111 results on '"Vezy, Rémi"'
Search Results
2. Evaluating a new intercrop model for capturing mixture effects with an extensive intercrop dataset
- Author
-
Demie, Dereje T., Wallach, Daniel, Döring, Thomas F., Ewert, Frank, Gaiser, Thomas, Hadir, Sofia, Krauss, Gunther, Paul, Madhuri, Hernández-Ochoa, Ixchel M., Vezy, Rémi, and Seidel, Sabine J.
- Published
- 2025
- Full Text
- View/download PDF
3. Modeling soil-plant functioning of intercrops using comprehensive and generic formalisms implemented in the STICS model
- Author
-
Vezy, Rémi, Munz, Sebastian, Gaudio, Noémie, Launay, Marie, Lecharpentier, Patrice, Ripoche, Dominique, and Justes, Eric
- Published
- 2023
- Full Text
- View/download PDF
4. To what extent are greenhouse-gas emissions offset by trees in a Sahelian silvopastoral system?
- Author
-
Agbohessou, Yélognissè, Delon, Claire, Mougin, Eric, Grippa, Manuela, Tagesson, Torbern, Diedhiou, Moussa, Ba, Seydina, Ngom, Daouda, Vezy, Rémi, Ndiaye, Ousmane, Assouma, Mohamed H., Diawara, Mamadou, and Roupsard, Olivier
- Published
- 2023
- Full Text
- View/download PDF
5. Advancing Fine Branch Biomass Estimation with Lidar and Structural Models
- Author
-
Millan, Mathilde, primary, Bonnet, Alexis, additional, Dauzat, Jean, additional, and Vezy, Rémi, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Combining modeling and experimental approaches for developing rice–oil palm agroforestry systems.
- Author
-
Perez, Raphaël P A, Vezy, Rémi, Bordon, Romain, Laisné, Thomas, Roques, Sandrine, Rebolledo, Maria-Camila, Rouan, Lauriane, Fabre, Denis, Gibert, Olivier, and Raissac, Marcel De
- Subjects
- *
AGROFORESTRY , *OIL palm , *RICE , *RICE oil , *EXTREME weather , *WATER efficiency , *CLIMATE extremes , *PRODUCTION losses - Abstract
Monoculture systems in South East Asia are facing challenges due to climate change-induced extreme weather conditions, leading to significant annual production losses in rice and oil palm. To ensure the stability of these crops, innovative strategies like resilient agroforestry systems need to be explored. Converting oil palm (Elaeis guineensis) monocultures to rice (Oryza sativa)-based intercropping systems shows promise, but achieving optimal yields requires adjusting palm density and identifying rice varieties adapted to changes in light quantity and diurnal fluctuation. This paper proposes a methodology that combines a model of light interception with indoor experiments to assess the feasibility of rice–oil palm agroforestry systems. Using a functional–structural plant model of oil palm, the planting design was optimized to maximize transmitted light for rice. Simulation results estimated the potential impact on oil palm carbon assimilation and transpiration. In growth chambers, simulated light conditions were replicated with adjustments to intensity and daily fluctuation. Three light treatments independently evaluated the effects of light intensity and fluctuation on different rice accessions. The simulation study revealed intercropping designs that significantly increased light transmission for rice cultivation with minimal decrease in oil palm densities compared with conventional designs. The results estimated a loss in oil palm productivity of less than 10%, attributed to improved carbon assimilation and water use efficiency. Changes in rice plant architecture were primarily influenced by light quantity, while variations in yield components were attributed to light fluctuations. Different rice accessions exhibited diverse responses to light fluctuations, indicating the potential for selecting genotypes suitable for agroforestry systems. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. DynACof: A process-based model to study growth, yield and ecosystem services of coffee agroforestry systems
- Author
-
Vezy, Rémi, le Maire, Guerric, Christina, Mathias, Georgiou, Selena, Imbach, Pablo, Hidalgo, Hugo G., Alfaro, Eric J., Blitz-Frayret, Céline, Charbonnier, Fabien, Lehner, Peter, Loustau, Denis, and Roupsard, Olivier
- Published
- 2020
- Full Text
- View/download PDF
8. Combining modelling and experimental approaches to assess the feasibility of developing rice-oil palm agroforestry system
- Author
-
Perez, Raphaël P A, primary, Vezy, Rémi, additional, Bordon, Romain, additional, Laisné, Thomas, additional, Roques, Sandrine, additional, Rebolledo, Maria-Camila, additional, Rouan, Lauriane, additional, Fabre, Denis, additional, Gibert, Olivier, additional, and De Raissac, Marcel, additional
- Published
- 2024
- Full Text
- View/download PDF
9. Calibrating the STICS soil-crop model to explore the impact of agroforestry parklands on millet growth
- Author
-
Sow, Sidy, primary, Senghor, Yolande, additional, Sadio, Khardiatou, additional, Vezy, Rémi, additional, Roupsard, Olivier, additional, Affholder, François, additional, N’dienor, Moussa, additional, Clermont-Dauphin, Cathy, additional, Gaglo, Espoir Koudjo, additional, Ba, Seydina, additional, Tounkara, Adama, additional, Balde, Alpha Bocar, additional, Agbohessou, Yelognissè, additional, Seghieri, Josiane, additional, Sall, Saidou Nourou, additional, Couedel, Antoine, additional, Leroux, Louise, additional, Jourdan, Christophe, additional, Diaite, Diaminatou Sanogo, additional, and Falconnier, Gatien N., additional
- Published
- 2024
- Full Text
- View/download PDF
10. Evaluating a New Intercrop Model Using an Extensive Spring Wheat/Faba Bean Intercrop Dataset
- Author
-
Demie, Dereje T., primary, Wallach, Daniel, additional, Döring, Thomas Felix, additional, Ewert, Frank, additional, Gaiser, Thomas, additional, Hadir, Sofia, additional, Kraus, Gunther, additional, Paul, Madhuri Rani, additional, Hernandez-Ochoa, Ixchel Manuela, additional, Vezy, Rémi, additional, and Seidel, Sabine J., additional
- Published
- 2024
- Full Text
- View/download PDF
11. Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model
- Author
-
Vezy, Rémi, Christina, Mathias, Roupsard, Olivier, Nouvellon, Yann, Duursma, Remko, Medlyn, Belinda, Soma, Maxime, Charbonnier, Fabien, Blitz-Frayret, Céline, Stape, José-Luiz, Laclau, Jean-Paul, de Melo Virginio Filho, Elias, Bonnefond, Jean-Marc, Rapidel, Bruno, Do, Frédéric C., Rocheteau, Alain, Picart, Delphine, Borgonovo, Carlos, Loustau, Denis, and le Maire, Guerric
- Published
- 2018
- Full Text
- View/download PDF
12. PlantSimEngine: A Simulation Engine For The Soil-Plant-Atmosphere System
- Author
-
Vezy, Rémi, primary
- Published
- 2023
- Full Text
- View/download PDF
13. PlantBiophysics.jl: a Julia package for fast and easy calibration, prototyping and simulation of biophysical models
- Author
-
Vezy, Rémi, Treillou, Simon, Peynaud, Emilie, Arsouze, Thomas, Perez, Raphaël, Dauzat, Jean, Vezy, Rémi, Treillou, Simon, Peynaud, Emilie, Arsouze, Thomas, Perez, Raphaël, and Dauzat, Jean
- Published
- 2023
14. Testing the capacity of an oil palm FSPM to simulate changes in water and carbon dioxide fluxes under a range of climatic conditions
- Author
-
Perez, Raphaël, Torrelli, Valentin, Roques, Sandrine, Devidal, Sébastien, Piel, Clément, Landais, Damien, Ramel, Merlin, Arsouze, Thomas, Caliman, Jean-Pierre, Vezy, Rémi, Perez, Raphaël, Torrelli, Valentin, Roques, Sandrine, Devidal, Sébastien, Piel, Clément, Landais, Damien, Ramel, Merlin, Arsouze, Thomas, Caliman, Jean-Pierre, and Vezy, Rémi
- Published
- 2023
15. MaCS4Plants: A mathematic & computer science network for FSPM
- Author
-
Arsouze, Thomas, Beurier, Grégory, Boudon, Frédéric, Fernandez, Romain, Labadie, Marc, Perez, Raphaël, Vezy, Rémi, Jaeger, Marc, Pradal, Christophe, Arsouze, Thomas, Beurier, Grégory, Boudon, Frédéric, Fernandez, Romain, Labadie, Marc, Perez, Raphaël, Vezy, Rémi, Jaeger, Marc, and Pradal, Christophe
- Published
- 2023
16. Is the Impact of Livestock on Greenhouse Gas Emissions Offset by the Presence of Trees in a Sahelian Silvopastoral System?
- Author
-
Agbohessou, Yélognissè F., primary, Delon, Claire, additional, Mougin, Eric, additional, Grippa, Manuela, additional, Tagesson, Torbern, additional, Diedhiou, Moussa, additional, Ba, Seydina, additional, Ngom, Daouda, additional, Vezy, Rémi, additional, Ndiaye, Ousmane, additional, Assouma, Mohamed H., additional, and Roupsard, Olivier, additional
- Published
- 2023
- Full Text
- View/download PDF
17. PlantBiophysics.jl: a set of Julia packages for fast and easy calibration, prototyping and simulation of plant models
- Author
-
Vezy, Rémi, Perez, Raphaël P.A., Treillou, Simon, Arsouze, Thomas, and Dauzat, Jean
- Published
- 2023
- Full Text
- View/download PDF
18. Coupling LiDAR and structural models to improve the estimation of aboveground woody biomass
- Author
-
Vezy, Rémi, Millan, Mathilde, Bonnet, Alexis, Dauzat, Jean, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM), Département Systèmes Biologiques (Cirad-BIOS), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
architecture ,topology ,Multi-Scale Tree Graph ,[SDE.IE]Environmental Sciences/Environmental Engineering ,walnut ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,tree ,agroforestry ,laser ,[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agriculture ,[SDE]Environmental Sciences ,allometry ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
LiDAR is a promising tool for fast and accurate measurements of trees. There are several approaches to estimate aboveground woody biomass using LiDAR point clouds. One of the most widely used method consists in fitting geometric primitives (e.g. cylinders) to the point cloud, thereby reconstructing both the geometry and topology of the tree. However, current algorithms are not suited for accurate estimation of the biomass of finer branches, because of the unreliable point dispersions from the movements induced by wind, occlusion in the upper canopy, or the relatively large laser footprint compared to the structure diameter. We propose a new method that couples point cloud-based reconstructions and structural models to estimate accurately the aboveground woody biomass of trees, including finer branches. The model was trained using branch samples from the trees, and accurately predicted the biomass with 1.6% nRMSE at the segment scale from a k-fold cross-validation. It also gave satisfactory results when up-scaled to the branch level with a significantly lower error (13% nRMSE) and bias (-5%) compared to fitting cylinders to the point cloud (nRMSE: 92%), or using the pipe model theory (nRMSE: 31%). The model was then applied to the whole-tree scale, and showed that the sampled trees had more than 1.7km of structures in average, and that 96% of that length was coming from the twigs (i.e.
- Published
- 2022
19. Combining modelling and experimental approaches to assess the feasibility of developing rice-oil palm agroforestry system
- Author
-
Perez, Raphaël P.A, primary, Vezy, Rémi, additional, Bordon, Romain, additional, Laisné, Thomas, additional, Roques, Sandrine, additional, Rebolledo, Maria-Camila, additional, Rouan, Lauriane, additional, Fabre, Denis, additional, Gibert, Olivier, additional, and De Raissac, Marcel, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Modelling intercrops functioning to advance the design of innovative agroecological systems
- Author
-
Vezy, Rémi, primary, Munz, Sebastian, additional, Gaudio, Noémie, additional, Launay, Marie, additional, Lecharpentier, Patrice, additional, Ripoche, Dominique, additional, and Justes, Eric, additional
- Published
- 2022
- Full Text
- View/download PDF
21. When architectural plasticity fails to counter the light competition imposed by planting design: An in silico approach using a functional–structural model of oil palm
- Author
-
Perez, Raphaël, Vezy, Rémi, Brancheriau, Loïc, Boudon, Frédéric, Grand, François, Ramel, Merlin, Raharjo, Doni Artanto, Caliman, Jean-Pierre, Dauzat, Jean, Perez, Raphaël, Vezy, Rémi, Brancheriau, Loïc, Boudon, Frédéric, Grand, François, Ramel, Merlin, Raharjo, Doni Artanto, Caliman, Jean-Pierre, and Dauzat, Jean
- Abstract
Functional–structural plant modelling approaches (FSPM) explore the relationships between the 3D structure and the physiological functioning of plants in relation to environmental conditions. In this study, we present a methodological approach that integrated architectural responses to planting design in an oil palm FSPM, and test the impact of planting design and architectural plasticity on physiological responses such as light interception and carbon assimilation. LiDAR-derived and direct measurements were performed on five planting designs to assess the phenotypic plasticity of architectural traits, and allowed evaluating the variations of the main parameters of an existing 3D plant model. Accordingly, we proposed a neighbourhood index (NI) as a simple explanatory variable of architectural plasticity, and used NI-based allometries to simulate architectural variations in 3D virtual plants. Light interception and carbon assimilation were then simulated on virtual plots reproducing the five studied designs. We found that the main traits affected by plant proximity were leaf dimensions, leaf weight and leaf erectness, whereas other structural traits like the frequency of leaflets along the rachis or biomechanical properties of leaves remained unchanged. Our simulation study highlighted model compliance to reproduce architectural plasticity and illustrated how architectural plasticity improved light interception via leaf area expansion, but how the competition for light imposed by the design can counterbalance this benefit in terms of carbon assimilation at stand scale. We conclude on the importance of planting patterns for plants with low architectural plasticity such as oil palm, and how in silico experiments can help in designing innovative planting patterns.
- Published
- 2022
22. Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition
- Author
-
Gaudio, Noemie, Louarn, Gaëtan, Barillot, Romain, Meunier, Clémentine, Vezy, Rémi, Launay, Marie, Gaudio, Noemie, Louarn, Gaëtan, Barillot, Romain, Meunier, Clémentine, Vezy, Rémi, and Launay, Marie
- Abstract
Promoting plant diversity through crop mixtures is a mainstay of the agroecological transition. Modelling this transition requires considering both plant–plant interactions and plants' interactions with abiotic and biotic environments. Modelling crop mixtures enables designing ways to use plant diversity to provide ecosystem services, as long as they include crop management as input. A single modelling approach is not sufficient, however, and complementarities between models may be critical to consider the multiple processes and system components involved at different and relevant spatial and temporal scales. In this article, we present different modelling solutions implemented in a variety of examples to upscale models from local interactions to ecosystem services. We highlight that modelling solutions (i.e. coupling, metamodelling, inverse or hybrid modelling) are built according to modelling objectives (e.g. understand the relative contributions of primary ecological processes to crop mixtures, quantify impacts of the environment and agricultural practices, assess the resulting ecosystem services) rather than to the scales of integration. Many outcomes of multispecies agroecosystems remain to be explored, both experimentally and through the heuristic use of modelling. Combining models to address plant diversity and predict ecosystem services at different scales remains rare but is critical to support the spatial and temporal prediction of the many systems that could be designed.
- Published
- 2022
23. Modelando o balanço de radiação e os ciclos de carbono e água nas plantações de eucalipto
- Author
-
Le Maire, Guerric, Attia, Ahmed, Bouillet, Jean-Pierre, Campoe, Otavio, Christina, Mathias, Cornut, Ivan, Cuadra, Santiago, Laclau, Jean-Paul, Guillemot, Joannès, Marsden, Claire, Nouvellon, Yann, De Oliveira, Ivanka Rosada, Stape, Jose Luiz, Vezy, Rémi, Le Maire, Guerric, Attia, Ahmed, Bouillet, Jean-Pierre, Campoe, Otavio, Christina, Mathias, Cornut, Ivan, Cuadra, Santiago, Laclau, Jean-Paul, Guillemot, Joannès, Marsden, Claire, Nouvellon, Yann, De Oliveira, Ivanka Rosada, Stape, Jose Luiz, and Vezy, Rémi
- Published
- 2022
24. Une plateforme logicielle au Cirad pour la gestion et l'ouverture contrôlée des codes sources : application à l'agroforesterie dans l'intensification durable en Afrique de l'Ouest
- Author
-
Blitz-Frayret, Céline, Auzoux, Sandrine, Sow, Sidy, Diop, Cheikh, Vezy, Rémi, Roupsard, Olivier, Do, Frédéric C., Le Maire, Guerric, Blitz-Frayret, Céline, Auzoux, Sandrine, Sow, Sidy, Diop, Cheikh, Vezy, Rémi, Roupsard, Olivier, Do, Frédéric C., and Le Maire, Guerric
- Published
- 2022
25. Agrobranche - 2022. Étude de la valorisation des branches en agroforesterie pour les filières matériaux et chimie biosourcées. Rapport final
- Author
-
Liagre, Fabien, Béral, Camille, Ori, Danièle, Martin Chave, Ambroise, Le Moigne, Nicolas, Beigbeder, Joana, Corn, Stephane, Gallard, Benjamin, Rabatel, Julie, Doineau, Estelle, Marchal, Rémy, Candelier, Kévin, Vezy, Rémi, Dauzat, Jean, Senegas, Isabelle, Cahierre, Alice, Le Port, Samuel, Gérardin, Philippe, Dumarçay, Stéphane, Fredon, Emmanuel, Day, Arnaud, Duborper, Alexis, and Bono, Pierre
- Abstract
L'agroforesterie consiste à faire pousser des arbres en association avec des cultures agricoles et / ou en présence de troupeaux d'animaux. Les avantages d'une telle pratique sont nombreux, tant du point de vue de la production agricole que de la protection de l'environnement. Sur le terrain, on observe une meilleure productivité individuelle des arbres agroforestiers mesurée (jusqu'à trois fois le volume raméal des mêmes arbres mais en conditions forestières). La récolte de ces branches est une nécessité pour la bonne gestion agricole. La valorisation de cette biomasse permettrait d'améliorer la rentabilité des parcelles agroforestières et d'inciter les agriculteurs à intégrer davantage les arbres dans leur environnement de production. Et pour les industriels, ce serait également la possibilité d'obtenir plus facilement et durablement des matières premières de qualité dans des démarches agroécologiques reconnues. Le projet Agrobranche visait à étudier la valorisation de cette biomasse dans les domaines des matériaux et de la chimie biosourcés. Agrobranche a permis de quantifier la productivité de ces systèmes et de définir les contours de leur rentabilité. Les partenaires aval ont pu qualifier le potentiel industriel dans les domaines des matériaux composites et panneaux, tout en explorant les principales caractéristiques chimiques des plaquettes agroforestières selon 4 essences principales (noyer, peuplier, châtaignier et chêne), mais aussi à partir de bois déchiqueté issus de plateformes de bois énergie (mix d'essences). Le comportement des matériaux testés est très encourageant, avec des performances souvent égales aux standards issus de matériaux comme l'épicéa forestier ou le miscanthus. Mais l'intérêt, qui a pu être approché dans l'ACV, réside également dans le mode de production. Car produire de la plaquette agroforestière concilie production biomasse et maintien de la production agricole contrairement aux productions biomasses dédiées. Et les services rendus pèsent dans la balance auprès des acteurs de la filière, qu'ils soient les clients finaux comme les intermédiaires.
- Published
- 2022
26. When architectural plasticity fails to counter the light competition imposed by planting design: an in silico approach using a functional–structural model of oil palm
- Author
-
Perez, Raphaël P A, primary, Vezy, Rémi, additional, Brancheriau, Loïc, additional, Boudon, Frédéric, additional, Grand, François, additional, Ramel, Merlin, additional, Artanto Raharjo, Doni, additional, Caliman, Jean-Pierre, additional, and Dauzat, Jean, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Gestion des risques liés à la rouille orangée du caféier (Hemileia vastatrix) en Amérique centrale : apports de simulations interactives en distanciel
- Author
-
Leclerc, Grégoire, primary, Bommel, Pierre, additional, Motisi, Natacha, additional, Vezy, Rémi, additional, Treminio, Edwin, additional, and Avelino, Jacques, additional
- Published
- 2021
- Full Text
- View/download PDF
28. Exploring complementarities between modelling approaches that enable upscaling from plant community functioning to ecosystem services as a way to support agroecological transition
- Author
-
Gaudio, Noémie, primary, Louarn, Gaëtan, additional, Barillot, Romain, additional, Meunier, Clémentine, additional, Vezy, Rémi, additional, and Launay, Marie, additional
- Published
- 2021
- Full Text
- View/download PDF
29. Recent advances in intercropping modelling: the new version of the STICS soil-crop model simulates consistently a wide range of bi-specific annual intercrops
- Author
-
Justes, Eric, Vezy, Rémi, Munz, Sebastian, Paff, Kirsten, Bedoussac, Laurent, Gaudio, Noémie, Lecharpentier, Patrice, Ripoche, Dominique, Launay, Marie, Direction Générale Déléguée à la Recherche et à la Stratégie (Cirad-Dgdrs), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Universität Hohenheim, Agrosystèmes Biodiversifiés (UMR ABSys), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), AGroécologie, Innovations, teRritoires (AGIR), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA), Agroclim (AGROCLIM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Association of Applied Biologists, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,Sticks ,Intercropping ,Barley ,[SDV]Life Sciences [q-bio] ,Wheat ,Pea ,Crop model ,Bi-specific - Abstract
International audience; STICS is a dynamic soil-crop model capable of simulating diverse crop rotations over short and long-term (Brisson et al., 2003). Intercropping increases the complexity of the system by adding inter-species competition. Crop models are useful tools for analyzing complex systems, as they allow the user far more control over individual variables than is possible in field experiments. An initial version of the STICS intercrop model was created by Brisson et al. (2004) from the standard version (Brisson et al., 2003). Recently Vezy et al. (2020) improved this initial version [STICS-Intercrop_v2020] by adding new formalisms and replacing some equations which were not found relevant during the first step of testing with our database. The aim of paper is to present the STICS-Intercrop_v2020 functions and to show the quality of simulations obtained for a wide range of winter and spring intercrop mixtures of durum wheat - winter pea and barley - spring pea. STICS-Intercrop_v2020 was tested for two sites in France using various plant densities and N-fertilizer rates in order to determine its relevance and validity domain for simulating intercropping. This research work was done in 3 main steps: 1) improving the existing formalisms and introducing new equations in the model algorithm for improving the light sharing and nitrogen competition between the two species, and then creating the new version STICS-Intercrop_v2020; 2) parameterising the model for sole crops only; and 3) independently evaluating the quality of predictions for intercrops without any re-parametrisation. The results of parametrisation were satisfactory with low Root Mean Square Errors and high Model Efficiencies, illustrating the robustness and accuracy for sole crops, as already shown for many crops, pedoclimatioc conditions and agronomic managements (Brisson et al., 2003). STICS-Intercrop_v2020 was reliably and efficient to simulate inter-specific interactions, development and growth variables, and provided coherent results for predicting yield and grain protein content for the two species, in winter and spring bi-specific cereal-legume intercrops, without any specific parameterization for intercropping. This illustrates the relevance of the formalisms to simulate dynamically both intra and inter-specific plant interactions. These results are very encouraging for using the STICS-intercrop model for future work where virtual experiments will help us to analyse the performance (LER, level of production in low inputs systems, etc.) and resilience of sole crops versus intercrops according to management practices, pedoclimatic variability and climate change scenarios. This work was part of the ReMIX project funded by EU H2020 program.
- Published
- 2021
30. Monitoreo de servicios ecosistémicos en un observatorio de cafetales agroforestales. Recomendaciones para el sector cafetalero
- Author
-
Roupsard, Olivier, Allinne, Clémentine, Van Den Meersche, Karel, Vaast, Philippe, Rapidel, Bruno, Avelino, Jacques, Jourdan, Christophe, Le Maire, Guerric, Bonnefond, Jean-Marc, Harmand, Jean-Michel, Dauzat, Jean, Albrecht, Alain, Chevallier, Tiphaine, Barthès, Bernard, Clément-Vidal, Anne, Gómez-Delgado, Federico, Charbonnier, Fabien, Benegas, Laura, Welsh, Kristen, Kinoshita, Rintaro, Vezy, Rémi, Pérez-Molina, Junior Pastor, Kim, John, Taugourdeau, Simon, Defrenet, Elsa, Nespoulous, Jérôme, Rançon, Florian, Guidat, Florian, Cambou, Aurélie, Soma, Maxime, Mages, Carolin, Schnabel, Florian, Prieto, Iván, Picart, Delphine, Duthoit, Maxime, Rocheteau, Alain, Do, Frédéric C., de Melo Virginio Filho, Elias, Moussa, Rachida, Le Bissonnais, Yves, Valentin, Christian, Sánchez-Murillo, Ricardo, Roumet, Catherine, Stokes, Alexia, Vierling, Lee A., Eitel, Jan U.H., Dreyer, Erwin, Saint-André, Laurent, Malmer, Anders, Loustau, Denis, Isaac, Marney E., Martin, Adam R., Priemé, Anders, Eberling, Bo, Madsen, Mikael, Robelo, Alfonso, Robelo, Diego, Borgonovo, Carlos, Lehner, Peter, Ramirez, Guillermo, Jara, Manuel, Acuna Vargas, Rafael, Barquero, Alejandra, Fonseca, Carlos, and Gay, Frédéric
- Abstract
Ocho años de estudio de la ecofisiología del café, a través de experimentación y de modelación y el monitoreo de los servicios del ecosistema (SE) en una gran finca cafetalera en Costa Rica, revelaron varias recomendaciones prácticas para los agricultores y los formuladores de políticas. El sistema de cultivo estudiado dentro de nuestro observatorio colaborativo (Coffee-Flux), corresponde a un sistema agroforestal (SAF) a base de café bajo la sombra de grandes árboles de Erythrina poeppigiana (16% de la cubierta del dosel). Una gran cantidad de SE y limitantes dependen de las propiedades locales del suelo (en este caso Andisoles), especialmente de la erosión/infiltración, el agua/carbono y la capacidad de almacenamiento de nutrientes. Por lo tanto, para la evaluación de SE, el tipo de suelo es crucial. Una densidad adecuada de árboles de sombra (bastante baja aquí por la condición de libre crecimiento), redujo la severidad de las enfermedades de las hojas con la posibilidad de reducir el uso de plaguicidas y fungicidas. Un inventario simple del área basal en el collar de las plantas de café permitió estimar la biomasa subterránea y la edad promedio de la plantación, para juzgar su valor de mercado y decidir cuándo reemplazarla. Las fincas de café probablemente estén mucho más cerca de la neutralidad de C que lo indicado en el protocolo actual de C-neutralidad, que solo considera árboles de sombra, no los cafetos ni el suelo. Se proponen evaluaciones más completas, que ncluyen árboles, café, hojarasca, suelo y raíces en el balance C del SAF. Los árboles de sombra ofrecen muchos SE si se gestionan adecuadamente en el contexto local. En comparación con las condiciones a pleno sol, los árboles de sombra pueden (i) reducir la erosión laminar en un factor de 2; (ii) aumentar la fijación de N y el % de N reciclado en el sistema, reduciendo así los requisitos de fertilizantes; (iii) reducir la severidad de enfermedades de las hojas; (iv) aumentar el secuestro de C; (v) mejorar el microclima y (vi) reducir sustancialmente los efectos del cambio climático. En nuestro estudio de caso, no se encontró ningún efecto negativo sobre el rendimiento del café.
- Published
- 2021
31. Gestion des risques liés à la rouille orangée du caféier (Hemileia vastatrix) en Amérique centrale : apports de simulations interactives en distanciel
- Author
-
Leclerc, Grégoire, Bommel, Pierre, Motisi, Natacha, Vezy, Rémi, Treminio, Edwin, Avelino, Jacques, Leclerc, Grégoire, Bommel, Pierre, Motisi, Natacha, Vezy, Rémi, Treminio, Edwin, and Avelino, Jacques
- Abstract
Les épidémies de rouille orangée du caféier (ROC) entraînent des crises socio-économiques qui menacent la durabilité des territoires de production de café en Amérique Centrale. Nous présentons le processus de co-construction d'un modèle de prévision de la ROC et sa mise en oeuvre lors d'ateliers participatifs de simulation interactive (SI) visant à renforcer les capacités des acteurs de la caféiculture pour faire face à la ROC. Basée sur un modèle de croissance du caféier et de la ROC, ce modèle fait évoluer un système caféier-ROC en fonction de la météorologie. Dans le contexte de l'agriculture familiale, les participants disposent de capacités réduites les obligeant à la parcimonie pour lutter contre la ROC. La SI a dû être virtualisée en raison de la pandémie de Covid-19, ce qui a nécessité des compromis sur les échanges entre participants mais les objectifs d'apprentissage ont été atteints. La virtualisation a permis une participation étendue, des économies substantielles, une meilleure gestion du temps, une prise en compte des opinions individuelles, le débriefing à chaud et la traçabilité des décisions. Plus contraignante, la virtualisation est aussi une opportunité pour améliorer nos pratiques de SI.
- Published
- 2021
32. Toward a functional-structural model of oil palm accounting for architectural plasticity in response to planting density
- Author
-
Perez, Raphael, Vezy, Rémi, Brancheriau, Loïc, Boudon, Frédéric, Artanto Raharjo, Doni, Caliman, Jean-Pierre, Dauzat, Jean, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), BioWooEB (UPR BioWooEB), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)
- Subjects
FSPM ,plant architecture ,Lidar ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,planting Density ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,phenotypic plasticity - Abstract
International audience; Functional-structural plant modelling approaches (FSPM) open the way for exploring the relationships between the 3D structureandthe physiological functioningof plantsin relation to environmental conditions.FSPMscan beparticularly interesting when dealing with perennial crops like oil palm, for which research on innovative management practices requires long and expensive agronomic trials. The presentstudy is part of the PalmStudio project, whichaimsat developing a FSPMforoil palmcapable of conducting virtual experiments to test the relevance of innovative management practicedsand/or design ideotypes.We propose amethodologicalapproach which integrates architectural responses to planting densityin an existing oil palmFSPM(Perez et al.2018a b). Combining standard field phenotyping with Lidar-based derived measurements, wemanage toevaluate the phenotypic plasticity of the main parameters required for the calibration of the 3D plant model.LiDAR scans were processedusing the PlantScan3D software (Boudon et al. 2014)to derivephenotypic traits of leaf geometry that were compared to labour-intensive measurements. Density-based allometriesof leaf geometry and biomassarethenderived from theobserved variations in phenotypic traits and integrateintothe FSPM.Our results illustratethe accuracy and the efficiency of Lidar-based phenotypingofleaf geometrical traits. In average,we find less than 3%of difference in leaf dimensions (i.e.rachis length) in comparison with traditional hand-made field measurements.The fastand efficient measurements ofusuallylabour-intensive traits such as leaf curvatureallowed estimating the plasticity of leaf geometry in response to density. We find that the main traits affected by density were leaf dimensions(up to 15% and 25% of increase in rachislength and petiolelengthrespectively)and curvature(15% of increase in leaf erectness-related parameter), whereas other structural traits like the number of leaflets per leaf remained unchanged. Simple density-based allometric relationships were thenmodelled andcombined with the existing allometric-based 3D oil palm model VPalm (Perez et al.2018a). These data also enablethe development and the integrationin VPalm ofa biomechanical model simulating leaf curvature.The methodology presented in this study paves the way for a rapid integration of phenotypic plasticityin FSPMs. OurFSPM is now able toestimatehow planting density affectnot only plant architecture but alsofunctional processes such as carbon assimilation and transpiration.Ongoing research aims at coupling the current FSPM with a carbon allocation model (Pallas et al.2013)tosimulate the retroactions of functioning processes on plant architecture together with environmental and agronomic conditions
- Published
- 2020
33. Light exchanges in discrete directions as an alternative to raytracing and radiosity
- Author
-
Vezy, Rémi, Perez, Raphaël P.A., Grand, François, Dauzat, Jean, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Katrin Kahlen, Hartmut Stützel, Andreas Fricke, Tsu-Wei Chen, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
FSPM ,photosynthesis ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,scattering ,ARCHIMED ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,light interception - Abstract
International audience; Introduction Light modelling at the scale of organs is essential to account accurately for the complex interactions between biophysical processes such as photosynthesis, stomatal conductance and energy balance. Yet, the calculation of radiative exchanges at fine scales is computationally-intensive and it remains a hindrance to a widespread use of FSPMs despite advances in light modelling using either radiosity (Chelle and Andrieu, 1998) or raytracing (Bailey, 2018). This study shows that simplifications based on the discretization of radiative fluxes allow processing radiative exchanges in a natural environment while maintaining good accuracy on the simulation of biophysical processes such as carbon assimilation.
- Published
- 2020
34. Calibration and Evaluation of the STICS Intercrop Model for Two Cereal-Legume Mixtures
- Author
-
Paff, Kirsten, Munz, Sebastian, Vezy, Rémi, Gaudio, Noémie, Bedoussac, Laurent, Justes, Eric, Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens (UMR SYSTEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Hohenheim, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), AGroécologie, Innovations, teRritoires (AGIR), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA), Institute of Crop Science and Resource Conservation [Bonn] (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud]), and Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST)
- Subjects
[SDV]Life Sciences [q-bio] ,pea ,barley ,durum wheat ,Pois ,Blé dur ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,modèle de culture ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,ecological intensification ,crop modeling ,STICS Intercrop Model ,Intensification écologique ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Orge - Abstract
National audience; Introduction STICS is a soil-crop model capable of simulating crops in succession (Brisson et al., 2003). Intercropping occurs when multiple species are grown simultaneously on the same field. There has been a growing interest in adapting this traditional technique for modern agriculture as a way of ecological intensification, especially for combining leguminous and cereal crops in order to reduce N inputs and potential environmental damage through N losses. Intercropping adds complexity to the system by adding inter-species competition. Crop models are useful tools for analyzing complex systems, as they allow the user far more control over individual variables than is possible in field experiments. A first version of the STICS intercrop model was created by Brisson et al. (2004) and was recently improved by Vezy et al. (2020). The aim of this study was to calibrate and evaluate this improved STICS-Intercrop model by simulating a winter and a spring intercrop mixture: durum wheat-winter pea and barley-spring pea. Materials and Methods: The data set used for modelling comprised of four years of wheat (Triticum turgidum L.) and pea (Pisum sativum L.) field data from Auzeville, France with multiple levels of nitrogen fertilizer, and four years of barley (Hordeum vulgare L.) and pea field data from Angers, France (Corre-Hellou, 2005), which in some years included two levels of nitrogen fertilizer and two different plant densities of the intercrops. The sole crop trials were used for calibration and the intercrop trials for evaluation, except for a subset of intercrop data that was used to calibrate the parameters unique to the intercrop model. The assumption was that parameters common to both sole and intercropping, such as plant-soil interactions and phenology, would be the same for both. The optimization method used for calibration was based on Wallach et al. (2011). The parameters were broken down into 15 groups (16 for pea including nitrogen fixation) for calibration, each corresponding to a different process. Results and Discussion: The model calibration process is still ongoing. The root mean square error (RMSE) for shoot biomass was 1.92 t/ha for winter pea and 1.37 t/ha for durum wheat. The RMSE for grain yield was 1.84 t/ha for spring pea and 1.15 t/ha for barley. Overall the model captured the dominancy of one species quite well, however the accuracy has to be increased. The phenology and height were correctly simulated. Some of the discrepancies could be due to biological stresses that STICS does not capture. Some parameters for the pea-wheat model have not been calibrated yet, so the RMSE is likely to improve. Conclusions: Intercrop systems are difficult to model in comparison to sole crops due to their complex interactions, but the STICS model, after having completed the calibration, could be a useful tool for better understanding the biological functions of this management practice.
- Published
- 2020
35. More C uptake during the dry season? The case of a semi-arid agro-silvo-pastoral ecosystem dominated by Faidherbia albida, a tree with reverse phenology (Senegal)
- Author
-
Roupsard, Olivier, Do, Frédéric C., Rocheteau, Alain, Jourdan, Christophe, Orange, Didier, Tall, Laure, Sow, Sidy, Faye, W., Diongue, Djim M.L., Diouf, Khalisse, Agbohessou, Yélognissé, Diatta, Seydou, Faye, Serigne, Sarr, Mame Sokhna, Sanogo, Diaminatou, Le Maire, Guerric, Vezy, Rémi, Seghieri, Josiane, Chapuis-Lardy, Lydie, and Cournac, Laurent
- Subjects
Canopy ,Wet season ,biology ,Agronomy ,Faidherbia albida ,Phenology ,Evapotranspiration ,Dry season ,Environmental science ,Ecosystem respiration ,biology.organism_classification ,Multipurpose tree - Abstract
Agro-silvo-pastoralism is a highly representative Land Use in Africa, often presented as a strategical option for ecological intensification of cropping systems towards food security and sovereignty.We set up a new long-term observatory (“Faidherbia-Flux”) to monitor and model microclimate, energy and C balance in Niakhar (central Senegal, rainfall ~ 500 mm), dominated by the multipurpose tree Faidherbia albida (12.5 m high; 7 tree ha-1; 5% canopy cover). Faidherbia is an attractive agroforestry tree species in order to partition fluxes, given that it is on leaf during the dry season (October-June) and defoliated during the wet season, just when crops take over. Pearl-millet and groundnut crops were conducted during the wet season, following annual rotation in a complex mixed mosaic of ca. 1 ha fields.Early 2018, we installed an eddy-covariance (EC) tower above the whole mosaic (EC1: 20 m high). A second EC system was displayed above the crop (EC2: 4.5 m if pearl-millet, 2.5 m if groundnut) in order to partition ecosystem EC fluxes between tree layer and crop+soil layers. Sap-flow was monitored from April 2019 onwards in 5 faidherbia trees (37 sensors).The ecosystem displayed moderate but significant daily CO2 and H2O fluxes during the dry season, when faidherbia (low canopy cover) was in leaf and the soil was evaporating. At the onset of the rainy season, the soil bursted a large amount of CO2. Just after the growth of pearl-millet in 2018, CO2 uptake by photosynthesis increased dramatically. However, this was largely compensated by high ecosystem respiration. Surprisingly in 2019, although the crop was turned to groundnut, the fluxes behaved pretty much the same as with pearl millet in 2018: comparing annual balances between 2018 and 2019 we obtained [454, 513] for rainfall (P: mm yr-1), [3500, 3486] for potential evapotranspiration (ETo: mm yr-1), [0.13, 0.15] for P/ETo, [470, 497] for actual evapotranspiration (E: mm yr-1), [2809, 2785] for net radiation (Rn: MJ m-2 yr-1), [1686, 1645] for sensible heat flux (H: MJ m-2 yr-1), [-3.2, -2.8] for net ecosystem exchange of C (NEE: tC ha-1 yr-1), [-11.8, -11.1] for gross primary productivity (GPP: tC ha-1 yr-1) and [8.6, 8.3] for ecosystem respiration (Re: tC ha-1 yr-1). The energy balance (Rn-H-LE) was nearly nil indicating that the EC system behaved reasonably. E was very close to P, indicating that little or no water would recharge the deep soil layers.Now comparing the dry (2/3 of the year) and wet (1/3) seasons: surprisingly, NEE was more effective during the dry season [-3.9, -1.7]. This was the result of Re being much lower on a daily basis as well as cumulated over the entire seasons [57, 84], whereas GPP was similar [-10.8, -12.1].We found a good match between E measured above the whole ecosystem (EC1), and the sum of tree transpiration (T, measured by sapflow) + E measured just above crops + soil (EC2) throughout the wet and dry seasons.The “Faidherbia-Flux” observatory is registered in FLUXNET as SN-Nkr and is widely open for collaboration.
- Published
- 2020
36. Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
- Author
-
Berveiller, Daniel, Delpierre, Nicolas, Dufrêne, Eric, Joffre, Richard, Limousin, Jean-Marc, Ourcival, Jean-Marc, Klumpp, Katja, Darsonville, Olivier, Brut, Aurore, Tallec, Tiphaine, Ceschia, Eric, Panthou, Gérémy, Moreaux, Virginie, Martel, Simon, Bosc, Alexandre, Picart, Delphine, Achat, David, Moisy, Christophe, Aussenac, Raphael, Chipeaux, Christophe, Bonnefond, Jean-Marc, Figuères, Soisick, Trichet, Pierre, Vezy, Rémi, Badeau, Vincent, Longdoz, Bernard, Granier, André, Roupsard, Olivier, Nicolas, Manuel, Pilegaard, Kim, Matteucci, Giorgio, Jolivet, Claudy, Black, Andrew, Picard, Olivier, Loustau, Denis, Ecologie Systématique et Evolution (ESE), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Observatoire des Abeilles, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDE]Environmental Sciences - Abstract
International audience; Abstract. The mechanistic model GO+ describes the functioning and growth of managed forests based upon biophysical and biogeochemical processes. The biophysical and biogeochemical processes included are modelled using standard formulations of radiative transfer, convective heat exchange, evapotranspiration, photosynthesis, respiration, plant phenology, growth and mortality, biomass nutrient content, and soil carbon dynamics. The forest ecosystem is modelled as three layers, namely the tree overstorey, understorey and soil. The vegetation layers include stems, branches and foliage and are partitioned dynamically between sunlit and shaded fractions. The soil carbon submodel is an adaption of the Roth-C model to simulate the impact of forest operations. The model runs at an hourly time step. It represents a forest stand covering typically 1 ha and can be straightforwardly upscaled across gridded data at regional, country or continental levels. GO+ accounts for both the immediate and long-term impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes exhaustive and versatile descriptions of management operations (soil preparation, regeneration, vegetation control, selective thinning, clear-cutting, coppicing, etc.), thus permitting the effects of a wide variety of forest management strategies to be estimated: from close to nature to intensive. This paper examines the sensitivity of the model to its main parameters and estimates how errors in parameter values are propagated into the predicted values of its main output variables.The sensitivity analysis demonstrates an interaction between the sensitivity of variables, with the climate and soil hydraulic properties being dominant under dry conditions but the leaf biochemical properties being most influential with wet soil. The sensitivity profile of the model changes from short to long timescales due to the cumulative effects of the fluxes of carbon, energy and water on the stand growth and canopy structure. Apart from a few specific cases, the model simulations are close to the values of the observations of atmospheric exchanges, tree growth, and soil carbon and water stock changes monitored over Douglas fir, European beech and pine forests of different ages. We also illustrate the capacity of the GO+ model to simulate the provision of key ecosystem services, such as the long-term storage of carbon in biomass and soil under various management and climate scenarios.
- Published
- 2020
- Full Text
- View/download PDF
37. Calibration and Evaluation of the STICS Intercrop Model for Two Cereal-Legume Mixtures
- Author
-
Munz, Sebastian, Vezy, Rémi, Gaudio, Noemie, Bedoussac, Laurent, Justes, Eric, and Paff, Kirsten
- Subjects
ecological intensification ,crop modeling ,pea ,barley ,durum wheat - Abstract
Introduction STICS is a soil-crop model capable of simulating crops in succession (Brisson et al., 2003). Intercropping occurs when multiple species are grown simultaneously on the same field. There has been a growing interest in adapting this traditional technique for modern agriculture as a way of ecological intensification, especially for combining leguminous and cereal crops in order to reduce N inputs and potential environmental damage through N losses. Intercropping adds complexity to the system by adding inter-species competition. Crop models are useful tools for analyzing complex systems, as they allow the user far more control over individual variables than is possible in field experiments. A first version of the STICS intercrop model was created by Brisson et al. (2004) and was recently improved by Vezy et al. (2020). The aim of this study was to calibrate and evaluate this improved STICS-Intercrop model by simulating a winter and a spring intercrop mixture: durum wheat-winter pea and barley-spring pea. Materials and Methods: [br/]The data set used for modelling comprised of four years of wheat (Triticum turgidum L.) and pea (Pisum sativum L.) field data from Auzeville, France with multiple levels of nitrogen fertilizer, and four years of barley (Hordeum vulgare L.) and pea field data from Angers, France (Corre-Hellou, 2005), which in some years included two levels of nitrogen fertilizer and two different plant densities of the intercrops. The sole crop trials were used for calibration and the intercrop trials for evaluation, except for a subset of intercrop data that was used to calibrate the parameters unique to the intercrop model. The assumption was that parameters common to both sole and intercropping, such as plant-soil interactions and phenology, would be the same for both. The optimization method used for calibration was based on Wallach et al. (2011). The parameters were broken down into 15 groups (16 for pea including nitrogen fixation) for calibration, each corresponding to a different process. Results and Discussion: The model calibration process is still ongoing. The root mean square error (RMSE) for shoot biomass was 1.92 t/ha for winter pea and 1.37 t/ha for durum wheat. The RMSE for grain yield was 1.84 t/ha for spring pea and 1.15 t/ha for barley. Overall the model captured the dominancy of one species quite well, however the accuracy has to be increased. The phenology and height were correctly simulated. Some of the discrepancies could be due to biological stresses that STICS does not capture. Some parameters for the pea-wheat model have not been calibrated yet, so the RMSE is likely to improve. Conclusions: Intercrop systems are difficult to model in comparison to sole crops due to their complex interactions, but the STICS model, after having completed the calibration, could be a useful tool for better understanding the biological functions of this management practice.
- Published
- 2020
38. Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
- Author
-
Moreaux, Virginie, Martel, Simon, Bosc, Alexandre, Picart, Delphine, Achat, David, Moisy, Christophe, Aussenac, Raphael, Chipeaux, Christophe, Bonnefond, Jean-Marc, Figuères, Soisick, Trichet, Pierre, Vezy, Rémi, Badeau, Vincent, Longdoz, Bernard, Granier, André, Roupsard, Olivier, Nicolas, Manuel, Pilegaard, Kim, Matteucci, Giorgio, Jolivet, Claudy, Black, Andrew T., Picard, Olivier, Loustau, Denis, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), SILVA (SILVA), AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Office National des Forêts (ONF), Technical University of Denmark [Lyngby] (DTU), Consiglio Nazionale delle Ricerche (CNR), InfoSol (InfoSol), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of British Columbia (UBC), Centre National de la Propriété Forestière (CNPF), ANR-13-AGRO-0005,MACACC,Modélisation pour l'accompagnement des ACteurs, vers l'Adaptation des Couverts pérennes ou agroforestiers aux Changements globaux(2013), European Project: 730944,H2020,H2020-INFRADEV-2016-1,RINGO(2017), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Office national des forêts (ONF), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Centre National de la Propriété Forestière (CNPF-IDF), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
ENVIRONMENT SIMULATOR JULES ,Aménagement forestier ,STOMATAL CONDUCTANCE ,water and carbon exchanges ,MARITIME PINE ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,BEECH FAGUS-SYLVATICA ,biogéochimie ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Développement forestier ,K01 - Foresterie - Considérations générales ,SDG 13 - Climate Action ,CLIMATE-CHANGE ,PINUS-PINASTER AIT ,U10 - Informatique, mathématiques et statistiques ,SAP-FLOW ,forest ecosystems ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,séquestration du carbone ,Modélisation ,Écosystème forestier ,3 ORGANIZATIONAL SCALES ,accroissement forestier ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,SOIL CARBON ,PHOTOSYNTHETIC CAPACITY - Abstract
The mechanistic model GO+ describes the functioning and growth of managed forests based upon biophysical and biogeochemical processes. The biophysical and biogeochemical processes included are modelled using standard formulations of radiative transfer, convective heat exchange, evapotranspiration, photosynthesis, respiration, plant phenology, growth and mortality, biomass nutrient content, and soil carbon dynamics. The forest ecosystem is modelled as three layers, namely the tree overstorey, understorey and soil. The vegetation layers include stems, branches and foliage and are partitioned dynamically between sunlit and shaded fractions. The soil carbon submodel is an adaption of the Roth-C model to simulate the impact of forest operations. The model runs at an hourly time step. It represents a forest stand covering typically 1 ha and can be straightforwardly upscaled across gridded data at regional, country or continental levels. GO+ accounts for both the immediate and long-term impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes exhaustive and versatile descriptions of management operations (soil preparation, regeneration, vegetation control, selective thinning, clear-cutting, coppicing, etc.), thus permitting the effects of a wide variety of forest management strategies to be estimated: from close to nature to intensive. This paper examines the sensitivity of the model to its main parameters and estimates how errors in parameter values are propagated into the predicted values of its main output variables.The sensitivity analysis demonstrates an interaction between the sensitivity of variables, with the climate and soil hydraulic properties being dominant under dry conditions but the leaf biochemical properties being most influential with wet soil. The sensitivity profile of the model changes from short to long timescales due to the cumulative effects of the fluxes of carbon, energy and water on the stand growth and canopy structure. Apart from a few specific cases, the model simulations are close to the values of the observations of atmospheric exchanges, tree growth, and soil carbon and water stock changes monitored over Douglas fir, European beech and pine forests of different ages. We also illustrate the capacity of the GO+ model to simulate the provision of key ecosystem services, such as the long-term storage of carbon in biomass and soil under various management and climate scenarios.
- Published
- 2020
- Full Text
- View/download PDF
39. Energy, water and carbon exchanges in managed forest ecosystems:Description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
- Author
-
Moreaux, Virginie, Martel, Simon, Bosc, Alexandre, Picart, Delphine, Achat, David, Moisy, Christophe, Aussenac, Raphael, Chipeaux, Christophe, Bonnefond, Jean Marc, Figuères, Soisick, Trichet, Pierre, Vezy, Rémi, Badeau, Vincent, Longdoz, Bernard, Granier, André, Roupsard, Olivier, Nicolas, Manuel, Pilegaard, Kim, Matteucci, Giorgio, Jolivet, Claudy, Black, Andrew T., Picard, Olivier, Loustau, Denis, Moreaux, Virginie, Martel, Simon, Bosc, Alexandre, Picart, Delphine, Achat, David, Moisy, Christophe, Aussenac, Raphael, Chipeaux, Christophe, Bonnefond, Jean Marc, Figuères, Soisick, Trichet, Pierre, Vezy, Rémi, Badeau, Vincent, Longdoz, Bernard, Granier, André, Roupsard, Olivier, Nicolas, Manuel, Pilegaard, Kim, Matteucci, Giorgio, Jolivet, Claudy, Black, Andrew T., Picard, Olivier, and Loustau, Denis
- Abstract
The mechanistic model GO+ describes the functioning and growth of managed forests based upon biophysical and biogeochemical processes. The biophysical and biogeochemical processes included are modelled using standard formulations of radiative transfer, convective heat exchange, evapotranspiration, photosynthesis, respiration, plant phenology, growth and mortality, biomass nutrient content, and soil carbon dynamics. The forest ecosystem is modelled as three layers, namely the tree overstorey, understorey and soil. The vegetation layers include stems, branches and foliage and are partitioned dynamically between sunlit and shaded fractions. The soil carbon submodel is an adaption of the Roth-C model to simulate the impact of forest operations. The model runs at an hourly time step. It represents a forest stand covering typically 1 ha and can be straightforwardly upscaled across gridded data at regional, country or continental levels. GO+ accounts for both the immediate and long-term impacts of forest operations on energy, water and carbon exchanges within the soil-vegetation-atmosphere continuum. It includes exhaustive and versatile descriptions of management operations (soil preparation, regeneration, vegetation control, selective thinning, clear-cutting, coppicing, etc.), thus permitting the effects of a wide variety of forest management strategies to be estimated: from close to nature to intensive. This paper examines the sensitivity of the model to its main parameters and estimates how errors in parameter values are propagated into the predicted values of its main output variables. The sensitivity analysis demonstrates an interaction between the sensitivity of variables, with the climate and soil hydraulic properties being dominant under dry conditions but the leaf biochemical properties being most influential with wet soil. The sensitivity profile of the model changes from short to long timescales due to the cumulative effects of the fluxes of carbon, energy an
- Published
- 2020
40. Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
- Author
-
Moreaux, Virginie, primary, Martel, Simon, additional, Bosc, Alexandre, additional, Picart, Delphine, additional, Achat, David, additional, Moisy, Christophe, additional, Aussenac, Raphael, additional, Chipeaux, Christophe, additional, Bonnefond, Jean-Marc, additional, Figuères, Soisick, additional, Trichet, Pierre, additional, Vezy, Rémi, additional, Badeau, Vincent, additional, Longdoz, Bernard, additional, Granier, André, additional, Roupsard, Olivier, additional, Nicolas, Manuel, additional, Pilegaard, Kim, additional, Matteucci, Giorgio, additional, Jolivet, Claudy, additional, Black, Andrew T., additional, Picard, Olivier, additional, and Loustau, Denis, additional
- Published
- 2020
- Full Text
- View/download PDF
41. Supplementary material to "Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0"
- Author
-
Moreaux, Virginie, primary, Martel, Simon, additional, Bosc, Alexandre, additional, Picart, Delphine, additional, Achat, David, additional, Moisy, Christophe, additional, Aussenac, Raphael, additional, Chipeaux, Christophe, additional, Bonnefond, Jean-Marc, additional, Trichet, Pierre, additional, Vezy, Rémi, additional, Badeau, Vincent, additional, Longdoz, Bernard, additional, Granier, André, additional, Roupsard, Olivier, additional, Nicolas, Manuel, additional, Pilegaard, Kim, additional, Matteucci, Giorgio, additional, Jolivet, Claudy, additional, Black, Andrew T., additional, Picard, Olivier, additional, and Loustau, Denis, additional
- Published
- 2020
- Full Text
- View/download PDF
42. Suivi des services écosystémiques dans un observatoire de caféiers agroforestiers. Applications pour la filière du café
- Author
-
Roupsard, Olivier, Allinne, Clémentine, Van Den Meersche, Karel, Vaast, Philippe, Rapidel, Bruno, Avelino, Jacques, Jourdan, Christophe, Le Maire, Guerric, Bonnefond, Jean-Marc, Harmand, Jean-Michel, Dauzat, Jean, Albrecht, Alain, Chevallier, Tiphaine, Barthès, Bernard, Clément-Vidal, Anne, Gomez Delgado, Federico, Charbonnier, Fabien, Benegas, Laura, Welsh, Kristen, Kinoshita, Rintaro, Vezy, Rémi, Pérez-Molina, Junior Pastor, Kim, J., Taugourdeau, Simon, Defrenet, Elsa, Nespoulous, Jérôme, Rançon, Florian, Guidat, Florian, Cambou, Aurélie, Soma, Maxime, Mages, C., Schnabel, Florian, Prieto, Iván, Picart, Delphine, Duthoit, Maxime, Rocheteau, Alain, Do, Frédéric C., de Melo Virginio Filho, Elias, Moussa, Rachida, Le Bissonnais, Yves, Valentin, Christian, Sánchez-Murillo, Ricardo, Roumet, Catherine, Stokes, Alexia, Vierling, Lee A., Eitel, Jan U.H., Dreyer, Erwin, Saint-André, L., Malmer, Anders, Loustau, Denis, Isaac, Marney E., Martin, Adam R., Priemé, A., Elberling, Bo, Madsen, Mikael, Robelo, A., Robelo, Diego, Borgonovo, Carlos, Lehner, Peter, Ramirez, Guillermo, Jara, Manuel, Acuna Vargas, R., Barquero, Alejandra, Fonseca, Carlos, and Gay, Frédéric
- Subjects
P40 - Météorologie et climatologie ,Lutte anti-insecte ,F08 - Systèmes et modes de culture ,Arbre d'ombrage ,Coffea ,Agroforesterie ,Erythrina poeppigiana ,services écosystémiques ,Lutte antimaladie des plantes ,séquestration du carbone ,K01 - Foresterie - Considérations générales - Abstract
Huit ans de travaux de recherche sur les services écosystémiques dans une grande ferme caféière du Costa Rica (observatoire collaboratif Coffee-Flux, en système agroforestier à base de caféiers sous de grands arbres d'Erythrina poeppigiana, surface projetée de couronne de l'ordre de 16 %) ont suggéré plusieurs applications pour les agriculteurs et les décideurs. Il est apparu que de nombreux services écosystémiques dépendaient des propriétés du sol (ici des Andisols), en particulier de l'érosion, de l'infiltration, de la capacité de stockage de l'eau et des éléments nutritifs. Nous confirmons qu'il est essentiel de lier les services hydrologiques et de conservation au type de sol en présence. Une densité adéquate d'arbres d'ombrage (plutôt faible ici) permet de réduire la sévérité des maladies foliaires avec, en perspective, une réduction de l'usage de pesticides-fongicides. Un simple inventaire de la surface basale au collet des caféiers permet d'estimer la biomasse souterraine et la moyenne d'âge d'une plantation de caféiers, ce qui permet d'évaluer sa valeur marchande ou de planifier son remplacement. Le protocole de calcul actuel pour la neutralité carbone des systèmes agroforestiers ne prend en compte que les arbres d'ombrage, pas la culture intercalaire. Dans la réalité, si on inclut les caféiers, on se rapproche très probablement de la neutralité. Des évaluations plus complètes, incluant les arbres, les caféiers, la litière, le sol et les racines dans le bilan en carbone du système agroforestier sont proposées. Les arbres d'ombrage offrent de nombreux servies écosystémiques s'ils sont gérés de manière adéquate dans le contexte local. Par rapport aux parcelles en plein soleil, nous montrons qu'ils réduisent l'érosion laminaire d'un facteur 2, augmentent la fixation de l'azote (N2) atmosphérique et le pourcentage d'azote recyclé dans le système, réduisant ainsi les besoins en engrais. Ils réduisent aussi la sévérité des maladies foliaires, augmentent la séquestration de carbone, améliorent le microclimat et atténuent substantiellement les effets des changements climatiques. Dans notre étude de cas, aucun effet négatif sur le rendement n'a été enregistré.
- Published
- 2019
43. Using drones to upscale yield and land-equivalent-ratio from plot to stand in an agro-silvo-pastoral system: the 'Faidherbia-Flux' collaborative observatory (groundnut basin, Senegal)
- Author
-
Agbohessou, Yélognissé, Roupsard, Olivier, Clermont-Dauphin, Cathy, Audebert, Alain, Sanou, Josias, Koala, J., Jourdan, Christophe, Orange, Didier, Do, Frédéric C., Rocheteau, Alain, Bertrand, Isabelle, Faye, Emile, Tall, Laure, Leroux, Louise, Sow, Sidy, Diatta, Seydou, Gaglo, Espoir Koudjo, Tounkara, Adama, Brévault, Thierry, Vezy, Rémi, Le Maire, Guerric, Seghieri, Josiane, and Cournac, Laurent
- Abstract
The adaptation of semi-arid crops to climate changes is theoretically possible in agroforestry systems (AFS), provided that the trees exert little competition, or even increase the land equivalent ratio (LER). However, the measurement of LER requires sole crop plots which are usually not available in AFS. We designed a geostatistical method to estimate the distance of influence of trees on crops and selected sole crop plots at even higher distances, in order to compute LER. We monitored microclimate, net primary productivity (NPP), CO2 and H2O fluxes in a semi-arid agro-silvo-pastoral system (Niakhar, Senegal), dominated by the multipurpose Faidherbia albida (FA) tree. Undercrops were mainly millet and peanut, under annual rotation. Just before harvest, we scanned a ca. 1 ha millet plot under FA with UAV photogrammetry (drone) in RGB, thermal infrared and multispectral bands. At harvest, we collected 12 subplots, distributed either below the crown of FA, or at 2.5 x the crown radius (CR), or at 5 CR. We separated all organs. The whole millet root system (0-200 cm) was sampled also in 2 m trenches. Whole plot harvest allowed extrapolating yield from subplots, through UAV images. Millet yield per unit ground area was about 3 times higher below FA. The geostatistical method indicated that NDVI was not affected by the FA trees at 5 times the crown radius. LER of millet was computed 1.4, confirming the positive effect FA at distances up to 18 m. The “Faidherbia-Flux” observatory is open for collaboration.
- Published
- 2019
44. DynACof, a model fro growth, yield, carbon, water, energy balances and ecosystem services of Coffea in agroforestry
- Author
-
Vezy, Rémi, Le Maire, Guerric, Charbonnier, Fabien, Christina, Mathias, Georgiou, Selena, Imbach, Pablo, Hidalgo, Hugo G., Alfaro, Eric J., Blitz-Frayret, Céline, Laclau, Jean-Paul, Lehner, Peter, Robelo, Diego, Loustau, Denis, Roupsard, Olivier, Vezy, Rémi, Le Maire, Guerric, Charbonnier, Fabien, Christina, Mathias, Georgiou, Selena, Imbach, Pablo, Hidalgo, Hugo G., Alfaro, Eric J., Blitz-Frayret, Céline, Laclau, Jean-Paul, Lehner, Peter, Robelo, Diego, Loustau, Denis, and Roupsard, Olivier
- Abstract
Agroforestry systems (AFS) are complex to model mainly due to the high spatial variability induced by the shade trees. Recently, the microclimate and lighf heterogeneity issue in AFS has been addressed using the 30 ecophysiological process-based model MAESPA (Charbonnier et al., 2013; Vezy et al., 2018). MAESPA surpassed the classical sun/shade dichotomy in AFS (Charbonnier et al., 2014) and provided continuous maps of e.g. available light, light-use~ fficiency and canopy temperature within Coffea Agroforestry Systems (GAS). A step further was to design a crop model for Coffea grown under agroforestry that would benefit from this continuum to estimate ecosystem services on the long term and under climate change scenarios. We designed DynA_Cof, a new process-based growth and yield model to compute plot-scale net and gross primary productivity, carbon allocation, growth, yield, energy, and water balance of GAS according to shade tree species and management, while accounting for fine-scale spatial effects using MAESPA metamodels (Figure 1). DynA_Cof satisfactorily simulated the daily plot-scale gross primary productivity (RMSE= 1.69 gc m-2 d-1 on 1562 days) and the energy and water balances (RMSE: AET = 0.63 mm d-1 , H= 1.27 MJ m-2 d-1, Rn= 1.98 MJ m-2 d-1) compared to measurements from an eddy-flux tower in Aquiares (Costa Rica) and also the NPP for above and below-ground organs, coffee bean yield and shade tree wood production compared to a comprehensive database from this site.
- Published
- 2019
45. 'Faidherbia-Flux', an open observatory for GHG balance and C stocks in a semi-arid agro-sylvo-pastoral system (Senegal)
- Author
-
Roupsard, Olivier, Cournac, Laurent, Jourdan, Christophe, Tall, Laure, Duthoit, Maxime, Kergoat, L., Timouk, F., Grippa, Manuela, Ly, A., Lardy, Lydie, Masse, Dominique, Vezy, Rémi, Le Maire, Guerric, Chotte, Jean-Luc, Roupsard, Olivier, Cournac, Laurent, Jourdan, Christophe, Tall, Laure, Duthoit, Maxime, Kergoat, L., Timouk, F., Grippa, Manuela, Ly, A., Lardy, Lydie, Masse, Dominique, Vezy, Rémi, Le Maire, Guerric, and Chotte, Jean-Luc
- Abstract
The mitigation of climate change by agro-sylvo-pastoral systems is complex to assess or model, owing to high spatial and temporal heterogeneities. We set a new long-term observatory up for the monitoring and modelling of microclimate, GHG and deep SOC in a semi-arid agro-sylvo-pastoral system (Niakhar, Sénégal), dominated by the multipurpose Faidherbia albida tree. Crops were mainly millet and peanut, under annual rotation. Transhumant livestock contributed largely to manure, SOM and soil fertility. Early 2018, we installed 3 eddy-covariance towers above (i) the whole mosaic, (ii) millet and (iii) peanut and monitored energy, CO2 balance and evapotranspiration for one full year. The mosaic ecosystem displayed low but significant CO2 and H2O fluxes during the dry season, owing to Faidherbia in leaf (Fig. 1). When rains resumed, the soil bursted a large amount of CO2. Just after the raising of millet, CO2 uptake by photosynthesis increased dramatically, then stabilized before harvest. However, this was compensated by large ecosystem respiration. The annual ecosystem CO2 balance was close to nil. This observatory is currently installing soil chambers for GHG fluxes, studying the horizontal variability of SOC by Vis-NIR and of deep soil roots and C using wells. Microclimate (land surface temperature, energy balance and gas exchanges) and light-use-efficiency will be mapped through 3D modelling (Charbonnier et al., 2017; Vezy et al., 2018). This observatory is open for collaboration.
- Published
- 2019
46. 'Faidherbia-Flux': adapting crops to climate changes in a semi-arid agro-sylvo-pastoral open observatory (Senegal)
- Author
-
Roupsard, Olivier, Clermont-Dauphin, Cathy, Audebert, Alain, Sanou, Jacob, Koala, J., Jourdan, Christophe, Orange, Didier, Do, Frédéric C., Rocheteau, Alain, Bertrand, Isabelle, Faye, Emile, Tall, Laure, Gaglo, E., Tounkara, Adama, Demarchi, Gabriela, Brévault, Thierry, Vezy, Rémi, Le Maire, Guerric, Seghieri, Josiane, Cournac, Laurent, Roupsard, Olivier, Clermont-Dauphin, Cathy, Audebert, Alain, Sanou, Jacob, Koala, J., Jourdan, Christophe, Orange, Didier, Do, Frédéric C., Rocheteau, Alain, Bertrand, Isabelle, Faye, Emile, Tall, Laure, Gaglo, E., Tounkara, Adama, Demarchi, Gabriela, Brévault, Thierry, Vezy, Rémi, Le Maire, Guerric, Seghieri, Josiane, and Cournac, Laurent
- Abstract
The adaptation of semi-arid crops to climate changes is theoretically possible through agroforestry, provided that the trees exert little competition, or even increase the multifunctional LER (LER_M). We monitored microclimate, net primary productivity (NPP), CO2 and H2O fluxes in a semiarid agro-sylvo-pastoral system (Niakhar, Senegal), dominated by the multipurpose Faidherbia albida (FA) tree. Undercrops were mainly millet and peanut, under annual rotation. We scanned a 1.24 ha millet under FA plot with UAV photogrammetry in RGB, thermal infrared and multispectral bands. At harvest, we collected 12 subplots of 15 millet holes each, distributed either below the crown of FA, or at 2.5 x crown radius, or at 5 x crown radius. We separated all organs. The whole millet root system (0-200 cm) was sampled also in 2 m trenches, totalizing 4 millet holes, where all roots were sorted by layer. The whole plot harvest will allow extrapolating yield from subplots, through UAV images. Millet yield per unit ground area was about 3 times higher below FA, with still a positive influence at 2.5 x crown radius and less impacts of pests close to FA. In the trenches, we noted higher soil humidity and SOC close to the FA trunks. This observatory is open for collaboration.
- Published
- 2019
47. Eucalyptus plantations and deep groundwater: the effects of different potassium and water supply regimes on soil water uptake and water table depth
- Author
-
Christina, Mathias, Le Maire, Guerric, Nouvellon, Yann, Vezy, Rémi, Bordron, Bruno, Battie Laclau, Patricia, Gonçalves, José Leonardo M., Delgado-Rojas, Juan Sinforiano, Bouillet, Jean-Pierre, and Laclau, Jean-Paul
- Abstract
Although large amounts of potassium (K) are applied in tropical crops and planted forests, little is known about the interaction between K nutrition and water supply regimes on water resources in tropical regions. This interaction is a major issue because climate change is expected to increase the length of drought periods in many tropical regions and soil water availability in deep soil layers is likely to have a major influence on tree growth during dry periods in tropical planted forests. In this study, we described a modeling approach to quantify water fluxes in a Eucalyptus throughfall exclusion experiment in Brazil to gain insight into the combined effects of K deficiency and rainfall reduction (37% throughfall exclusion) on the water used by the trees, soil water storage and water table fluctuations over the first 4.5 years after planting. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration in K-fertilized plantation with undisturbed rainfall (+K+W), the proportion of water taken up near the water-table was much higher during dry periods. Under contrasted K availability, water withdrawal was more superficial for -K than for +K. Under rainfall exclusion, water was withdrawn in deeper soil layers for -W than for +W, particularly over dry seasons. A comparison of canopy transpiration in each plot with the values predicted for the same soil with the water content maintained at field capacity, made it possible to calculate a soil-driven tree water stress index for each treatment. The soil-driven tree water stress index was 166% higher over the first 4.5 years after planting for -W than for +W, 76% lower for -K than for +K, and 14% lower for -K-W than for +K+W. Over the study period, deep seepage was higher by 371 mm yr-1 (+122%) for -K than for +K and lower by 200 mm yr-1 (-66%) for -W than for +W. Deep seepage was lower by 44% for -K-W than for +K+W. At the end of the study period, the model predicted a higher water table for -K (10 mbs for -K+W and 16 mbs for -K-W) than for +K (16 mbs for +K+W and 18 mbs for +K-W). Our study suggests that the depth of the soil should be a major criterion for the selection of future afforestation areas and that flexible fertilization regimes could contribute to adjusting the local trade-off between wood production and demand for soil water resources in planted forests.
- Published
- 2018
48. Simulation de pratiques de gestion alternatives pour l'adaptation des plantations pérennes aux changements globaux
- Author
-
Vezy, Rémi, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), Université de Bordeaux, Denis Loustau, and Guerric Le Maire
- Subjects
agroforesterie ,eucalyptus ,changements climatiques ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,café ,MAESPA ,écophysiologie ,modélisation - Abstract
In this thesis, we used two complementary mathematical models to simulate the future behavior of coffee plantations under climate change (1979 - 2100). We studied their carbon, water, and energy balances to better understand and predict the effects of these changes on coffee production. The addition of shade trees above the coffee layer leadto higher yield compared to full sun management under increased temperature.However, coffee yield was predicted to decrease compared to current levels by 2100,whatever the shade tree species or management.; Dans le cadre de cette thèse, nous avons utilisé deux modèles mathématiques complémentaires pour simuler le comportement futur des plantations de café sous conditions actuelles ainsi que sous changements climatiques (1979 -2100). Nous avons étudié leurs bilans de carbone, d'eau et d'énergie pour mieux comprendre et prévoir les effets des changements sur la production de café. Comparativement à une plantation en plein soleil, l'ajout d'arbres d'ombrage au dessus des caféiers pourrait permettre d'augmenter les rendements lorsque la température augmente. Cependant, les rendements en grain de caféiers à l'horizon 2100 sont prédits inférieurs aux rendements actuels quelle que soit l'espèce d'arbres d'ombrage ou sa gestion.
- Published
- 2017
49. Eight years studying ecosystem services in a coffee agroforestry observatory. Practical applications for the stakeholders
- Author
-
Roupsard, Olivier, Van Den Meersche, Karel, Allinne, Clémentine, Vaast, Philippe, Rapidel, Bruno, Avelino, Jacques, Jourdan, Christophe, Le Maire, Guerric, Bonnefond, Jean-Marc, Harmand, Jean-Michel, Dauzat, Jean, Albrecht, Alain, Chevallier, Tiphaine, Barthès, Bernard, Clément-Vidal, Anne, Gómez-Delgado, Federico, Charbonnier, Fabien, Benegas, Laura, Welsh, Kristen, Kinoshita, Rintaro, Vezy, Rémi, Perez Molina, Junior, Kim, John H., Taugourdeau, Simon, Defrenet, Elsa, Nespoulous, Jérôme, Rançon, Florian, Guidat, Florian, Cambou, Aurélie, Soma, Maxime, Mages, C., Schnabel, Florian, Prieto, Iván, Picart, Delphine, Duthoit, Maxime, Rocheteau, Alain, Do, Frédéric C., de Melo Virginio Filho, Elias, Moussa, Roger, Le Bissonnais, Yves, Valentin, C., Sánchez-Murillo, Ricardo, Roumet, Catherine, Stokes, A., Vierling, Lee A., Eitel, Jan U.H., Dreyer, Erwin, Saint-André, L., Malmer, Anders, Loustau, Denis, Isaac, Marney E., Martin, A., Priemé, A., Elberling, Bo, Madsen, Mikael, Robelo, A., Robelo, Diego, Borgonovo, Carlos, Lehner, Peter, Ramirez, G., Jara, Manuel, Acuna Vargas, R., Barquero Aguilar, Alejandra, Fonseca, Carlos, and Gay, Frédéric
- Subjects
P33 - Chimie et physique du sol ,F08 - Systèmes et modes de culture ,P01 - Conservation de la nature et ressources foncières ,K10 - Production forestière - Abstract
Eight years of monitoring ecophysiology and ecosystem services (ES) in a large coffee farm of Costa Rica yields a range of practical applications for the farmer and stakeholders, thanks to numerous scientific actors and disciplines contributing to our collaborative observatory (Coffee-Flux). • A lot of ecosystem services depend on the soil properties, such as runoff/infiltration, water and nutrient storage capacity. It is essential to relate hydrological and soil conservation services to the soil type, since this might have even more importance than the crop itself for ES. Regarding the use of fertilizer, we show that some soils may have a large storage capacity, allowing producing coffee at normal yields with just a reduced, or even a minimum amount of fertilizers, for instance when the economic conditions are unfavorable. Also, due to the soil variability within the farm, it is possible to adjust fertilization to micro-local conditions and reduce the total expenses and risks of leaching of N to the environment. VNIRS and MIR are promising broadband tools for screening the variability in soils. Adjusting N fertilizer to the optimum will also considerably reduce the N2O emissions and improve the GHG balance of the farm. • Pesticides-fongicides: we show that an adequate amount of shade trees allows reducing the severity of the whole complex of leaf diseases. This also should reduce expenses and impacts on the ecosystem. • Roots: a simple survey of basal area at collar allows estimating the belowground biomass and the average age of a plantation, to judge of its market value and to decide when to replace it. • Also starch plays a key role in the trophic equilibrium between the perennial parts of the coffee plant (aerial stump, belowground stump, coarse roots) and its ephemeral parts (resprout, leaves, fruits, fine roots). Coffee plants accumulate starch in the stumps by the end of the life of their resprout, as a strategy for survival. Breeding plants with less starch build-up capacity would probably allow increasing the fraction of productive years during the lifespan of the resprouts. • Coffee farms are probably much closer to C neutrality than currently admitted using the C-Neutrality protocol. We stress the prevailing role of coffee plants + litter + soil in the ecosystem C balance. If those are excluded from the calculations as done so far, coffee farms are GHG sources, by definition. We argue that either full assessments (as proposed here, at the ecosystem level, including trees, coffee, litter, soil and roots) or consensus on “sequestration factors” (the counterpart of emission factors) would allow performing a more realistic assessment of the GHG balance. • Finally, we bring new data confirming that shade trees offer numerous ecosystem services, when adequately managed for the local context. As compared to full sun conditions, they may (i) reduce laminar erosion by a factor of ca. 2, (ii) increase the atmospheric N2 fixation and the % of N recycled into the system, thus reducing the fertilizer requirements, (iii) reduce the severity of the leaf disease complex, (iv) increase C sequestration, (v) improve the microclimate, and (vi) be a large part of the solution to face climate changes. All this is possibly without negative effects on profitability or yield, if managed properly. In our particular case-study, we encount.
- Published
- 2017
50. Modeling Energy Balance In Complex Agroforestry Systems
- Author
-
Vezy, Rémi, primary
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.