1. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer’s disease
- Author
-
Radhika Joshi, Veronika Brezani, Gabrielle M. Mey, Sergi Guixé-Muntet, Marti Ortega-Ribera, Yuan Zhuang, Adam Zivny, Sebastian Werneburg, Jordi Gracia-Sancho, and Gyongyi Szabo
- Subjects
Amyloid beta ,APOE ,IRF3 ,Type 1 interferon ,ARM ,IRM ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D: IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer’s disease, notably apolipoprotein-e. Using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 (ZBP1) as a target of IRF3 that is relevant across various neuroinflammatory disorders. Lastly, we show IRF3 phosphorylation and IRF3-dependent ZBP1 induction in response to Aβ in primary microglia cultures. Together, our results identify IRF3 as an important regulator of LPS and Aβ -mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.
- Published
- 2024
- Full Text
- View/download PDF