9 results on '"Verwaerde, Jolanthe"'
Search Results
2. Sensitivity analysis of a realistic electrical model of the Uterine activity
- Author
-
Verwaerde, Jolanthe, primary, Laforet, Jeremy, additional, Rassineux, Alain, additional, and Marque, Catherine, additional
- Published
- 2021
- Full Text
- View/download PDF
3. Modélisation électrique et mécanique des contractions utérines
- Author
-
Verwaerde, Jolanthe and STAR, ABES
- Subjects
[SDV.IB] Life Sciences [q-bio]/Bioengineering ,ACP ,Gravid uterus modeling ,Génération de maillages ,Analyse de sensibilité ,Mesh generation ,Modélisation d’utérus gravide ,[SDV.MHEP.GEO] Life Sciences [q-bio]/Human health and pathology/Gynecology and obstetrics ,Simulation of uterine contraction ,Finite element ,Principal component analysis (PCA) ,[SPI.MECA.BIOM] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,Sensitivity analysis ,Simulation de contraction utérine - Abstract
Preterm birth is a major worldwild heath issue. Uterine electromyography (EHG) is a tool that has been frequently investigated for monitoring uterine contractions. But the prediction rates currently obtained for preterm birth detection are unsatisfactory. A recent approach was proposed at the BMBI laboratory to gain insight into the uterine contraction and its relation with EHG. The approach relies on the numerical modeling of the muti-physic and multi-scale phenomena involved in uterine contraction. The model was improved step by step to become more realistic. It presently involves electrical, chemical and mechanical phenomena at different scales. The work realized during this PhD aims at going on the model improvement and starts after the inclusion of a realistic geometry and the mecanotransduction phenomenon presently done thanks simplified mechanical model. Starting from the existing model, different improvement strategies of the mechanical phenomena and of the uterine geometry have been investigated. The first approach aims at replacing the existing mechanical model by a finite elements analysis, taking into account the uterus and the amniotic fluid. A statistical shape analysis (SSA) of the gravid uterine geometry was carried out in order to estimate the anatomical variability due to pregnancy (term and fetus position) by using principal component analysis (PCA). Prior to PCA, a correspondence technique adapted to the context of the study was proposed. It is based on the creation of a reference mesh specific to the database, which is further deformed by using ray tracing. The SSA results have been used to parameterize the geometry of gravid uteri in relation to parameters commonly used on routine clinical practice during pregnancy. In the end, the influence of model parameters (only electro-chemical components, geometrical parameters coming from PCA, volume conductor parameters, and grid position parameters) on simulated EHG features has been tested by means of a Morris sensitivity analysis. The proposed finite element analysis is only a preliminary step which will have to be improved in future work. But it permitted us to demonstrate the feasibility of such a co-simulation approach. Regarding the geometry, the anatomical variability of the uterus induced by pregnancy was parameterized by using only the first four modes of variation of the PCA, which cover 90% of the variability contained inside our database. The weights that have to be assigned to each of the four first modes were linked by using multi-linear functions to some clinical parameters (pregnancy term, skull perimeter,femoral length and position of the fetus) estimated from the fetal meshes. In the end, even though only the electro-chemical part of the model was considered, the sensitivity analysis of the model indicates that the geometrical parameters have a non negligible impact on the calculated features. This result supports the needs of patient specific mesh for the further use of this model., Les naissances prématurées sont un problème majeur de santé au niveau mondial. L'électromyographie utérine (EHG) est un outil étudié dans le cadre de la surveillance des contractions utérines mais les taux de prédiction obtenus ne sont actuellement pas encore satisfaisants. Récemment, une nouvelle approche a été développée au laboratoire BMBI afin de mieux comprendre la contraction utérine et ses liens avec l'EHG. Elle consiste à modéliser numériquement les phénomènes physiologiques (multi-échelles et multi-physiques) qui pilotent la contraction utérine. Le modèle de contraction de l'utérus a été, étape après étape, amélioré pour se rapprocher de la réalité et prendre en compte des phénomènes chimique, électrique et mécanique à différentes échelles. Le travail présenté dans cette thèse, qui vise à poursuivre l'amélioration du modèle, a débuté après l'étape d'inclusion d'une géométrie réaliste et du phénomène de mécano-transduction, réalisé jusque-là grâce à un modèle mécanique simplifié. A partir du modèle existant, différentes pistes d'amélioration portant sur la modélisation des phénomènes mécaniques et sur le maillage de l'utérus ont été explorées. Une première approche vise à remplacer le modèle mécanique existant par une analyse par éléments finis, prenant en compte la paroi utérine et le fluide amniotique. Une analyse statistique de forme de la géométrie utérine gravide a été réalisée dans le but d'extraire la variabilité anatomique due à la grossesse (terme et position du fœtus) à l'aide d'une analyse en composantes principales (ACP). Une méthode de correspondance adaptée à notre contexte d'étude, préalable à l'ACP, a donc été proposée. Elle consiste en la création d'un maillage de référence spécifique à la base de données, qui est ensuite déformé en utilisant le lancer de rayons. Les résultats de l'analyse de forme ont ensuite été exploités dans le but de paramétriser la géométrie utérine gravide à partir de grandeurs mesurées habituellement en clinique courante lors du suivi de la grossesse. Finalement, à l'aide de la méthode de Morris, nous avons testé l'influence des paramètres du modèle (composantes électro-chimiques uniquement, paramètres géométriques issus de l'ACP, paramètres du volume conducteur, paramètres de positionnement de la grille d'électrodes), sur des descripteurs des signaux EHG. L'analyse par éléments finis développée n'est qu'une première étape, qui devra être améliorée dans des travaux ultérieurs. Mais elle démontre la faisabilité de cette co-simulation. En ce qui concerne la géométrie, la variabilité anatomique de l'utérus due à la grossesse est paramétrée en utilisant seulement les quatre premiers modes de variation issus de l'ACP qui couvrent 90% de la variabilité comprise dans notre base de données. A l'aide de fonctions multi-linéaires, les poids à affecter à ces quatre premiers modes sont reliés aux paramètres cliniques courants (terme de grossesse, périmètre céphalique, longueur fémorale et position du fœtus), estimés ici sur les maillages des fœtus. Finalement, bien que seule la partie électro-chimique du modèle de contraction soit considérée, l'analyse de sensibilité du modèle semble indiquer un impact non négligeable des paramètres de la géométrie sur les descripteurs calculés, ce qui justifie la définition d'un maillage spécifique à chaque patiente pour l'utilisation ultérieure de ce modèle.
- Published
- 2021
4. Electro-mechanical modeling of pregnant uterus contraction using finite elements
- Author
-
Verwaerde, Jolanthe, Jeremy, Laforet, Marque, Catherine, Rassineux, Alain, Biomécanique et Bioingénierie (BMBI), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Roberval (Roberval), and Université de Technologie de Compiègne (UTC)
- Subjects
[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2020
5. 21-1Electro-mechanical modeling of pregnant uterus contraction using finite elements
- Author
-
Verwaerde, Jolanthe, Jeremy, Laforet, Marque, Catherine, Rassineux, Alain, Biomécanique et Bioingénierie (BMBI), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Roberval (Roberval), and Université de Technologie de Compiègne (UTC)
- Subjects
[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
6. Coupling of finite element and electro-chemical models of the uterine muscle
- Author
-
Verwaerde, Jolanthe, Jeremy, Laforet, Marque, Catherine, Rassineux, Alain, Biomécanique et Bioingénierie (BMBI), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Roberval (Roberval), and Université de Technologie de Compiègne (UTC)
- Subjects
[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
7. Effect of orthopedic implants on canine long bone compression stiffness: a combined experimental and computational approach
- Author
-
Laurent, Cédric P, primary, Böhme, Béatrice, additional, Verwaerde, Jolanthe, additional, Papeleux, Luc, additional, Ponthot, Jean-Philippe, additional, and Balligand, Marc, additional
- Published
- 2019
- Full Text
- View/download PDF
8. Effect of orthopedic implants on canine long bone compression stiffness: a combined experimental and computational approach.
- Author
-
de Brosses, Emilie, Ganghoffer, Jean-François, Laurent, Cédric P, Böhme, Béatrice, Verwaerde, Jolanthe, Papeleux, Luc, Ponthot, Jean-Philippe, and Balligand, Marc
- Abstract
Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone-implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes®) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
9. Effect of orthopedic implants on canine long bone compression stiffness: a combined experimental and computational approach.
- Author
-
Laurent CP, Böhme B, Verwaerde J, Papeleux L, Ponthot JP, and Balligand M
- Subjects
- Animals, Biomechanical Phenomena, Dogs, Finite Element Analysis, Compressive Strength, Humerus physiology, Mechanical Tests, Orthopedics, Prostheses and Implants
- Abstract
Osteosynthesis for canine long bones is a complex process requiring knowledge of biology, surgical techniques and (bio)mechanical principles. Subject-specific finite element analysis constitutes a promising tool to evaluate the effect of surgical intervention on the global properties of a bone-implant construct, but suffers from a lack of validation. In this study, the biomechanical behavior of 10 canine humeri was compared before and after creation of a 10 mm bone defect stabilized with an eight-hole locking compression plate (Synthes
® ) and two locking screws on each fragment. The response under compression of both intact and plated samples was measured experimentally and reproduced with a finite element model. The experimental stiffness ratio between plated and intact bone was equal to 0.39 ± 0.06. A subject-specific finite element analysis including density-dependent elasto-plastic material properties for canine bone and automatic generation of orthopedic implants was then conducted to recover these experimental results. The stiffness of intact and plated samples could be predicted, with no significant differences with experimental data. The simulated stiffness ratio between plated and intact canine bone was equal to 0.43 ± 0.03. This study constitutes a first step toward the building of a virtual database of pre-computed cases, aiming at helping the veterinary surgeons to make decisions regarding the most suited orthopedic solution for a given dog and a given fracture.- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.