pages, 13 figures, 4 tables. Accepted for publication in MNRAS
- Published
- 2019
27. Helium settling in F stars: constraining turbulent mixing using observed helium glitch signature
- Author
-
Victor Silva Aguirre and Kuldeep Verma
- Subjects
chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics ,asteroseismology ,01 natural sciences ,Asteroseismology ,chemically peculiar [stars] ,Ionization ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Physics::Atomic Physics ,Diffusion (business) ,010306 general physics ,010303 astronomy & astrophysics ,Helium ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,interiors [stars] ,diffusion ,Astronomy and Astrophysics ,Atomic diffusion ,abundances [stars] ,Stars ,Amplitude ,chemistry ,Convection zone ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,evolution [stars] ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Recent developments in asteroseismology -- thanks to space-based missions such as {\it CoRoT} and {\it Kepler} -- provide handles on those properties of stars that were either completely inaccessible in the past or only poorly measured. Among several such properties is the surface helium abundance of F and G stars. We used the oscillatory signature introduced by the ionization of helium in the observed oscillation frequencies to constrain the amount of helium settling in F stars. For this purpose, we identified three promising F stars for which the standard models of atomic diffusion predict large settling (or complete depletion) of surface helium. Assuming turbulence at the base of envelope convection zone slows down settling of the helium and heavy elements, we found an envelope mixed mass of approximately $5 \times 10^{-4}$M$_\odot$ necessary to reproduce the observed amplitude of helium signature for all the three stars. This is much larger than the mixed mass of the order of $10^{-6}$M$_\odot$ found in the previous studies performed using the measurements of the heavy element abundances. This demonstrates the potential of using the helium signature together with measurements of the heavy element abundances to identify the most important physical processes competing against atomic diffusion, allowing eventually to correctly interpret the observed surface abundances of hot stars, consistent use of atomic diffusion in modelling both hot and cool stars, and shed some light on the long-standing cosmological lithium problem., 10 Pages, 9 Figures, 2 Tables, Accepted for publication in MNRAS
- Published
- 2019
28. The subgiant HR 7322 as an asteroseismic benchmark star
- Author
-
Timothy R. White, Daniel Huber, Jens Jessen-Hansen, Victor Silva Aguirre, Poul Nissen, Mikkel N. Lund, Amalie Stokholm, and Jakob Rørsted Mosumgaard
- Subjects
astro-ph.SR ,Metallicity ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,7. Clean energy ,Asteroseismology ,Photometry (optics) ,Angular diameter ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,010308 nuclear & particles physics ,Subgiant ,Oscillation ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Effective temperature ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Parallax - Abstract
We present an in-depth analysis of the bright subgiant HR 7322 (KIC 10005473) using Kepler short-cadence photometry, optical interferometry from CHARA, high-resolution spectra from SONG, and stellar modelling using GARSTEC grids and the Bayesian grid-fitting algorithm BASTA. HR 7322 is only the second subgiant with high-quality Kepler asteroseismology for which we also have interferometric data. We find a limb-darkened angular diameter of $0.443 \pm 0.007$ mas, which, combined with a distance derived using the parallax from Gaia DR2 and a bolometric flux, yields a linear radius of $2.00 \pm 0.03$ R$_{\odot}$ and an effective temperature of $6350 \pm 90$ K. HR 7322 exhibits solar-like oscillations, and using the asteroseismic scaling relations and revisions thereof, we find good agreement between asteroseismic and interferometric stellar radius. The level of precision reached by the careful modelling is to a great extent due to the presence of an avoided crossing in the dipole oscillation mode pattern of HR 7322. We find that the standard models predict radius systematically smaller than the observed interferometric one and that a sub-solar mixing length parameter is needed to achieve a good fit to individual oscillation frequencies, interferometric temperature, and spectroscopic metallicity., Comment: 13 pages, 9 figures, 5 tables, accepted for publication in MNRAS
- Published
- 2019
29. A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system
- Author
-
Damien Ségransan, Courtney D. Dressing, David W. Latham, Mia S. Lundkvist, John Asher Johnson, Valerio Nascimbeni, Torben Arentoft, Zoë M. Leinhardt, Christopher A. Watson, Ennio Poretti, Chantanelle Nava, Emilio Molinari, Francesco Pepe, Enrico Corsaro, Luca Malavolta, Aldo S. Bonomo, Xavier Dumusque, Michel Mayor, Li Zeng, Stéphane Udry, Thomas Denman, L. Affer, F. Bouchy, Mikkel N. Lund, Giuseppina Micela, Alessandro Sozzetti, Andrew Collier Cameron, Aldo F. M. Fiorenzano, Annelies Mortier, Savita Mathur, Dimitar Sasselov, Rasmus Handberg, Rafael A. García, Victor Silva Aguirre, Pedro Figueira, Eric D. Lopez, Sean M. Mills, Giampaolo Piotto, David F. Phillips, Hans Kjeldsen, Mercedes Lopez-Morales, Rosario Cosentino, Andrew Vanderburg, Ken Rice, Avet Harutyunyan, M. Benbakoura, Anders Bo Justesen, Jørgen Christensen-Dalsgaard, Lars A. Buchhave, Mario Damasso, C. Lovis, Fatemeh Motalebi, European Commission, University of St Andrews. School of Physics and Astronomy, and University of St Andrews. St Andrews Centre for Exoplanet Science
- Subjects
OSCILLATION FREQUENCIES ,astro-ph.SR ,010504 meteorology & atmospheric sciences ,CODE ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Mantle (geology) ,Earth radius ,HOT SUPER-EARTHS ,LIMB-DARKENING COEFFICIENTS ,chemistry.chemical_compound ,Planet ,0103 physical sciences ,QB Astronomy ,010303 astronomy & astrophysics ,QC ,Solar and Stellar Astrophysics (astro-ph.SR) ,QB ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,LIGHT CURVES ,COMPANIONS ,Astronomy and Astrophysics ,3rd-DAS ,Radius ,Exoplanet ,Silicate ,QC Physics ,Astrophysics - Solar and Stellar Astrophysics ,chemistry ,13. Climate action ,CONVECTION ,Extreme ultraviolet ,astro-ph.EP ,Terrestrial planet ,STARS ,Astrophysics - Earth and Planetary Astrophysics ,PLANETS - Abstract
Measures of exoplanet bulk densities indicate that small exoplanets with radius less than 3 Earth radii ($R_\oplus$) range from low-density sub-Neptunes containing volatile elements to higher density rocky planets with Earth-like or iron-rich (Mercury-like) compositions. Such astonishing diversity in observed small exoplanet compositions may be the product of different initial conditions of the planet-formation process and/or different evolutionary paths that altered the planetary properties after formation. Planet evolution may be especially affected by either photoevaporative mass loss induced by high stellar X-ray and extreme ultraviolet (XUV) flux or giant impacts. Although there is some evidence for the former, there are no unambiguous findings so far about the occurrence of giant impacts in an exoplanet system. Here, we characterize the two innermost planets of the compact and near-resonant system Kepler-107. We show that they have nearly identical radii (about $1.5-1.6~R_\oplus$), but the outer planet Kepler-107c is more than twice as dense (about $12.6~\rm g\,cm^{-3}$) as the innermost Kepler-107b (about $5.3~\rm g\,cm^{-3}$). In consequence, Kepler-107c must have a larger iron core fraction than Kepler-107b. This imbalance cannot be explained by the stellar XUV irradiation, which would conversely make the more-irradiated and less-massive planet Kepler-107b denser than Kepler-107c. Instead, the dissimilar densities are consistent with a giant impact event on Kepler-107c that would have stripped off part of its silicate mantle. This hypothesis is supported by theoretical predictions from collisional mantle stripping, which match the mass and radius of Kepler-107c., Comment: Published in Nature Astronomy on 4 February 2019, 35 pages including Supplementary Information material
- Published
- 2019
30. Dynamical heating across the Milky Way disc using APOGEE and Gaia
- Author
-
Marie Martig, Steven R. Majewski, Diane Feuillet, Jennifer Sobeck, Jo Bovy, William J. Chaplin, David L. Nidever, Victor Silva Aguirre, J. Tayar, Ricardo P. Schiavon, Marc H. Pinsonneault, Katia Cunha, Gail Zasowski, Wilma H. Trick, J. Ted Mackereth, Henry W. Leung, and Andrea Miglio
- Subjects
010308 nuclear & particles physics ,FOS: Physical sciences ,Library science ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,kinematics and dynamics [Galaxy] ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,evolution [Galaxy] ,disc [Galaxy] ,formation [Galaxy] ,13. Climate action ,Space and Planetary Science ,Research council ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,stellar content [Galaxy] ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,QC ,Mathematics ,QB - Abstract
The kinematics of the Milky Way disc as a function of age are well measured at the solar radius, but have not been studied over a wider range of Galactocentric radii. Here, we measure the kinematics of mono-age, mono-$\mathrm{[Fe/H]}$ populations in the low and high $\mathrm{[\alpha/Fe]}$ discs between $4 \lesssim R \lesssim 13$ kpc and $|z| \lesssim 2$ kpc using 65,719 stars in common between APOGEE DR14 and $\it{Gaia}$ DR2 for which we estimate ages using a Bayesian neural network model trained on asteroseismic ages. We determine the vertical and radial velocity dispersions, finding that the low and high $\mathrm{[\alpha/Fe]}$ discs display markedly different age--velocity-dispersion relations (AVRs) and shapes $\sigma_z/\sigma_R$. The high $\mathrm{[\alpha/Fe]}$ disc has roughly flat AVRs and constant $\sigma_z/\sigma_R = 0.64\pm 0.04$, whereas the low $\mathrm{[\alpha/Fe]}$ disc has large variations in this ratio which positively correlate with the mean orbital radius of the population at fixed age. The high $\mathrm{[\alpha/Fe]}$ disc component's flat AVRs and constant $\sigma_z/\sigma_R$ clearly indicates an entirely different heating history. Outer disc populations also have flatter radial AVRs than those in the inner disc, likely due to the waning effect of spiral arms. Our detailed measurements of AVRs and $\sigma_z/\sigma_R$ across the disc indicate that low $\mathrm{[\alpha/Fe]}$, inner disc ($R \lesssim 10\,\mathrm{kpc}$) stellar populations are likely dynamically heated by both giant molecular clouds and spiral arms, while the observed trends for outer disc populations require a significant contribution from another heating mechanism such as satellite perturbations. We also find that outer disc populations have slightly positive mean vertical and radial velocities, likely because they are part of the warped disc., Comment: Accepted for publication in MNRAS - The revised version has various updates to the text following suggestions from the referee, but general results remain the same. Code is available https://github.com/jmackereth/monoage-velocity-dispersion, and the APOGEE DR14 age catalogue can be found alongside a paper summary http://www.astro.ljmu.ac.uk/~astjmack/dynamical-heating.html
- Published
- 2019
- Full Text
- View/download PDF
31. The Occurrence of Rocky Habitable-zone Planets around Solar-like Stars from Kepler Data
- Author
-
Savita Mathur, Daniel Huber, Jennifer R. Campbell, Megan Shabram, Janice Voss, Jeffrey L. Coughlin, Guillermo Torres, Edward W. Dunham, Bruce D. Clarke, Laurance R. Doyle, Susan E. Mullally, Alan P. Boss, John Troeltzsch, Michael R. Haas, Jeffrey Van Cleve, Andrej Prsa, D. T. Sanderfer, Jeffrey C. Smith, Steve Bryson, Lauren M. Weiss, Christopher E. Henze, William F. Welsh, Elisa V. Quintana, Timothy D. Morton, Avi Shporer, Ravi Kumar Kopparapu, Fergal Mullally, Andrea K. Dupree, Jeffery J. Kolodziejczak, Joseph Catanzarite, Eric B. Ford, Solange V. Ramirez, Forrest R. Girouard, Michael Endl, Dimitar Sasselov, Christopher K. Middour, Travis A. Berger, William D. Cochran, Jørgen Christensen-Dalsgaard, Jessie L. Dotson, James L. Fanson, Natalie M. Batalha, Alan Gould, Christopher Allen, K. Larson, Jie Li, Jon M. Jenkins, Jason H. Steffen, Thomas N. Gautier, John C. Geary, Hema Chandrasekaran, Shawn Seader, Douglas A. Caldwell, Maura Fujieh, Lars A. Buchhave, Victor Silva Aguirre, Robert L. Morris, William J. Borucki, Joseph D. Twicken, David R. Ciardi, David W. Latham, Ronald L. Gilliland, Michelle Kunimoto, Steve B. Howell, Soren Meibom, Hans Kjeldsen, Andrew W. Howard, Khadeejah A. Zamudio, Darin Ragozzine, B. Wohler, William J. Chaplin, Jessie L. Christiansen, D. Pletcher, Samuel N. Quinn, Roger C. Hunter, Matthew J. Holman, Martin Still, Christopher J. Burke, David G. Koch, Geert Barentsen, Eduardo Seperuelo Duarte, and Akm Kamal Uddin
- Subjects
010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Poisson distribution ,01 natural sciences ,symbols.namesake ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Astronomy and Astrophysics ,Radius ,Effective temperature ,Exoplanet ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,symbols ,Terrestrial planet ,Astrophysics::Earth and Planetary Astrophysics ,Circumstellar habitable zone ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define $\eta_\oplus$ as the HZ occurrence of planets with radius between 0.5 and 1.5 $R_\oplus$ orbiting stars with effective temperatures between 4800 K and 6300 K. We find that $\eta_\oplus$ for the conservative HZ is between $0.37^{+0.48}_{-0.21}$ (errors reflect 68\% credible intervals) and $0.60^{+0.90}_{-0.36}$ planets per star, while the optimistic HZ occurrence is between $0.58^{+0.73}_{-0.33}$ and $0.88^{+1.28}_{-0.51}$ planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with $95\%$ confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun., Comment: To appear in The Astronomical Journal
- Published
- 2020
32. Stellar models with calibrated convection and temperature stratification from 3D hydrodynamics simulations
- Author
-
Achim Weiss, Jørgen Christensen-Dalsgaard, J. R. Mosumgaard, Victor Silva Aguirre, and Warrick H. Ball
- Subjects
Convection ,solar-type [stars] ,Work (thermodynamics) ,OSCILLATION FREQUENCIES ,SURFACE ,OPACITIES ,INTERPOLATION ,FOS: Physical sciences ,asteroseismology ,01 natural sciences ,Asteroseismology ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,atmospheres [stars] ,interiors [stars] ,Standard solar model ,MIXING-LENGTH ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,SOLAR-TYPE ,Mechanics ,Effective temperature ,Surface gravity ,EQUATION-OF-STATE ,RED GIANTS ,Stars ,ENVELOPES ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,evolution [stars] ,Astrophysics::Earth and Planetary Astrophysics ,STARS - Abstract
Stellar evolution codes play a major role in present-day astrophysics, yet they share common simplifications related to the outer layers of stars. We seek to improve on this by the use of results from realistic and highly detailed 3D hydrodynamics simulations of stellar convection. We implement a temperature stratification extracted directly from the 3D simulations into two stellar evolution codes to replace the simplified atmosphere normally used. Our implementation also contains a non-constant mixing-length parameter, which varies as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. We give a detailed account of our fully consistent implementation and compare to earlier works, and also provide a freely available MESA-module. The evolution of low-mass stars with different masses is investigated, and we present for the first time an asteroseismic analysis of a standard solar model utilising calibrated convection and temperature stratification from 3D simulations. We show that the inclusion of 3D results have an almost insignificant impact on the evolution and structure of stellar models -- the largest effect are changes in effective temperature of order 30 K seen in the pre-main sequence and in the red-giant branch. However, this work provides the first step for producing self-consistent evolutionary calculations using fully incorporated 3D atmospheres from on-the-fly interpolation in grids of simulations., 10 pages, 9 figures. Accepted for publication in MNRAS
- Published
- 2018
33. The Updated BaSTI Stellar Evolution Models and Isochrones
- Author
-
Santi Cassisi, A. Savino, Antonio Aparicio, Adriano Pietrinferni, Maurizio Salaris, Alessio Mucciarelli, Sebastian L. Hidalgo, Victor Silva Aguirre, Kuldeep Verma, Hidalgo, Sebastian L., Pietrinferni, Adriano, Cassisi, Santi, Salaris, Maurizio, Mucciarelli, Alessio, Savino, Alessandro, Aparicio, Antonio, Aguirre, Victor Silva, Verma, Kuldeep, ITA, and Astronomy
- Subjects
Nuclear reaction ,Astrophysics ,01 natural sciences ,Range (statistics) ,OPEN CLUSTER NGC-6791 ,Astrophysics::Solar and Stellar Astrophysics ,stars: evolution ,010303 astronomy & astrophysics ,Stellar evolution ,stars: general ,QC ,QB ,Physics ,INTERMEDIATE-MASS ,general [stars] ,EQUATION-OF-STATE ,Astrophysics - Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,disk [Galaxy] ,Conduction electron ,Convection ,astro-ph.SR ,Opacity ,astro-ph.GA ,THERMONUCLEAR REACTION-RATES ,chemistry.chemical_element ,FOS: Physical sciences ,POPULATION SYNTHESIS ,LOW-MASS STARS ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galaxy: disk ,HORIZONTAL-BRANCH STARS ,0103 physical sciences ,METALLICITY CALIBRATION ,Disc ,ASTROPHYSICAL REACTION-RATE ,Helium ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,stellar content [galaxies] ,open clusters and associations: general ,Astronomy and Astrophysic ,Astrophysics - Astrophysics of Galaxies ,chemistry ,Space and Planetary Science ,evolution [stars] ,COLOR-MAGNITUDE DIAGRAM ,Astrophysics of Galaxies (astro-ph.GA) ,galaxies: stellar content ,general [open clusters and associations] - Abstract
We present an updated release of the BaSTI (a Bag of Stellar Tracks and Isochrones) stellar model and isochrone library for a solar scaled heavy element distribution. The main input physics changed from the previous BaSTI release include the solar metal mixture, electron conduction opacities, a few nuclear reaction rates, bolometric corrections, and the treatment of the overshooting efficiency for shrinking convective cores. The new model calculations cover a mass range between 0.1 and 15 Msun, 22 initial chemical compositions between [Fe/H]=-3.20 and +0.45, with helium to metal enrichment ratio dY /dZ=1.31. The isochrones cover an age range between 20 Myr and 14.5 Gyr, take consistently into account the pre-main sequence phase, and have been translated to a large number of popular photometric systems. Asteroseismic properties of the theoretical models have also been calculated. We compare our isochrones with results from independent databases and with several sets of observations, to test the accuracy of the calculations. All stellar evolution tracks, asteroseismic properties and isochrones are made available through a dedicated Web site., 31 pages, 28 figures. Accepted to be published in ApJ Stellar evolution library available at: http://basti-iac.oa-abruzzo.inaf.it/ and https://basti-iac.iac.es
- Published
- 2018
34. Inference of stellar parameters from brightness variations
- Author
-
Matteo Cantiello, David W. Hogg, Mikkel N. Lund, Daniel Foreman-Mackey, Ruth Angus, Victor Silva Aguirre, and Melissa Ness
- Subjects
IMPACT ,Metallicity ,statistical [methods] ,fundamental parameters [stars] ,KEPLER ,FOS: Physical sciences ,Astrophysics ,asteroseismology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Asteroseismology ,0103 physical sciences ,data analysis [methods] ,OSCILLATIONS ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Polynomial (hyperelastic model) ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Radius ,Light curve ,Surface gravity ,GIANT STARS ,AGES ,RED GIANTS ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,CONVECTION ,evolution [stars] ,Content (measure theory) ,MODES ,spectroscopic [techniques] ,Astrophysics::Earth and Planetary Astrophysics - Abstract
It has been demonstrated that the time variability of a star's brightness at different frequencies can be used to infer its surface gravity, radius, mass, and age. With large samples of light curves now available from Kepler and K2, and upcoming surveys like TESS, we wish to quantify the overall information content of this data and identify where the information resides. As a first look into this question we ask which stellar parameters we can predict from the brightness variations in red-giant stars data and to what precision, using a data-driven model. We demonstrate that the long-cadence (30-minute) Kepler light curves for 2000 red-giant stars can be used to predict their $T_{\rm eff}$ and $\log g$. Our inference makes use of a data-driven model of a part of the autocorrelation function (ACF) of the light curve, where we posit a polynomial relationship between stellar parameters and the ACF pixel values. We find that this model, trained using 1000 stars, can be used to recover the temperature $T_{\rm eff}$ to $, Comment: 10 pages, 7 Figures, submitted to ApJ
- Published
- 2018
- Full Text
- View/download PDF
35. Characterizing Host Stars using Asteroseismology
- Author
-
William J. Chaplin, Daniel Huber, Victor Silva Aguirre, M. Lundkvist, Deeg, H., and null, J. Belmonte
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Asteroseismology ,01 natural sciences ,Stars ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Host (network) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
The last decade has seen a revolution in the field of asteroseismology - the study of stellar pulsations. It has become a powerful method to precisely characterize exoplanet host stars and as a consequence also the exoplanets themselves. This synergy between asteroseismology and exoplanet science has flourished in large part due to space missions such as Kepler, which have provided high-quality data that can be used for both types of studies. Perhaps the primary contribution from asteroseismology to the research on transiting exoplanets is the determination of very precise stellar radii that translate into precise planetary radii, but asteroseismology has also proven useful in constraining eccentricities of exoplanets as well as the dynamical architecture of planetary systems. In this chapter, we introduce some basic principles of asteroseismology and review current synergies between the two fields.
- Published
- 2018
36. The Second APOKASC Catalog: The Empirical Approach
- Author
-
Christian Nitschelm, Daniel Huber, Thomas Kallinger, D. A. García-Hernández, Verne V. Smith, Matthew Shetrone, Sarbani Basu, Szabolcs Mészáros, Olga Zamora, Jennifer A. Johnson, Joel C. Zinn, Saskia Hekker, José G. Fernández-Trincado, Timothy C. Beers, Katia Cunha, Henrik Jönsson, Jennifer Sobeck, Benoit Mosser, Victor Silva Aguirre, Rafael A. García, Dennis Stello, Yvonne Elsworth, Jamie Tayar, Enrico Corsaro, William J. Chaplin, Léo Girardi, Fred Hearty, Jon A. Holtzman, Savita Mathur, Peter M. Frinchaboy, Guy S. Stringfellow, Keivan G. Stassun, Aldo Serenelli, Marc H. Pinsonneault, Thaíse S. Rodrigues, Deokkeun An, Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), School of Physics and Astronomy, University of Birmingham [Birmingham], Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Stellar Astrophysics Centre [Aarhus] (SAC), Aarhus University [Aarhus], Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Visio per computador i robotica (VICOROB), Universitat de Girona (UdG), J. A. Baker Institute, Cornell University [New York], Sydney Institute for Astronomy (SIfA), The University of Sydney, Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Aarhus], National University of Singapore (NUS), Department of Psychology, St John's University, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CR CHUM), Centre Hospitalier de l'Université de Montréal (CHUM), Université de Montréal (UdeM)-Université de Montréal (UdeM), Sainsbury Laboratory Cambridge University (SLCU), University of Cambridge [UK] (CAM), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Cornell University, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche du Chum [Montréal] (CRCHUM), and Sainsbury Laboratory Cambridge
- Subjects
Stellar population ,oscillations (including pulsations) [stars] ,fundamental parameters [stars] ,KEPLER ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,OSCILLATIONS ,Astrophysics::Solar and Stellar Astrophysics ,Statistical dispersion ,stars abundances ,FIELD ,010303 astronomy & astrophysics ,Red clump ,Scaling ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,MIXING-LENGTH ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Radius ,Surface gravity ,AGES ,RED GIANTS ,Stars ,Star cluster ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,OPEN CLUSTERS ,Astrophysics::Earth and Planetary Astrophysics ,BOLOMETRIC CORRECTIONS ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,STARS ,ASTEROSEISMIC MASS - Abstract
We present a catalog of stellar properties for a large sample of 6676 evolved stars with APOGEE spectroscopic parameters and \textit{Kepler} asteroseismic data analyzed using five independent techniques. Our data includes evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed by accounting for differences in their solar reference values. We include theoretically motivated corrections to the large frequency spacing ($\Delta \nu$) scaling relation, and we calibrate the zero point of the frequency of maximum power ($\nu_{\rm max}$) relation to be consistent with masses and radii for members of star clusters. For most targets, the parameters returned by different pipelines are in much better agreement than would be expected from the pipeline-predicted random errors, but 22\% of them had at least one method not return a result and a much larger measurement dispersion. This supports the usage of multiple analysis techniques for asteroseismic stellar population studies. The measured dispersion in mass estimates for fundamental calibrators is consistent with our error model, which yields median random and systematic mass uncertainties for RGB stars of order 4\%. Median random and systematic mass uncertainties are at the 9\% and 8\% level respectively for RC stars., Comment: 29 pages, 26 figures. Submitted ApJSupp. Comments welcome. For access to the main data table (Table 5) use https://www.dropbox.com/s/k33td8ukefwy5tv/APOKASC2_Table5.txt?dl=0; for access to the individual pipeline values (Table 6) use https://www.dropbox.com/s/vl9s2p3obftrv8m/APOKASC2_Table6.txt?dl=0
- Published
- 2018
- Full Text
- View/download PDF
37. Ages for Exoplanet Host Stars
- Author
-
Victor Silva Aguirre, Jørgen Christensen-Dalsgaard, Deeg, Hans J., and Belmonte, Juan Antonio
- Subjects
Physics ,Calibration (statistics) ,010308 nuclear & particles physics ,Astronomy ,Astrophysics ,Planetary system ,01 natural sciences ,Asteroseismology ,Exoplanet ,Stars ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Stellar evolution ,Host (network) - Abstract
Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.
- Published
- 2018
38. Helium abundance in a sample of cool stars: measurements from asteroseismology
- Author
-
Pritesh Ranadive, Victor Silva Aguirre, Jakob Rørsted Mosumgaard, Keyuri Raodeo, Kuldeep Verma, Anwesh Mazumdar, Mikkel N. Lund, and Sarbani Basu
- Subjects
oscillations [stars] ,solar-type [stars] ,S-FACTOR ,fundamental parameters [stars] ,chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,Asteroseismology ,Ionization ,0103 physical sciences ,OSCILLATIONS ,Astrophysics::Solar and Stellar Astrophysics ,Spectroscopy ,SLOWLY ROTATING STARS ,010303 astronomy & astrophysics ,ASTROPHYSICAL REACTION-RATE ,Helium ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,POSSIBLE EXISTENCE ,Physics ,interiors [stars] ,STELLAR EVOLUTION CODE ,010308 nuclear & particles physics ,OVERSHOOT ,Astronomy and Astrophysics ,DIFFUSION ,Atomic diffusion ,abundances [stars] ,Stars ,chemistry ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Mass fraction ,MAIN-SEQUENCE STARS ,REGULATING HYDRODYNAMICAL PROCESS ,Main sequence - Abstract
The structural stratification of a solar-type main sequence star primarily depends on its mass and chemical composition. The surface heavy element abundances of the solar-type stars are reasonably well determined using conventional spectroscopy, however the second most abundant element helium is not. This is due to the fact that the envelope temperature of such stars is not high enough to excite helium. Since the helium abundance of a star affects its structure and subsequent evolution, the uncertainty in the helium abundance of a star makes estimates of its global properties (mass, radius, age etc.) uncertain as well. The detections of the signatures of the acoustic glitches from the precisely measured stellar oscillation frequencies provide an indirect way to estimate the envelope helium content. We use the glitch signature caused by the ionization of helium to determine the envelope helium abundance of 38 stars in the {\it Kepler} seismic LEGACY sample. Our results confirm that atomic diffusion does indeed take place in solar-type stars. We use the measured surface abundances in combination with the settling predicted by the stellar models to determine the initial abundances. The initial helium and metal mass fractions have subsequently been used to get the preliminary estimates of the primordial helium abundance, $Y_p = 0.244\pm0.019$, and the galactic enrichment ratio, $\Delta Y / \Delta Z = 1.226\pm0.849$. Although the current estimates have large errorbars due to the limited sample size, this method holds great promises to determine these parameters precisely in the era of upcoming space missions., Comment: 17 Pages, 9 Figures, 5 Tables, Accepted for publication in MNRAS
- Published
- 2018
- Full Text
- View/download PDF
39. KELT-21b: A Hot Jupiter Transiting the Rapidly-Rotating Metal-Poor Late-A Primary of a Likely Hierarchical Triple System
- Author
-
T. A. Carroll, Michael Endl, Klaus G. Strassmeier, William D. Cochran, Roberto Zambelli, Howard M. Relles, David W. Latham, Victor Silva Aguirre, Joseph E. Rodriguez, Eric L. N. Jensen, Phillip A. Reed, Luke Maritch, Ilya Ilyin, Steven Villanueva, Robert J. Siverd, Allyson Bieryla, Michael B. Lund, Chris Stockdale, Matthias Mallonn, Daniel A. Hancock, Jonathan Labadie-Bartz, Phillip A. Cargile, Michael D. Joner, Thomas E. Oberst, Adam G. Bugg, Jamie Tayar, Knicole D. Colón, Hannah Jang-Condell, Anicia Arredondo, Kaloyan Penev, Sormeh Yazdi, Keivan G. Stassun, Aldo Serenelli, Joao Gregorio, Rebecca L. Sorber, Matthew T. Penny, Giuseppe D'Ago, Thomas G. Beatty, Karen A. Collins, Jason D. Eastman, David James, Anissa Benzaid, Rudolf B. Kuhn, Gaetano Scarpetta, Marshall C. Johnson, David Kasper, M. Spencer, Denise C. Stephens, Daniel J. Stevens, Ivan A. Curtis, Xinyu Yao, Seth P. Clarke, Sebastiano Calchi Novati, Kim K. McLeod, Benjamin J. Fulton, Jason Trump, Eric G. Hintz, John F. Kielkopf, Erica J. Gonzales, Maria Martinez, B. Scott Gaudi, Joshua Pepper, Darren L. DePoy, Thiam-Guan Tan, George Zhou, Justin R. Crepp, Valerio Bozza, and David H. Cohen
- Subjects
gaseous planets [planets and satellites] ,010504 meteorology & atmospheric sciences ,Triple system ,detection [planets and satellites] ,observational [methods] ,FOS: Physical sciences ,Astrophysics ,Star (graph theory) ,01 natural sciences ,photometric [techniques] ,Planet ,Primary (astronomy) ,0103 physical sciences ,Hot Jupiter ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,individual: HD 332124 [stars] ,Astronomy and Astrophysics ,radial velocities [techniques] ,Radius ,Orbital period ,Astrophysics - Astrophysics of Galaxies ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Planetary mass ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present the discovery of KELT-21b, a hot Jupiter transiting the $V=10.5$ A8V star HD 332124. The planet has an orbital period of $P=3.6127647\pm0.0000033$ days and a radius of $1.586_{-0.040}^{+0.039}$ $R_J$. We set an upper limit on the planetary mass of $M_P, Comment: Accepted for publication in AJ. Updated to match accepted version. 25 pages, 14 figures
- Published
- 2017
40. Erratum: 'Standing on the Shoulders of Dwarfs: The Kepler Asteroseismic LEGACY Sample. I. Oscillation Mode Parameters' (2017, ApJ, 835, 172)
- Author
-
Warrick H. Ball, H. M. Antia, Daniel Huber, Sarbani Basu, David W. Latham, Anders Bo Justesen, Jørgen Christensen-Dalsgaard, Timothy R. White, Victor Silva Aguirre, G. Houdek, Jakob Rørsted Mosumgaard, Timothy R. Bedding, Hans Kjeldsen, Kuldeep Verma, Luca Casagrande, Guy R. Davies, William J. Chaplin, Mikkel N. Lund, Rasmus Handberg, Yveline Lebreton, Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Department of Psychology, St John's University, Danish AsteroSeismology Centre (DASC), Aarhus University [Aarhus], Stellar Astrophysics Centre [Aarhus] (SAC), Nanyang Technological University [Singapour], Sydney Institute for Astronomy (SIfA), The University of Sydney, Cognition, Langues, Langage, Ergonomie (CLLE-ERSS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Aarhus], National University of Singapore (NUS), Australian National University (ANU), École pratique des hautes études (EPHE)-Université Toulouse - Jean Jaurès (UT2J)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,010308 nuclear & particles physics ,Oscillation ,Shoulders ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Mode (statistics) ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Sample (graphics) ,Kepler ,Space and Planetary Science ,0103 physical sciences ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; In this erratum, we provide corrected sets of r 01,10,02 difference ratio values and associated uncertainties, which were overestimated in the original paper (as noted by Roxburgh 2017) due to a missing trimming in the post-processing of the Markov chain Monte Carlo (MCMC) chains for these values. The typical reduction in the ratio uncertainties from performing the trimming is a factor of 10 (see Figure 3). Other parameters optimized in the peak-bagging (for instance, individual mode frequencies) are unaffected, as the trimming was performed for these in the original work (Lund et al. 2017). We also provide updated values for the n D 2 values of l=3 modes. We note that the values presented here, as with those presented in the original work, are obtained from a single peak-bagging procedure (see Lund et al. 2017 for details) and have yet to be verified by independent analyses using the same input power spectra. Examples of the updated tables from the original paper are given in Tables 1-3. We note that tables with individual mode parameters (Table 2) have been added for completeness, but the parameters in these tables are unchanged compared to the original paper. In addition to the corrected values mentioned above, we provide covariance matrices for the mode frequencies, frequency difference ratios (r 01,10,02), and second differences (n D 2) for the LEGACY sample (Lund et al. 2017), which were not published with the original work. The values provided by this erratum will be available in the online version of the paper. Figure 1. Comparison between ratio distribution of = r n 01, 25 (n » m 3090 Hz) for KIC 9139151 from the full (green) and properly thinned MCMC chains (black). The dashed red line (on top of the black curve) shows the distribution obtained by sampling from the reported frequency values and corresponding uncertainties (assuming that these are normally distributed and uncorrelated). The central peak is captured by both distributions, but the wide background signal representing the ratio prior has disappeared from the thinned chains. Dotted lines indicate the distribution medians; dashed lines bound the corresponding 68% highest probability density intervals.
- Published
- 2017
41. Improving 1D Stellar Models with 3D Atmospheres
- Author
-
Achim Weiss, Victor Silva Aguirre, Jakob Rørsted Mosumgaard, Regner Trampedach, and Jørgen Christensen-Dalsgaard
- Subjects
Physics ,Work (thermodynamics) ,Opacity ,010308 nuclear & particles physics ,QC1-999 ,Stellar atmosphere ,FOS: Physical sciences ,Astrophysics ,Function (mathematics) ,Surface gravity ,01 natural sciences ,Computational physics ,Atmosphere ,Variable (computer science) ,Astrophysics - Solar and Stellar Astrophysics ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Stellar evolution ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it., 4 pages, 5 figures; submitted to the conference proceedings: Seismology of the Sun and the Distant Stars 2016
- Published
- 2017
42. The Apache Point Observatory Galactic Evolution Experiment (APOGEE)
- Author
-
Steven R. Majewski, Ricardo P. Schiavon, Peter M. Frinchaboy, Carlos Allende Prieto, Robert Barkhouser, Dmitry Bizyaev, Basil Blank, Sophia Brunner, Adam Burton, Ricardo Carrera, S. Drew Chojnowski, Kátia Cunha, Courtney Epstein, Greg Fitzgerald, Ana E. García Pérez, Fred R. Hearty, Chuck Henderson, Jon A. Holtzman, Jennifer A. Johnson, Charles R. Lam, James E. Lawler, Paul Maseman, Szabolcs Mészáros, Matthew Nelson, Duy Coung Nguyen, David L. Nidever, Marc Pinsonneault, Matthew Shetrone, Stephen Smee, Verne V. Smith, Todd Stolberg, Michael F. Skrutskie, Eric Walker, John C. Wilson, Gail Zasowski, Friedrich Anders, Sarbani Basu, Stephane Beland, Michael R. Blanton, Jo Bovy, Joel R. Brownstein, Joleen Carlberg, William Chaplin, Cristina Chiappini, Daniel J. Eisenstein, Yvonne Elsworth, Diane Feuillet, Scott W. Fleming, Jessica Galbraith-Frew, Rafael A. García, D. Aníbal García-Hernández, Bruce A. Gillespie, Léo Girardi, James E. Gunn, Sten Hasselquist, Michael R. Hayden, Saskia Hekker, Inese Ivans, Karen Kinemuchi, Mark Klaene, Suvrath Mahadevan, Savita Mathur, Benoît Mosser, Demitri Muna, Jeffrey A. Munn, Robert C. Nichol, Robert W. O’Connell, John K. Parejko, A. C. Robin, Helio Rocha-Pinto, Matthias Schultheis, Aldo M. Serenelli, Neville Shane, Victor Silva Aguirre, Jennifer S. Sobeck, Benjamin Thompson, Nicholas W. Troup, David H. Weinberg, Olga Zamora, The University of Western Australia (UWA), Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), National University of Singapore (NUS), Department of Psychology, St John's University, School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Physics and Astronomy, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Department of Physics and Astronomy [Aarhus], and Aarhus University [Aarhus]
- Subjects
RED-GIANT STARS ,abundances [galaxy] ,kinematics and dynamics [galaxy] ,EXPLORING HALO SUBSTRUCTURE ,Metallicity ,Milky Way ,FOS: Physical sciences ,CHEMICAL EVOLUTION ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,STELLAR POPULATIONS ,Observatory ,GLOBULAR-CLUSTERS ,structure [galaxy] ,0103 physical sciences ,EARLY-TYPE GALAXIES ,AST-1616636 ,Astrophysics::Solar and Stellar Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,STFC ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,QB ,SOLAR-TYPE STARS ,010308 nuclear & particles physics ,RCUK ,Astronomy ,Astronomy and Astrophysics ,formation [galaxy] ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,RESOLUTION INFRARED-SPECTROSCOPY ,stellar content [galaxy] ,Radial velocity ,Interstellar medium ,Stars ,Star cluster ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,evolution [galaxy] ,DIGITAL SKY SURVEY ,MILKY-WAY ,AST-1109178 ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology - Abstract
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three year observing campaign on the Sloan 2.5-m Telescope, APOGEE has collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design---hardware, field placement, target selection, operations---and gives an overview of these aspects as well as the data reduction, analysis and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12, all of the APOGEE data products are now publicly available., Submitted to The Astronomical Journal: 50 pages, including 38 figures, 4 tables, and 5 appendices
- Published
- 2017
43. Asteroseismology and Gaia : Testing Scaling Relations Using 2200 Kepler Stars with TGAS Parallaxes
- Author
-
Christian L. Sahlholdt, Timothy R. Bedding, William J. Chaplin, Lars A. Buchhave, Jamie Tayar, Savita Mathur, Benoit Mosser, Daniel Huber, Keivan G. Stassun, Aldo Serenelli, Fabienne A. Bastien, Guy R. Davies, Marc H. Pinsonneault, David W. Latham, Mathias Bojsen-Hansen, Rafael A. García, Joel C. Zinn, Dennis Stello, Sanjib Sharma, Victor Silva Aguirre, Sydney Institute for Astronomy (SIfA), The University of Sydney, Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Stellar Astrophysics Centre [Aarhus] (SAC), Department of Astronomy and Astrophysics [PennState], Pennsylvania State University (Penn State), Penn State System-Penn State System, Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Department of Psychology, St John's University, Research institute of Computer Vision and Robotics [Girona] (VICOROB), Universitat de Girona (UdG), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), SETI Institute, Vanderbilt University [Nashville], Fisk University, School of Physics [UNSW Sydney] (UNSW), University of New South Wales [Sydney] (UNSW), Center for Exoplanets and Habitable World (CEHW), Space Science Institute [Boulder] (SSI), Centre for Star and Planet Formation (STARPLAN), Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Health and Medical Sciences, School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU)-Faculty of Health and Medical Sciences, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Harvard University [Cambridge]-Smithsonian Institution, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
oscillations [stars] ,Infrared ,Metallicity ,fundamental parameters [stars] ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Asteroseismology ,photometric [techniques] ,Frequency separation ,0103 physical sciences ,distances [stars] ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,ComputingMilieux_MISCELLANEOUS ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Red-giant branch ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,parallaxes ,Orders of magnitude (length) ,late-type [stars] ,Parallax ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present a comparison of parallaxes and radii from asteroseismology and Gaia DR1 (TGAS) for 2200 Kepler stars spanning from the main sequence to the red giant branch. We show that previously identified offsets between TGAS parallaxes and distances derived from asteroseismology and eclipsing binaries have likely been overestimated for parallaxes, Comment: 14 pages, 12 figures, 3 tables, accepted for publication in ApJ. Electronic versions of Tables 1 & 2 are available as ancillary files (sidebar on the right), and source codes are available at https://github.com/danxhuber/isoclassify
- Published
- 2017
44. The correlation between mixing length and metallicity on the giant branch: implications for ages in the Gaia era
- Author
-
Léo Girardi, Alexey Mints, Matthew Shetrone, Roger Cohen, Alexandre Roman-Lopes, Daniel Huber, Fabienne A. Bastien, Guy S. Stringfellow, Jonathan C. Bird, Victor Silva Aguirre, Claudia Maraston, B. Mosser, D. A. García-Hernández, Katia Cunha, Carlos Allende Prieto, Rafael A. García, Szabolcs Mészáros, Dennis Stello, Yvonne Elsworth, Savita Mathur, Garrett Somers, Marc H. Pinsonneault, Keivan G. Stassun, Aldo Serenelli, Jamie Tayar, Sarbani Basu, Olga Zamora, Gail Zasowski, Jennifer A. Johnson, Saskia Hekker, Jon A. Holtzman, Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), Stellar Astrophysics Centre [Aarhus] (SAC), Aarhus University [Aarhus], Instituto de Astrofisica de Canarias (IAC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), European Project: 338251,EC:FP7:ERC,ERC-2013-StG,STELLARAGES(2013), J. A. Baker Institute, Cornell University [New York], Institute of cosmology and gravitation, University of Portsmouth, Institute of Space Sciences [Barcelona] (ICE-CSIC), Spanish National Research Council [Madrid] (CSIC), Department of Astronomy and Astrophysics [PennState], Pennsylvania State University (Penn State), Penn State System-Penn State System, Department of Astronomy, Yale University [New Haven], School of Physics and Astronomy, University of Birmingham [Birmingham], Research institute of Computer Vision and Robotics [Girona] (VICOROB), Universitat de Girona (UdG), Sydney Institute for Astronomy (SIfA), The University of Sydney, Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Aarhus], RAINOT, Elisabeth, Accurate ages of stars - STELLARAGES - - EC:FP7:ERC2013-10-01 - 2018-09-30 - 338251 - VALID, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Convection ,astro-ph.SR ,GALACTIC EVOLUTION EXPERIMENT ,Metallicity ,fundamental parameters [stars] ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,[SDU] Sciences of the Universe [physics] ,Correlation ,OF-STATE TABLES ,0103 physical sciences ,Convective mixing ,Astrophysics::Solar and Stellar Astrophysics ,Mass scale ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,SDSS-III/APOGEE SURVEY ,Physics ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,EFFECTIVE TEMPERATURE ,KEPLER RED GIANTS ,Astronomy and Astrophysics ,CHEMICAL ABUNDANCES ,ASTROPHYSICAL APPLICATIONS ,Astrophysics - Solar and Stellar Astrophysics ,STELLAR POPULATION SYNTHESIS ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,evolution [stars] ,DIGITAL SKY SURVEY ,NUCLEAR-REACTIONS ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity dependent convective mixing length is used, with $ \Delta\alpha_{\rm ML, YREC} \sim 0.2$ per dex in metallicity, a trend inconsistent with the predictions of three dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of 2 even at modest deviations from solar metallicity ([Fe/H]=$-$0.5)., Comment: 13 pages, 10 figures. Accepted for publication in the Astrophysical Journal. For a brief video discussing key results from this paper see https://www.youtube.com/watch?v=cV_0AhPAIRo . The data and models used in this paper are available at http://www.astronomy.ohio-state.edu/~tayar/MixingLength.htm
- Published
- 2017
45. Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages
- Author
-
Guy R. Davies, Daniel Huber, Sarbani Basu, Andrea Miglio, Kuldeep Verma, Hugo R. Coelho, Günter Houdek, Warrick H. Ball, Daniel R. Reese, Timothy R. Bedding, H. M. Antia, Anders Bo Justesen, Jørgen Christensen-Dalsgaard, Victor Silva Aguirre, Jakob Rørsted Mosumgaard, Mikkel N. Lund, Hans Kjeldsen, Yveline Lebreton, David W. Latham, Rasmus Handberg, B. M. Rendle, Timothy R. White, William J. Chaplin, Luca Casagrande, Danish AsteroSeismology Centre (DASC), Aarhus University [Aarhus], Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Dept of Agroecology, School of Physics and Astronomy, University of Birmingham [Birmingham], Sydney Institute for Astronomy (SIfA), The University of Sydney, Metacohorts Consortium, York Structural Biology Laboratory, Department of Chemistry, University of York [York, UK], Department of Physics and Astronomy [Aarhus], Cognition, Langues, Langage, Ergonomie (CLLE-ERSS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J)-Université Bordeaux Montaigne-Centre National de la Recherche Scientifique (CNRS), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), Institut d'Astrophysique et de Géophysique [Liège], Université de Liège, Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Toulouse - Jean Jaurès (UT2J), and Université de Toulouse (UT)-Université de Toulouse (UT)-Université Bordeaux Montaigne (UBM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
oscillations [stars] ,fundamental parameters [stars] ,FOS: Physical sciences ,Binary number ,asteroseismology ,Astrophysics ,01 natural sciences ,Kepler ,Angular diameter ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,Series (mathematics) ,010308 nuclear & particles physics ,Oscillation ,Astronomy and Astrophysics ,Radius ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Satellite ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modelling teams who applied different methods to determine radii, masses, and ages for all stars in the sample. Comparisons among the different results reveal a good level of agreement in all stellar properties, which is remarkable considering the variety of codes, input physics and analysis methods employed by the different teams. Average uncertainties are of the order of $\sim$2\% in radius, $\sim$4\% in mass, and $\sim$10\% in age, making this the best-characterised sample of main-sequence stars available to date. Our predicted initial abundances and mixing-length parameters are checked against inferences from chemical enrichment laws $\Delta Y / \Delta Z$ and predictions from 3D atmospheric simulations. We test the accuracy of the determined stellar properties by comparing them to the Sun, angular diameter measurements, Gaia parallaxes, and binary evolution, finding excellent agreement in all cases and further confirming the robustness of asteroseismically-determined physical parameters of stars when individual frequencies of oscillation are available. Baptised as the Kepler dwarfs LEGACY sample, these stars are the solar-like oscillators with the best asteroseismic properties available for at least another decade. All data used in this analysis and the resulting stellar parameters are made publicly available for the community., Comment: 23 pages, 14 figures, ApJ, accepted
- Published
- 2017
46. Standing on the shoulders of Dwarfs: the $Kepler$ asteroseismic LEGACY sample I - oscillation mode parameters
- Author
-
Anders Bo Justesen, Jørgen Christensen-Dalsgaard, Luca Casagrande, Daniel Huber, Timothy R. White, Victor Silva Aguirre, Jakob Rørsted Mosumgaard, Hans Kjeldsen, Yveline Lebreton, Rasmus Handberg, Warrick H. Ball, Timothy R. Bedding, Sarbani Basu, Guy R. Davies, Mikkel N. Lund, David W. Latham, Günter Houdek, William J. Chaplin, Kuldeep Verma, H. M. Antia, School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], Stellar Astrophysics Centre [Aarhus] (SAC), Aarhus University [Aarhus], Sydney Institute for Astronomy (SIfA), The University of Sydney, Institut für Astrophysik [Göttingen], Georg-August-University [Göttingen], Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Search for Extraterrestrial Intelligence Institute (SETI), Tata Institute of Fundamental Research [Bombay] (TIFR), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Department of Astronomy [New Haven], Yale University [New Haven], Research School of Astronomy and Astrophysics [Canberra] (RSAA), Australian National University (ANU), Tata Institute for Fundamental Research (TIFR), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Harvard University [Cambridge]-Smithsonian Institution, Georg-August-University = Georg-August-Universität Göttingen, Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), and Harvard University-Smithsonian Institution
- Subjects
oscillations [stars] ,fundamental parameters [stars] ,FOS: Physical sciences ,Astrophysics ,asteroseismology ,01 natural sciences ,Asteroseismology ,Spectral line ,symbols.namesake ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Line (formation) ,Physics ,010308 nuclear & particles physics ,Oscillation ,Mode (statistics) ,Astronomy and Astrophysics ,Markov chain Monte Carlo ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Stars ,Amplitude ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,evolution [stars] ,symbols ,Astrophysics::Earth and Planetary Astrophysics - Abstract
The advent of space-based missions like $Kepler$ has revolutionized the study of solar-type stars, particularly through the measurement and modeling of their resonant modes of oscillation. Here we analyze a sample of 66 $Kepler$ main-sequence stars showing solar-like oscillations as part of the $Kepler$ seismic LEGACY project. We use $Kepler$ short-cadence data, of which each star has at least 12 months, to create frequency power spectra optimized for asteroseismology. For each star we identify its modes of oscillation and extract parameters such as frequency, amplitude, and line width using a Bayesian Markov chain Monte Carlo `peak-bagging' approach. We report the extracted mode parameters for all 66 stars, as well as derived quantities such as frequency difference ratios, the large and small separations $\Delta\nu$ and $\delta\nu_{02}$; the behavior of line widths with frequency and line widths at $\nu_{\rm max}$ with $T_{\rm eff}$, for which we derive parametrizations; and behavior of mode visibilities. These average properties can be applied in future peak-bagging exercises to better constrain the parameters of the stellar oscillation spectra. The frequencies and frequency ratios can tightly constrain the fundamental parameters of these solar-type stars, and mode line widths and amplitudes can test models of mode damping and excitation., Comment: 29 pages, 27 Figures, 8 Tables, Accepted for publication in Apj
- Published
- 2017
47. The K2 Galactic Archaeology Program Data Release. I. Asteroseismic Results from Campaign 1
- Author
-
Rafael A. García, Savita Mathur, Sanjib Sharma, Joel C. Zinn, Guy R. Davies, William J. Chaplin, Caitlin Jones, Thomas Kallinger, Dennis Stello, Victor Silva Aguirre, Y. P. Elsworth, Benoit Mosser, Daniel Huber, Andrea Miglio, Stellar Astrophysics Centre [Aarhus] (SAC), Aarhus University [Aarhus], Department of Astronomy (Ohio State University), Ohio State University [Columbus] (OSU), School of Physics and Astronomy, University of Birmingham [Birmingham], Research institute of Computer Vision and Robotics [Girona] (VICOROB), Universitat de Girona (UdG), Instituut voor Sterrenkunde [Leuven], Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Département d'Astrophysique, de physique des Particules, de physique Nucléaire et de l'Instrumentation Associée (DAPNIA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Sydney Institute for Astronomy (SIfA), The University of Sydney, Department of Psychology, St John's University, Département des Sciences et Gestion de l'Environnement/Océanologie [Liège], Université de Liège, and Department of Physics and Astronomy [Aarhus]
- Subjects
Physics ,interiors [stars] ,[PHYS]Physics [physics] ,010308 nuclear & particles physics ,fundamental parameters [stars] ,Astronomy ,Astronomy and Astrophysics ,Planetary system ,01 natural sciences ,Stars ,Space and Planetary Science ,0103 physical sciences ,oscillations: including pulsations [stars] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Data release ,planetary systems ,general [Galaxy] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
48. Time-series Analysis of Broadband Photometry of Neptune from K2
- Author
-
Victor Silva Aguirre, François-Xavier Schmider, Patrick Gaulme, John E. Gizis, Sarah L. Casewell, Jason F. Rowe, Heidi B. Hammel, Knicole D. Colón, Mark S. Marley, Michael R. Haas, Othman Benomar, Rafael A. García, Jonathan J. Fortney, Benoit Mosser, Enrico Corsaro, William J. Chaplin, Thomas Barclay, Douglas A. Caldwell, Patrick Boumier, G. R. Davies, Jack J. Lissauer, Amy Simon, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center Cooperative for Research in Earth Science in Technology (ARC-CREST), NASA Ames Research Center (ARC), Max-Planck-Institut für Astrophysik (MPA), Max-Planck-Gesellschaft, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Psychology, St John's University, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), University of California [Santa Cruz] (UCSC), University of California, Research institute of Computer Vision and Robotics [Girona] (VICOROB), Universitat de Girona (UdG), University of Delaware [Newark], Laboratoire Hippolyte Fizeau (FIZEAU), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur les Exoplanètes (iREX), Université de Montréal (UdeM), New Mexico State University, Apache point observatory, NASA Goddard Space Flight Center (GSFC), Association of Universities for Research in Astronomy (AURA), Stellar Astrophysics Centre [Aarhus] (SAC), Aarhus University [Aarhus], Bay Area Environmental Research Institute (BAER), NYUAD Center for Space Science, New York University [Abu Dhabi], NYU System (NYU)-NYU System (NYU), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Search for Extraterrestrial Intelligence Institute (SETI), Department of Physics and Astronomy [Leicester], University of Leicester, School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Universidad de La Laguna [Tenerife - SP] (ULL), University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), and European Project: 267864,EC:FP7:ERC,ERC-2010-AdG_20100224,ASTERISK(2011)
- Subjects
gaseous planets [planets and satellites] ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,01 natural sciences ,Photometry (optics) ,Neptune ,Planet ,0103 physical sciences ,Broadband ,Astrophysics::Solar and Stellar Astrophysics ,Time series ,010303 astronomy & astrophysics ,planetary systems ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,Spacecraft ,business.industry ,Astronomy ,Astronomy and Astrophysics ,planets and satellites: gaseous planets ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics ,Solar variation - Abstract
We report here on our search for excess power in photometry of Neptune collected by the K2 mission that may be due to intrinsic global oscillations of the planet Neptune. To conduct this search, we developed new methods to correct for instrumental effects such as intrapixel variability and gain variations. We then extracted and analyzed the time-series photometry of Neptune from 49 days of nearly continuous broadband photometry of the planet. We find no evidence of global oscillations and place an upper limit of $\sim$5 ppm at 1000 \uhz\ for the detection of a coherent signal. With an observed cadence of 1-minute and point-to-point scatter less than 0.01\%, the photometric signal is dominated by reflected light from the Sun, which is in turn modulated by atmospheric variability of Neptune at the 2\% level. A change in flux is also observed due to the increasing distance between Neptune and the K2 spacecraft, and solar variability with convection-driven solar p modes present., Comment: 31 pages, 6 figure, accepted for publication in AJ
- Published
- 2017
49. Using low-mass stars as a tool: efforts towards precise models
- Author
-
Jørgen Christensen-Dalsgaard, Achim Weiss, and Victor Silva Aguirre
- Subjects
Red-giant branch ,Physics ,Stars ,Space and Planetary Science ,evolution [stars] ,interiors [Stars] ,Astrophysics::Solar and Stellar Astrophysics ,Astronomy and Astrophysics ,numerical [methods] ,Astrophysics ,Low Mass ,Astrophysics::Galaxy Astrophysics - Abstract
We present results of an on-going effort to identify the minimum level of systematic, purely numerical differences in low-mass stellar models on the Red Giant Branch, by comparing models in selected phases for pre-defined physical input assumptions.
- Published
- 2017
50. A fitting LEGACY – modelling Kepler's best stars
- Author
-
Victor Silva Aguirre, Douglas Gough, Mikkel N. Lund, Jørgen Christensen-Dalsgaard, and Magnus J. Aarslev
- Subjects
Physics ,Sequence ,010308 nuclear & particles physics ,QC1-999 ,Astrophysics ,01 natural sciences ,Sample (graphics) ,Kepler ,Stars ,0103 physical sciences ,Ball (mathematics) ,Observation data ,Cadence ,010303 astronomy & astrophysics - Abstract
The LEGACY sample represents the best solar-like stars observed in the Kepler mission[5, 8]. The 66 stars in the sample are all on the main sequence or only slightly more evolved. They each have more than one year's observation data in short cadence, allowing for precise extraction of individual frequencies. Here we present model fits using a modified ASTFIT procedure employing two different near-surface-effect corrections, one by Christensen-Dalsgaard[4] and a newer correction proposed by Ball & Gizon[1]. We then compare the results obtained using the different corrections. We find that using the latter correction yields lower masses and significantly lower χ 2 values for a large part of the sample.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.