1. Cosmography from accurate mass modeling of the lens group SDSS J0100+1818: five sources at three different redshifts
- Author
-
Bolamperti, A., Grillo, C., Caminha, G. B., Granata, G., Suyu, S. H., Cañameras, R., Christensen, L., Vernet, J., and Zanella, A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Systems where multiple sources at different redshifts are strongly lensed by the same deflector allow one to directly investigate the evolution of the angular diameter distances with redshift, and thus to learn about the geometry of the Universe. We present measurements of the values of the total matter density, $\Omega_m$, and of the dark energy equation of state parameter, $w$, through a strong lensing analysis of SDSSJ0100+1818, a group-scale system at $z=0.581$ with five lensed sources, from $z=1.698$ to $4.95$. We use new MUSE data to securely measure the redshift of 65 sources, including the five multiply imaged background sources (lensed into a total of 18 multiple images) and 19 galaxies on the deflector plane (the brightest group galaxy, BGG, and 18 fainter members), all employed to build robust strong lensing models with the software GLEE. We measure $\Omega_m = 0.14^{+0.16}_{-0.09}$ in a flat $\Lambda$ cold dark matter (CDM) model, and $\Omega_m = 0.19^{+0.17}_{-0.10}$ and $w=-1.27_{-0.48}^{+0.43}$ in a flat $w$CDM model. We quantify, through a multi-plane approach, the impact of different sources angularly close in projection on the inferred values of the cosmological parameters. We obtain consistent median values, with uncertainties for only $\Omega_m$ increasing by a factor of 1.5. We accurately measure a total mass of $(1.55 \pm 0.01) \times 10^{13}$ M$_\odot$ within 50 kpc and a stellar over total mass profile decreasing from $45.6^{+8.7}_{-8.3}\%$ at the BGG effective radius to $(6.6\pm 1.1)\%$ at $R\approx 77$ kpc. Our results confirm that SDSSJ0100+1818 is one of the most massive (lens) galaxies known at intermediate redshift and that group-scale systems that act as lenses for $\geq 3$ background sources at different redshifts enable to estimate the values of the cosmological parameters with an accuracy that is competitive with that obtained from lens galaxy clusters., Comment: Accepted for publication in A&A. 14 pages, 10 figures
- Published
- 2024