1. Advances in Vibrio -related infection management: an integrated technology approach for aquaculture and human health.
- Author
-
Mishra A, Kim HS, Kumar R, and Srivastava V
- Subjects
- Humans, Animals, Aquaculture methods, Vibrio Infections therapy, Vibrio
- Abstract
Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio -related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio -related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.
- Published
- 2024
- Full Text
- View/download PDF