22 results on '"Verbeek, N.E."'
Search Results
2. Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome.
- Author
-
Buijsse, N., Jansen, Femke, Ockeloen, C.W., Kempen, M.J.P. van, Zeidler, S., Willemsen, M.H., Scarano, E., Monticone, S., Zonneveld-Huijssoon, E., Low, K.J., Bayat, A., Sisodiya, S.M., Samanta, D., Lesca, G., Jong, D. de, Giltay, J.C., Verbeek, N.E., Kleefstra, T., Brilstra, E.H., Vlaskamp, D.R.M., Buijsse, N., Jansen, Femke, Ockeloen, C.W., Kempen, M.J.P. van, Zeidler, S., Willemsen, M.H., Scarano, E., Monticone, S., Zonneveld-Huijssoon, E., Low, K.J., Bayat, A., Sisodiya, S.M., Samanta, D., Lesca, G., Jong, D. de, Giltay, J.C., Verbeek, N.E., Kleefstra, T., Brilstra, E.H., and Vlaskamp, D.R.M.
- Abstract
Contains fulltext : 300069.pdf (Publisher’s version ) (Open Access), OBJECTIVE: The aim of this study was to describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data on patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an "epilepsy group" or "non-epilepsy group". Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1%, RR 4.6 [95% CI 1.7-13.1]). Seizure onset in patients with KBG syndrome occurred at a median age of 4 years (range 12 months - 20 years), and the majority had generalized onset seizures (57.7%) with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling the criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least 1 year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significantly poorer neurodevelopmental outcome compared with those without epilepsy. Clinicians should consider KBG syndrome as a causal, 01 december 2023
- Published
- 2023
3. De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus
- Author
-
Galosi, S., Edani, B.H., Martinelli, S., Hansikova, H., Eklund, E.A., Caputi, C., Masuelli, L., Corsten-Janssen, N., Srour, M., Oegema, R., Bosch, D.G.M., Ellis, C.A., Amlie-Wolf, L., Accogli, A., Atallah, I., Averdunk, L., Barañano, K.W., Bei, R., Bagnasco, I., Brusco, A., Demarest, S., Alaix, A.S., Bonaventura, C. Di, Distelmaier, F., Elmslie, F., Gan-Or, Z., Good, J.M., Gripp, K., Kamsteeg, E.J., Macnamara, E., Marcelis, C.L.M., Mercier, N., Peeden, J., Pizzi, S., Pannone, L., Shinawi, M., Toro, C., Verbeek, N.E., Venkateswaran, S., Wheeler, P.G., Zdrazilova, L., Zhang, R., Zorzi, G., Guerrini, R., Sessa, W.C., Lefeber, D.J., Tartaglia, M., Hamdan, F.F., Grabińska, K.A., Leuzzi, V., Galosi, S., Edani, B.H., Martinelli, S., Hansikova, H., Eklund, E.A., Caputi, C., Masuelli, L., Corsten-Janssen, N., Srour, M., Oegema, R., Bosch, D.G.M., Ellis, C.A., Amlie-Wolf, L., Accogli, A., Atallah, I., Averdunk, L., Barañano, K.W., Bei, R., Bagnasco, I., Brusco, A., Demarest, S., Alaix, A.S., Bonaventura, C. Di, Distelmaier, F., Elmslie, F., Gan-Or, Z., Good, J.M., Gripp, K., Kamsteeg, E.J., Macnamara, E., Marcelis, C.L.M., Mercier, N., Peeden, J., Pizzi, S., Pannone, L., Shinawi, M., Toro, C., Verbeek, N.E., Venkateswaran, S., Wheeler, P.G., Zdrazilova, L., Zhang, R., Zorzi, G., Guerrini, R., Sessa, W.C., Lefeber, D.J., Tartaglia, M., Hamdan, F.F., Grabińska, K.A., and Leuzzi, V.
- Abstract
Item does not contain fulltext
- Published
- 2022
4. Loss-of-function variants in SRRM2 cause a neurodevelopmental disorder
- Author
-
Cuinat, S., Nizon, M., Isidor, B., Stegmann, Alexander, Jaarsveld, R.H. van, Gassen, K.L.I. van, Smagt, J.J. van der, Volker-Touw, C.M., Holwerda, S.J.B., Terhal, P.A., Schuhmann, S., Vasileiou, G., Khalifa, M., Nugud, A.A., Yasaei, H., Ousager, L.B., Brasch-Andersen, C., Deb, W., Besnard, T., Simon, M.E., Amsterdam, K.H., Verbeek, N.E., Matalon, D., Dykzeul, N., White, S., Spiteri, E., Devriendt, K., Boogaerts, A., Willemsen, M.H., Brunner, H.G., Sinnema, M., Vries, B.B. de, Gerkes, E.H., Pfundt, R.P., Izumi, K., Krantz, I.D., Xu, Z.L., Murrell, J.R., Valenzuela, I., Cusco, I., Rovira-Moreno, E., Yang, Y., Bizaoui, V., Patat, O., Faivre, L., Tran-Mau-Them, F., Vitobello, A., Denommé-Pichon, A.S., Philippe, C., Bezieau, S., Cogné, B., Cuinat, S., Nizon, M., Isidor, B., Stegmann, Alexander, Jaarsveld, R.H. van, Gassen, K.L.I. van, Smagt, J.J. van der, Volker-Touw, C.M., Holwerda, S.J.B., Terhal, P.A., Schuhmann, S., Vasileiou, G., Khalifa, M., Nugud, A.A., Yasaei, H., Ousager, L.B., Brasch-Andersen, C., Deb, W., Besnard, T., Simon, M.E., Amsterdam, K.H., Verbeek, N.E., Matalon, D., Dykzeul, N., White, S., Spiteri, E., Devriendt, K., Boogaerts, A., Willemsen, M.H., Brunner, H.G., Sinnema, M., Vries, B.B. de, Gerkes, E.H., Pfundt, R.P., Izumi, K., Krantz, I.D., Xu, Z.L., Murrell, J.R., Valenzuela, I., Cusco, I., Rovira-Moreno, E., Yang, Y., Bizaoui, V., Patat, O., Faivre, L., Tran-Mau-Them, F., Vitobello, A., Denommé-Pichon, A.S., Philippe, C., Bezieau, S., and Cogné, B.
- Abstract
Contains fulltext : 282702.pdf (Publisher’s version ) (Closed access), PURPOSE: SRRM2 encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease. METHODS: Among the 1000 probands studied with developmental delay and intellectual disability in our database, we found 2 patients with de novo LoF variants in SRRM2. Additional families were identified through GeneMatcher. RESULTS: Here, we report on 22 patients with LoF variants in SRRM2 and provide a description of the phenotype. Molecular analysis identified 12 frameshift variants, 8 nonsense variants, and 2 microdeletions of 66 kb and 270 kb. The patients presented with a mild developmental delay, predominant speech delay, autistic or attention-deficit/hyperactivity disorder features, overfriendliness, generalized hypotonia, overweight, and dysmorphic facial features. Intellectual disability was variable and mild when present. CONCLUSION: We established SRRM2 as a gene responsible for a rare neurodevelopmental disease.
- Published
- 2022
5. Structural mapping of GABRB3 variants reveals genotype–phenotype correlations
- Author
-
Johannesen, K.M. Iqbal, S. Guazzi, M. Mohammadi, N.A. Pérez-Palma, E. Schaefer, E. De Saint Martin, A. Abiwarde, M.T. McTague, A. Pons, R. Piton, A. Kurian, M.A. Ambegaonkar, G. Firth, H. Sanchis-Juan, A. Deprez, M. Jansen, K. De Waele, L. Briltra, E.H. Verbeek, N.E. van Kempen, M. Fazeli, W. Striano, P. Zara, F. Visser, G. Braakman, H.M.H. Haeusler, M. Elbracht, M. Vaher, U. Smol, T. Lemke, J.R. Platzer, K. Kennedy, J. Klein, K.M. Au, P.Y.B. Smyth, K. Kaplan, J. Thomas, M. Dewenter, M.K. Dinopoulos, A. Campbell, A.J. Lal, D. Lederer, D. Liao, V.W.Y. Ahring, P.K. Møller, R.S. Gardella, E.
- Abstract
Purpose: Pathogenic variants in GABRB3 have been associated with a spectrum of phenotypes from severe developmental disorders and epileptic encephalopathies to milder epilepsy syndromes and mild intellectual disability (ID). In this study, we analyzed a large cohort of individuals with GABRB3 variants to deepen the phenotypic understanding and investigate genotype–phenotype correlations. Methods: Through an international collaboration, we analyzed electro-clinical data of unpublished individuals with variants in GABRB3, and we reviewed previously published cases. All missense variants were mapped onto the 3-dimensional structure of the GABRB3 subunit, and clinical phenotypes associated with the different key structural domains were investigated. Results: We characterized 71 individuals with GABRB3 variants, including 22 novel subjects, expressing a wide spectrum of phenotypes. Interestingly, phenotypes correlated with structural locations of the variants. Generalized epilepsy, with a median age at onset of 12 months, and mild-to-moderate ID were associated with variants in the extracellular domain. Focal epilepsy with earlier onset (median: age 4 months) and severe ID were associated with variants in both the pore-lining helical transmembrane domain and the extracellular domain. Conclusion: These genotype–phenotype correlations will aid the genetic counseling and treatment of individuals affected by GABRB3-related disorders. Future studies may reveal whether functional differences underlie the phenotypic differences. © 2021 American College of Medical Genetics and Genomics
- Published
- 2022
6. A hereditary spastic paraplegia predominant phenotype caused by variants in the NEFL gene
- Author
-
Mul, K., Schouten, M.I., Looij, E. van der, Dooijes, D., Hennekam, F.A., Notermans, N.C., Praamstra, P., Gaalen, J. van, Kamsteeg, E.J., Verbeek, N.E., Warrenburg, B.P.C. van de, Mul, K., Schouten, M.I., Looij, E. van der, Dooijes, D., Hennekam, F.A., Notermans, N.C., Praamstra, P., Gaalen, J. van, Kamsteeg, E.J., Verbeek, N.E., and Warrenburg, B.P.C. van de
- Abstract
Contains fulltext : 229318.pdf (Publisher’s version ) (Open Access), INTRODUCTION: This study reports a large series of patients with a clinical picture dominated by spastic paraplegia in whom variants in the NEFL gene, a known cause for Charcot-Marie-Tooth disease, were identified. METHODS: Index patients referred for a suspicion of hereditary spastic paraplegia (HSP) were clinically assessed and genetic analysis by next-generation sequencing was undertaken. Additional family members were clinically examined and subjected to targeted testing. RESULTS: We identified two different heterozygous dominant variants in the NEFL gene in 25 patients from 14 families. Most of them (21/25) had a clinical diagnosis of HSP, often with a concomitant clinical diagnosis of polyneuropathy (16/21). Two patients were identified with a polyneuropathy with a pyramidal reflex pattern, but without spasticity. Two patients had isolated polyneuropathy. Out of the 21 patients with a diagnosis of HSP, two had co-occurring cerebellar signs. The c.262A > C p.(Thr88Pro) variant was detected in 13 families. Genealogical analysis showed shared ancestors or a similar geographical origin in 12, suggesting a founder effect. The other variant, c.296A > C p.(Asp99Ala), was found in only one family, in which limited segregation analysis could be performed. DISCUSSION: Variants in the NEFL gene can cause HSP, with or without co-existing polyneuropathy, and should be included in diagnostic testing strategies for HSP patients.
- Published
- 2020
7. The landscape of epilepsy-related GATOR1 variants (vol 21, pg 398, 2019)
- Author
-
Baldassari, S., Picard, F., Verbeek, N.E., Kempen, M. van, Brilstra, E.H., Lesca, G., Conti, V., Guerrini, R., Bisulli, F., Licchetta, L., Pippucci, T., Tinuper, P., Hirsch, E., Saint Martin, A. de, Chelly, J., Rudolf, G., Chipaux, M., Ferrand-Sorbets, S., Dorfmuller, G., Sisodiya, S., Balestrini, S., Schoeler, N., Hernandez-Hernandez, L., Krithika, S., Oegema, R., Hagebeuk, E., Gunning, B., Deckers, C., Berghuis, B., Wegner, I., Niks, E.H., Jansen, F.E., Braun, K., Jong, D. de, Rubboli, G., Talvik, I., Sander, V., Uldall, P., Jacquemont, M.L., Nava, C., Leguern, E., Julia, S., Gambardella, A., d'Orsi, G., Crichiutti, G., Faivre, L., Darmency, V., Benova, B., Krsek, P., Biraben, A., Lebre, A.S., Jennesson, M., Sattar, S., Marchal, C., Nordli, D.R., Lindstrom, K., Striano, P., Lomax, L.B., Kiss, C., Bartolomei, F., Lepine, A.F., Schoonjans, A.S., Stouffs, K., Jansen, A., Panagiotakaki, E., Ricard-Mousnier, B., Thevenon, J., Bellescize, J. de, Catenoix, H., Dorn, T., Zenker, M., Muller-Schluter, K., Brandt, C., Krey, I., Polster, T., Wolff, M., Balci, M., Rostasy, K., Achaz, G., Zacher, P., Becher, T., Cloppenborg, T., Yuskaitis, C.J., Weckhuysen, S., Poduri, A., Lemke, J.R., Moller, R.S., and Baulac, S.
- Published
- 2019
8. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Kury, S., Woerden, G.M. van, Besnard, T., Onori, M.P., Latypova, X., Towne, M.C., Cho, M.T., Prescott, T.E., Ploeg, M.A., Sanders, S., Stessman, H.A.F., Pujol, A., Distel, ben, Robak, L.A., Bernstein, J.A., Denomme-Pichon, A.S., Lesca, G., Sellars, E.A., Berg, J., Carre, W., Busk, O.L., Bon, B.W.M. van, Waugh, J.L., Deardorff, M., Hoganson, G.E., Bosanko, K.B., Johnson, D.S., Dabir, T., Holla, O.L., Sarkar, A., Tveten, K., Bellescize, J. de, Braathen, G.J., Terhal, P.A., Grange, D.K., Haeringen, A. van, Lam, C., Mirzaa, G., Burton, J., Bhoj, E.J., Douglas, J., Santani, A.B., Nesbitt, A.I., Helbig, K.L., Andrews, M.V., Begtrup, A., Tang, S., Gassen, K.L.I. van, Juusola, J., Foss, K., Enns, G.M., Moog, U., Hinderhofer, K., Paramasivam, N., Lincoln, S., Kusako, B.H., Lindenbaum, P., Charpentier, E., Nowak, C.B., Cherot, E., Simonet, T., Ruivenkamp, C.A.L., Hahn, S., Brownstein, C.A., Xia, F., Schmitt, S., Deb, W., Bonneau, D., Nizon, M., Quinquis, D., Chelly, J., Rudolf, G., Sanlaville, D., Parent, P., Gilbert-Dussardier, B., Toutain, A., Sutton, V.R., Thies, J., Peart-Vissers, L.E.L.M., Boisseau, P., Vincent, M., Grabrucker, A.M., Dubourg, C., Tan, W.H., Verbeek, N.E., Granzow, M., Santen, G.W.E., Shendure, J., Isidor, B., Pasquier, L., Redon, R., Yang, Y.P., State, M.W., Kleefstra, T., Cogne, B., Petrovski, S., Retterer, K., Eichler, E.E., Rosenfeld, J.A., Agrawal, P.B., Bezieau, S., Odent, S., Elgersma, Y., Mercier, S., Undiagnosed Dis Network, GEM HUGO, Deciphering Dev Dis Study, Service de génétique médicale [CHU Nantes], Centre hospitalier universitaire de Nantes (CHU Nantes), Department of Neuroscience [Rotterdam, the Netherlands], Erasmus University Medical Center [Rotterdam] (Erasmus MC), Expertise Center for Neurodevelopmental Disorders [Rotterdam, the Netherlands] (ENCORE), Genomics Program and Division of Genetics [Boston, USA], Harvard Medical School [Boston] (HMS)-Boston Children's Hospital-The Manton Center for Orphan Disease Research, Gene Discovery Core [Boston, MA, USA] ( The Manton Center for Orphan Disease Research), Harvard Medical School [Boston] (HMS)-Boston Children's Hospital, GeneDx [Gaithersburg, MD, USA], Department of Medical Genetics [Skien, Norway], Telemark Hospital Trust [Skien, Norway], Department of Psychiatry [San Francisco, CA, USA], University of California [San Francisco] (UCSF), University of California-University of California, Department of Genome Sciences [Seattle] (GS), University of Washington [Seattle], Department of Pharmacology [Omaha, NE, USA], Creighton University Medical School [Omaha, NE, USA], Neurometabolic Diseases Laboratory [Barcelona, Spain], Institut d'Investigació Biomèdica de Bellvitge [Barcelone] (IDIBELL), Centre for Biomedical Research on Rare Diseases [Barcelona, Spain] (CIBERER), Hospital Sant Joan de Déu [Barcelona], Institució Catalana de Recerca i Estudis Avançats (ICREA), Department of Medical Biochemistry [Amsterdam, the Netherlands] (Academic Medical Center), University of Amsterdam [Amsterdam] (UvA), Department of Molecular and Human Genetics [Houston, USA], Baylor College of Medecine, Department of Pediatrics [Stanford], Stanford Medicine, Stanford University-Stanford University, Département de Biochimie et Génétique [Angers], Université d'Angers (UA)-Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM), Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université d'Angers (UA), Service de Génétique [HCL, Lyon] (Centre de Référence des Anomalies du Développement), Hospices civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Section of Genetics and Metabolism [Little Rock, AR, USA], University of Arkansas for Medical Sciences (UAMS), Molecular and Clinical Medicine [Dundee, UK] (School of Medicine), University of Dundee [UK]-Ninewells Hospital & Medical School [Dundee, UK], Laboratoire de Génétique Moléculaire & Génomique [CHU Rennes], CHU Pontchaillou [Rennes], Department of Human Genetics [Nijmegen], Radboud University Medical Center [Nijmegen], Department of Neurology [Boston], Harvard Medical School [Boston] (HMS)-Massachusetts General Hospital [Boston], Department of Pediatrics [Philadelphia, PA, USA] (Division of Genetics), Children’s Hospital of Philadelphia (CHOP ), Department of Pediatrics [Chicago, IL, USA] (College of Medicine), University of Illinois [Chicago] (UIC), University of Illinois System-University of Illinois System, Sheffield Children's NHS Foundation Trust, Northern Ireland Regional Genetics Centre [Belfast, UK], Belfast City Hospital-Belfast Health and Social Care Trust, Nottingham Regional Genetics Service [Nottingham, UK], City Hospital Campus [Nottingham, UK]-Nottingham University Hospitals NHS Trust [UK], Département d'Epilepsie, Sommeil et Neurophysiologie Pédiatrique [HCL, Lyon], Hospices Civils de Lyon (HCL), Department of Genetics [Utrecht, the Netherlands], University Medical Center [Utrecht], Department of Pediatrics [Saint Louis, MO, USA] (Division of Genetics and Genomic Medicine), Washington University in Saint Louis (WUSTL), Department of Clinical Genetics [Leiden, the Netherlands], Leiden University Medical Center (LUMC), Department of Pediatrics [Seattle, WA, USA] (Division of Genetic Medicine), University of Washington [Seattle]-Seattle Children’s Hospital, Center for Integrative Brain Research [Seattle, WA, USA], University of Washington [Seattle]-Seattle Children's Research Institute, The Center for Applied Genomics [Philadelphia, PA, USA], Division of Human Genetics [Philadelphia, PA, USA], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA], University of Pennsylvania [Philadelphia]-Perelman School of Medicine, University of Pennsylvania [Philadelphia], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA] (Perelman School of Medicine), Division of Clinical Genomics [Aliso Viejo, CA, USA], Ambry Genetics [Aliso Viejo, CA, USA], Division of Neurology [Philadelphia, PA, USA], Institute of Human Genetics [Heidelberg, Germany], Universität Heidelberg [Heidelberg], University of Heidelberg, Medical Faculty, unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Diagnostic Génétique [CHU Strasbourg], Université de Strasbourg (UNISTRA)-CHU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg (UNISTRA), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Service de Neurologie [CHU Strasbourg], Hôpital de Hautepierre [Strasbourg]-Centre Hospitalier Universitaire de Strasbourg (CHU de Strasbourg ), Département de génétique médicale en pédiatrie [CHRU Brest], Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Service de Génétique [CHU Poitiers], Centre hospitalier universitaire de Poitiers (CHU Poitiers), Service de Génétique [CHRU Tours], Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Department of Biological Sciences [Limerick, Ireland], University of Limerick (UL), Bernal Institute [Limerick, Ireland], Howard Hughes Medical Institute [Seattle], Howard Hughes Medical Institute (HHMI), Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Service de Génétique Clinique [CHU Rennes] (Réseau de Génétique et Génomique Médicale), Hôpitaux Universitaires du Grand Ouest, The Wellcome Trust Sanger Institute [Cambridge], Department of Medicine [Melbourne, Australia], University of Melbourne-Austin Health, Division of Newborn Medicine [Boston, MA, USA], Immunobiology of Human αβ and γδ T Cells and Immunotherapeutic Applications (CRCINA-ÉQUIPE 1), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Neurosciences, Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), Univ Angers, Okina, University of California [San Francisco] (UC San Francisco), University of California (UC)-University of California (UC), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de génétique moléculaire et génomique médicale [CHU Rennes], Nottingham University Hospitals NHS Trust (NUH)-City Hospital Campus [Nottingham, UK], Universiteit Leiden-Universiteit Leiden, Department of Pediatrics [Seattle, WA, USA], University of Pennsylvania-Perelman School of Medicine, University of Pennsylvania, Universität Heidelberg [Heidelberg] = Heidelberg University, Unité de recherche de l'institut du thorax (ITX-lab), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de génétique clinique [Rennes], Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Amsterdam Gastroenterology Endocrinology Metabolism, Medical Biochemistry, and Bernardo, Elizabeth
- Subjects
0301 basic medicine ,Male ,de novo mutations ,AMPAR ,medicine.disease_cause ,Inbred C57BL ,Mice ,0302 clinical medicine ,Intellectual disability ,CAMK2A ,Exome ,Phosphorylation ,Genetics (clinical) ,Genetics ,Neurons ,Mutation ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Brain ,Phenotype ,NMDAR ,intellectual disability ,Female ,Signal transduction ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Signal Transduction ,Glutamic Acid ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Article ,Cell Line ,03 medical and health sciences ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,medicine ,Journal Article ,Animals ,Humans ,Protein kinase A ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,synaptic plasticity ,medicine.disease ,Mice, Inbred C57BL ,CAMK2 ,CAMK2B ,030104 developmental biology ,HEK293 Cells ,Synaptic plasticity ,Calcium-Calmodulin-Dependent Protein Kinase Type 2 ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Contains fulltext : 182539.pdf (Publisher’s version ) (Closed access) Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
9. WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features
- Author
-
Skraban, C.M., Wells, C.F., Markose, P., Cho, M.T., Nesbitt, A.I., Au, P.Y., Begtrup, A., Bernat, J.A., Bird, L.M., Cao, K., Brouwer, A.P.M. de, Denenberg, E.H., Douglas, G., Gibson, K.M., Grand, K., Goldenberg, A., Innes, A.M., Juusola, J., Kempers, M.J.E., Kinning, E., Markie, D.M., Owens, M.M., Payne, K., Person, R., Pfundt, R.P., Stocco, A., Turner, C.L., Verbeek, N.E., Walsh, L.E., Warner, T.C., Wheeler, P.G., Wieczorek, D., Wilkens, A.B., Zonneveld-Huijssoon, E., Kleefstra, T., Robertson, S.P., Santani, A., Gassen, K.L. van, Deardorff, M.A., Skraban, C.M., Wells, C.F., Markose, P., Cho, M.T., Nesbitt, A.I., Au, P.Y., Begtrup, A., Bernat, J.A., Bird, L.M., Cao, K., Brouwer, A.P.M. de, Denenberg, E.H., Douglas, G., Gibson, K.M., Grand, K., Goldenberg, A., Innes, A.M., Juusola, J., Kempers, M.J.E., Kinning, E., Markie, D.M., Owens, M.M., Payne, K., Person, R., Pfundt, R.P., Stocco, A., Turner, C.L., Verbeek, N.E., Walsh, L.E., Warner, T.C., Wheeler, P.G., Wieczorek, D., Wilkens, A.B., Zonneveld-Huijssoon, E., Kleefstra, T., Robertson, S.P., Santani, A., Gassen, K.L. van, and Deardorff, M.A.
- Abstract
Contains fulltext : 177285.pdf (publisher's version ) (Closed access), We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in approximately 1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.
- Published
- 2017
10. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders
- Author
-
Wolff, M. (Markus), Johannesen, K.M. (Katrine M.), Hedrich, U.B.S. (Ulrike B. S.), Masnada, S. (Silvia), Rubboli, G. (Guido), Gardella, E. (Elena), Lesca, G. (Gaetan), Ville, D. (Dorothée), Milh, M. (Mathieu), Villard, L. (Laurent), Afenjar, A. (Alexandra), Chantot-Bastaraud, S. (Sandra), Mignot, A., Lardennois, C. (Caroline), Nava, C. (Caroline), Schwarz, N. (Niklas), Gérard, M. (Marion), Perrin, L. (Laurence), Doummar, D. (Diane), Auvin, S. (Stéphane), Miranda, M.J. (Maria J.), Hempel, M. (Maja), Brilstra, E. (Eva), Knoers, N.V.A.M. (Nine), Verbeek, N.E. (Nienke), Kempen, M.J.A. (M. J A) van, Braun, K.P. (Kees P.), Mancini, G.M.S. (Grazia), Biskup, S. (Saskia), Hörtnagel, K. (Konstanze), Döcker, M. (Miriam), Bast, T. (Thomas), Loddenkemper, T. (Tobias), Wong-Kisiel, L. (Lily), Baumeister, F.M. (Friedrich M.), Fazeli, W. (Walid), Striano, P. (Pasquale), Dilena, R. (Robertino), Fontana, E. (Elena), Zara, F. (Federico), Kurlemann, G. (Gerhard), Klepper, J. (Joerg), Thoene, J.G. (Jess G.), Arndt, D.H. (Daniel H.), Deconinck, N. (Nicolas), Schmitt-Mechelke, T. (Thomas), Maier, O. (Oliver), Muhle, H. (Hiltrud), Wical, B. (Beverly), Finetti, C. (Claudio), Brückner, R. (Reinhard), Pietz, J. (Joachim), Golla, G. (Günther), Jillella, D. (Dinesh), Linnet, K.M. (Karen M.), Charles, P. (Perrine), Moog, U. (Ute), Õiglane-Shlik, E. (Eve), Mantovani, J.F. (John F.), Park, K. (Kristen), Deprez, M. (Marie), Lederer, D. (Damien), Mary, S. (Sandrine), Scalais, E. (Emmanuel), Selim, L. (Laila), Coster, R.N.A. (R. N A) van, Lagae, L. (Lieven), Nikanorova, M. (Marina), Hjalgrim, H. (Helle), Korenke, G.C. (Christoph), Trivisano, M. (Marina), Specchio, N. (Nicola), Ceulemans, B. (Berten), Dorn, T. (Thomas), Helbig, K.L. (Katherine L.), Hardies, K. (K.), Stamberger, H. (Hannah), Jonghe, P. (P.) de, Weckhuysen, S. (Sarah), Lemke, J.R. (Johannes R.), Krägeloh-Mann, I. (Ingeborg), Helbig, I. (Ingo), Kluger, G. (Gerhard), Lerche, H. (Holger), Møller, R.S. (Rikke), Wolff, M. (Markus), Johannesen, K.M. (Katrine M.), Hedrich, U.B.S. (Ulrike B. S.), Masnada, S. (Silvia), Rubboli, G. (Guido), Gardella, E. (Elena), Lesca, G. (Gaetan), Ville, D. (Dorothée), Milh, M. (Mathieu), Villard, L. (Laurent), Afenjar, A. (Alexandra), Chantot-Bastaraud, S. (Sandra), Mignot, A., Lardennois, C. (Caroline), Nava, C. (Caroline), Schwarz, N. (Niklas), Gérard, M. (Marion), Perrin, L. (Laurence), Doummar, D. (Diane), Auvin, S. (Stéphane), Miranda, M.J. (Maria J.), Hempel, M. (Maja), Brilstra, E. (Eva), Knoers, N.V.A.M. (Nine), Verbeek, N.E. (Nienke), Kempen, M.J.A. (M. J A) van, Braun, K.P. (Kees P.), Mancini, G.M.S. (Grazia), Biskup, S. (Saskia), Hörtnagel, K. (Konstanze), Döcker, M. (Miriam), Bast, T. (Thomas), Loddenkemper, T. (Tobias), Wong-Kisiel, L. (Lily), Baumeister, F.M. (Friedrich M.), Fazeli, W. (Walid), Striano, P. (Pasquale), Dilena, R. (Robertino), Fontana, E. (Elena), Zara, F. (Federico), Kurlemann, G. (Gerhard), Klepper, J. (Joerg), Thoene, J.G. (Jess G.), Arndt, D.H. (Daniel H.), Deconinck, N. (Nicolas), Schmitt-Mechelke, T. (Thomas), Maier, O. (Oliver), Muhle, H. (Hiltrud), Wical, B. (Beverly), Finetti, C. (Claudio), Brückner, R. (Reinhard), Pietz, J. (Joachim), Golla, G. (Günther), Jillella, D. (Dinesh), Linnet, K.M. (Karen M.), Charles, P. (Perrine), Moog, U. (Ute), Õiglane-Shlik, E. (Eve), Mantovani, J.F. (John F.), Park, K. (Kristen), Deprez, M. (Marie), Lederer, D. (Damien), Mary, S. (Sandrine), Scalais, E. (Emmanuel), Selim, L. (Laila), Coster, R.N.A. (R. N A) van, Lagae, L. (Lieven), Nikanorova, M. (Marina), Hjalgrim, H. (Helle), Korenke, G.C. (Christoph), Trivisano, M. (Marina), Specchio, N. (Nicola), Ceulemans, B. (Berten), Dorn, T. (Thomas), Helbig, K.L. (Katherine L.), Hardies, K. (K.), Stamberger, H. (Hannah), Jonghe, P. (P.) de, Weckhuysen, S. (Sarah), Lemke, J.R. (Johannes R.), Krägeloh-Mann, I. (Ingeborg), Helbig, I. (Ingo), Kluger, G. (Gerhard), Lerche, H. (Holger), and Møller, R.S. (Rikke)
- Abstract
Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatme
- Published
- 2017
- Full Text
- View/download PDF
11. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), Mercier, S. (Sandra), Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), and Mercier, S. (Sandra)
- Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
12. SCN1A-related Dravet syndrome : Vaccinations and seizure precipitants in disease course and diagnosis
- Author
-
Verbeek, N.E., Lindhout, D., Knoers, V.V.A.M., Brilstra, E.H., and University Utrecht
- Subjects
seizure precipitants ,diagnostics ,epilepsy ,photosensitivity ,vaccinations ,Dravet syndrome ,SCN1A gene - Abstract
Febrile seizures are well known adverse events following childhood vaccinations. If a seizure following vaccination is the first of an evolving epilepsy syndrome, the vaccination might be misinterpreted as the primary cause of the epilepsy. Dravet syndrome (formerly known as severe myoclonic epilepsy of infancy, or SMEI) is a rare epilepsy syndrome with seizure onset in the first year of life often triggered by fever or vaccinations, in a previously healthy child. In the second year or later, multiple seizure types develop and neurodevelopment slows down. In the majority of patients the syndrome is caused by spontaneous, heterozygous mutations in the SCN1A gene. The aim of the studies in this thesis was to further delineate the relationship with vaccinations, and specify the role of seizure precipitants in SCN1A-related Dravet syndrome. The prevalence of Dravet syndrome was studied among 1,269 children reported at the RIVM with seizures following vaccination in the first two years of life, and estimated to be at least 1.2%. Of all reported seizures following vaccinations in the first year of life, 2.5% were due to Dravet syndrome. For 2.6% of the 1,269 reported children with seizures following vaccination, this seizure marked the onset of epilepsy. Of them, 13% already had encephalopathy prior to seizure onset, 52% developed epileptic encephalopathy thereafter, and 35% had benign epilepsy. Of the children with a (supposed) epileptic encephalopathy, two-thirds had SCN1A-related Dravet syndrome. Overall, underlying causes had been identified in 65% of children. In 77 children with Dravet syndrome, the effect of vaccination-associated seizure onset on disease course and the risk of subsequent seizures after vaccinations were studied. The age at first seizure was younger in the 21% of children with a vaccination-associated seizure onset, but children with and without vaccination-associated seizure onset did not differ in age at first non-vaccination-associated seizure, age at first report of developmental delay, or cognitive outcome. After seizure onset, the risk of a seizure within 24 hours following an acellular pertussis combination vaccination was 9%, significantly lower than the 37% risk after whole-cell pertussis vaccines. Within the risk period of 5-12 days following mumps-measles-rubella vaccination, self-controlled case series analysis showed a 2.3-fold increased incidence rate of seizures. The importance of seizure precipitants in Dravet syndrome, other than vaccinations, was studied with a questionnaire answered by parents of 71 patients with Dravet syndrome. Fever, a cold, a bath, acute stress and physical exercise were reported as seizure precipitants in more than half of the patients. Seizure precipitating effects of visual stimuli were noted in 65% of 53 patients with Dravet syndrome, by re-evaluation of EEGs, data retrieval from medical files and use of parental questionnaires. The last part of the thesis is on the diagnostic process that was studied in a cohort of patients with SCN1A-related Dravet syndrome. The age at clinical diagnosis of Dravet syndrome decreased significantly after introduction of SCN1A analysis in the Netherlands. Use of contra-indicated antiepileptic drugs had occurred in 87% of patients and decreased with a shorter diagnostic interval and later birth year.
- Published
- 2015
13. Adults with a history of possible Dravet syndrome: an illustration of the importance of analysis of the SCN1A gene
- Author
-
Verbeek, N.E., Kempen, M. van, Gunning, W.B., Renier, W.O., Westland, B., Lindhout, D., and Brilstra, E.H.
- Subjects
Perception and Action [DCN 1] - Abstract
Item does not contain fulltext Most patients with Dravet syndrome have de novo mutations in the neuronal voltage-gated sodium channel type 1 (SCN1A) gene. We report on two unrelated fathers with severe childhood epilepsy compatible with a possible diagnosis of Dravet syndrome, who both have a child with Dravet syndrome. Analysis of the SCN1A gene revealed a pathogenic mutation in both children. One father exhibited somatic mosaicism for the mutation detected in his son. A relatively favorable cognitive outcome in patients with Dravet syndrome patients may be explained by somatic mosaicism for the SCN1A mutation in brain tissue. A mild form of Dravet syndrome in adult patients is associated with a high recurrence risk and possibly a more severe epilepsy phenotype in their offspring.
- Published
- 2011
14. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy
- Author
-
Lee, J.R., Srour, M., Kim, D., Hamdan, F.F., Lim, S.H., Brunel-Guitton, C., Decarie, J.C., Rossignol, E., Mitchell, G.A., Schreiber, A., Moran, R., Haren, K. van, Richardson, R., Nicolai, J., Oberndorff, K.M., Wagner, J.D., Boycott, K.M., Rahikkala, E., Junna, N., Tyynismaa, H., Cuppen, I., Verbeek, N.E., Stumpel, C.T., Willemsen, M.A., Munnik, S.A. de, Rouleau, G.A., Kim, E., Kamsteeg, E.J., Kleefstra, T., Michaud, J.L., Lee, J.R., Srour, M., Kim, D., Hamdan, F.F., Lim, S.H., Brunel-Guitton, C., Decarie, J.C., Rossignol, E., Mitchell, G.A., Schreiber, A., Moran, R., Haren, K. van, Richardson, R., Nicolai, J., Oberndorff, K.M., Wagner, J.D., Boycott, K.M., Rahikkala, E., Junna, N., Tyynismaa, H., Cuppen, I., Verbeek, N.E., Stumpel, C.T., Willemsen, M.A., Munnik, S.A. de, Rouleau, G.A., Kim, E., Kamsteeg, E.J., Kleefstra, T., and Michaud, J.L.
- Abstract
Item does not contain fulltext, KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene.
- Published
- 2015
15. SCN1A-related Dravet syndrome : Vaccinations and seizure precipitants in disease course and diagnosis
- Author
-
Lindhout, D., Knoers, V.V.A.M., Brilstra, E.H., Verbeek, N.E., Lindhout, D., Knoers, V.V.A.M., Brilstra, E.H., and Verbeek, N.E.
- Published
- 2015
16. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement
- Author
-
Schmidts, M., Arts, H.H., Bongers, E.M., Yap, Z., Oud, M.M., Antony, D., Duijkers, L., Emes, R.D., Stalker, J., Yntema, J.B., Plagnol, V., Hoischen, A., Gilissen, C., Forsythe, E., Lausch, E., Veltman, J.A., Roeleveld, N., Superti-Furga, A., Kutkowska-Kazmierczak, A., Kamsteeg, E.J., Elçioglu, N., van Maarle, M.C., Graul-Neumann, L.M., Devriendt, K., Smithson, S.F., Wellesley, D., Verbeek, N.E., Hennekam, R.C., Kayserili, H., Scambler, P.J., Beales, P.L., UK10K, Knoers, N.V., Roepman, R., Mitchison, H.M., Schmidts, Miriam, Arts, Heleen H., Bongers, Ernie M. H. F., Yap, Zhimin, Oud, Machteld M., Antony, Dinu, Duijkers, Lonneke, Emes, Richard D., Stalker, Jim, Yntema, Jan-Bart L., Plagnol, Vincent, Hoischen, Alexander, Gilissen, Christian, Forsythe, Elisabeth, Lausch, Ekkehart, Veltman, Joris A., Roeleveld, Nel, Superti-Furga, Andrea, Kutkowska-Kazmierczak, Anna, Kamsteeg, Erik-Jan, Elcioglu, Nursel, van Maarle, Merel C., Graul-Neumann, Luitgard M., Devriendt, Koenraad, Smithson, Sarah F., Wellesley, Diana, Verbeek, Nienke E., Hennekam, Raoul C. M., Kayserili, Hulya, Scambler, Peter J., Beales, Philip L., Knoers, Nine V. A. M., Roepman, Ronald, Mitchison, Hannah M., Human Genetics, ANS - Amsterdam Neuroscience, APH - Amsterdam Public Health, Paediatrics, and UK10K
- Subjects
Exome/genetics ,Cytoplasmic Dyneins ,Models, Molecular ,Genetics and epigenetic pathways of disease [NCMLS 6] ,Protein Conformation ,Bioinformatics ,medicine.disease_cause ,0302 clinical medicine ,Models ,Genetic Screening/Counselling ,Missense mutation ,Developmental ,Exome ,CRYSTAL-STRUCTURE ,Diagnostics ,Genetics (clinical) ,Exome sequencing ,Renal disorder [IGMD 9] ,Genetics ,Microscopy ,0303 health sciences ,Mutation ,Polydactyly ,Developmental Defects ,DEFECTS ,Polymorphism, Single Nucleotide/genetics ,3. Good health ,Gene Components ,Ellis-Van Creveld Syndrome/genetics ,PELVIC-PHALANGEAL DYSTROPHY ,Single Nucleotide/genetics ,Sequence Analysis ,Mutation/genetics ,Ellis-Van Creveld Syndrome ,Molecular Sequence Data ,IFT ,Biology ,DYNEIN MOTOR DOMAIN ,Polymorphism, Single Nucleotide ,Fluorescence ,Frameshift mutation ,Genomic disorders and inherited multi-system disorders [IGMD 3] ,Molecular Genetics ,03 medical and health sciences ,Intraflagellar transport ,CYTOPLASMIC DYNEIN ,medicine ,RETROGRADE INTRAFLAGELLAR TRANSPORT ,Humans ,Polymorphism ,030304 developmental biology ,Clinical Genetics ,Base Sequence ,Genetic heterogeneity ,Molecular ,DNA ,Sequence Analysis, DNA ,Human Reproducion Genomic disorders and inherited multi-system disorders [NCEBP 12] ,medicine.disease ,LIGHT INTERMEDIATE CHAIN ,Microscopy, Fluorescence ,Cytoplasmic Dyneins/chemistry ,Genetics and epigenetic pathways of disease Renal disorder [NCMLS 6] ,PRIMARY CILIARY DYSKINESIA ,Genetics and epigenetic pathways of disease Genomic disorders and inherited multi-system disorders [NCMLS 6] ,CAENORHABDITIS-ELEGANS ,030217 neurology & neurosurgery - Abstract
Contains fulltext : 116495.pdf (Publisher’s version ) (Open Access) BACKGROUND: Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. AIMS AND METHODS: To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. RESULTS AND CONCLUSIONS: We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype-phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes. 15 p.
- Published
- 2013
17. Identification of Srp9 as a febrile seizure susceptibility gene
- Author
-
Hessel, E.V.S. (Ellen V. S.), de Wit, M. (Marina), Wolterink-Donselaar, I.G. (Inge G.), Karst, H., de Graaff, E. (Esther), Lith, H.A. (H.) van, de Bruijn, E. (Ewart), de Sonnaville, S. (Sophietje), Verbeek, N.E. (Nienke), Lindhout, D. (Dick), de Kovel, C.G.F. (Carolien G. F.), Koeleman, B.P.C. (Bobby), Kempen, M.J.A. (M. J A) van, Brilstra, E. (Eva), Cuppen, E. (Edwin), Loos, M. (Maarten), Spijker, S., Kan, A.A. (Anne A.), Baars, S.E. (Susanne E.), Rijen, P.C. (Peter) van, Gosselaar, P.H. (Peter H.), Groot Koerkamp, M.J.A. (Marian J. A.), Holstege, F.C.P. (Frank), Duijn, C.M. (Cornelia) van, Vergeer, J.M. (Jeanette), Moll, H.A. (Henriette A.), Taubøll, E. (Erik), Heuser, K. (Kjell), Ramakers, G.M.J. (Geert M. J.), Pasterkamp, R.J. (Jeroen), Nieuwenhuizen, O. (Onno) van, Hoogenraad, C.C. (Casper), Kas, M.J.H. (Martien), Graan, P.N.E. (Pierre) de, Hessel, E.V.S. (Ellen V. S.), de Wit, M. (Marina), Wolterink-Donselaar, I.G. (Inge G.), Karst, H., de Graaff, E. (Esther), Lith, H.A. (H.) van, de Bruijn, E. (Ewart), de Sonnaville, S. (Sophietje), Verbeek, N.E. (Nienke), Lindhout, D. (Dick), de Kovel, C.G.F. (Carolien G. F.), Koeleman, B.P.C. (Bobby), Kempen, M.J.A. (M. J A) van, Brilstra, E. (Eva), Cuppen, E. (Edwin), Loos, M. (Maarten), Spijker, S., Kan, A.A. (Anne A.), Baars, S.E. (Susanne E.), Rijen, P.C. (Peter) van, Gosselaar, P.H. (Peter H.), Groot Koerkamp, M.J.A. (Marian J. A.), Holstege, F.C.P. (Frank), Duijn, C.M. (Cornelia) van, Vergeer, J.M. (Jeanette), Moll, H.A. (Henriette A.), Taubøll, E. (Erik), Heuser, K. (Kjell), Ramakers, G.M.J. (Geert M. J.), Pasterkamp, R.J. (Jeroen), Nieuwenhuizen, O. (Onno) van, Hoogenraad, C.C. (Casper), Kas, M.J.H. (Martien), and Graan, P.N.E. (Pierre) de
- Abstract
Objective: Febrile seizures (FS) are the most common seizure type in young children. Complex FS are a risk factor for mesial temporal lobe epilepsy (mTLE). To identify new FS susceptibility genes we used a forward genetic strategy in mice and subsequently analyzed candidate genes in humans. Methods: We mapped a quantitative trait locus (QTL1) for hyperthermia-induced FS on mouse chromosome 1, containing the signal recognition particle 9 (Srp9) gene. Effects of differential Srp9 expression were assessed in vivo and in vitro. Hippocampal SRP9 expression and genetic association were analyzed in FS and mTLE patients. Results: Srp9 was differentially expressed between parental strains C57BL/6J and A/J. Chromosome substitution strain 1 (CSS1) mice exhibited lower FS susceptibility and Srp9 expression than C57BL/6J mice. In vivo knockdown of brain Srp9 reduced FS susceptibility. Mice with reduced Srp9 expression and FS susceptibility, exhibited reduced hippocampal AMPA and NMDA currents. Downregulation of neuronal Srp9 reduced surface expression of AMPA receptor subunit GluA1. mTLE patients with antecedent FS had higher SRP9 expression than patients without. SRP9 promoter SNP rs12403575(G/A) was genetically associated with FS and mTLE. Interpretation: Our findings identify SRP9 as a novel FS susceptibility gene and indicate that SRP9 conveys its effects through endoplasmic reticulum (ER)-dependent synthesis and trafficking of membrane proteins, such as glutamate receptors. Discovery of this new FS gene and mechanism may provide new leads for early diagnosis and treatment of children with complex FS at risk for mTLE.
- Published
- 2014
- Full Text
- View/download PDF
18. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement.
- Author
-
UK10K, Schmidts, M., Arts, H.H., Bongers, E.M., Yap, Z., Oud, M.M., Antony, D., Duijkers, L., Emes, R.D., Stalker, J., Yntema, J.B., Plagnol, V., Hoischen, A., Gilissen, C., Forsythe, E., Lausch, E., Veltman, J.A., Roeleveld, N., Superti-Furga, A., Kutkowska-Kazmierczak, A., Kamsteeg, E.J., Elçioglu, N., van Maarle, M.C., Graul-Neumann, L.M., Devriendt, K., Smithson, S.F., Wellesley, D., Verbeek, N.E., Hennekam, R.C., Kayserili, H., Scambler, P.J., Beales, P.L., Knoers, N.V., Roepman, R., Mitchison, H.M., UK10K, Schmidts, M., Arts, H.H., Bongers, E.M., Yap, Z., Oud, M.M., Antony, D., Duijkers, L., Emes, R.D., Stalker, J., Yntema, J.B., Plagnol, V., Hoischen, A., Gilissen, C., Forsythe, E., Lausch, E., Veltman, J.A., Roeleveld, N., Superti-Furga, A., Kutkowska-Kazmierczak, A., Kamsteeg, E.J., Elçioglu, N., van Maarle, M.C., Graul-Neumann, L.M., Devriendt, K., Smithson, S.F., Wellesley, D., Verbeek, N.E., Hennekam, R.C., Kayserili, H., Scambler, P.J., Beales, P.L., Knoers, N.V., Roepman, R., and Mitchison, H.M.
- Abstract
BACKGROUND: Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. AIMS AND METHODS: To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. RESULTS AND CONCLUSIONS: We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype-phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.
- Published
- 2013
19. Characterization of a novel transcript of the EHMT1 gene reveals important diagnostic implications for Kleefstra syndrome
- Author
-
Nillesen, W.M., Yntema, H.G., Moscarda, M., Verbeek, N.E., Wilson, L.C., Cowan, F., Schepens, M., Raas-Rothschild, A., Gafni-Weinstein, O., Zollino, M., Vijzelaar, R., Neri, G., Nelen, M.R., Bokhoven, J.H.L.M. van, Giltay, J., Kleefstra, T., Nillesen, W.M., Yntema, H.G., Moscarda, M., Verbeek, N.E., Wilson, L.C., Cowan, F., Schepens, M., Raas-Rothschild, A., Gafni-Weinstein, O., Zollino, M., Vijzelaar, R., Neri, G., Nelen, M.R., Bokhoven, J.H.L.M. van, Giltay, J., and Kleefstra, T.
- Abstract
Contains fulltext : 95713.pdf (publisher's version ) (Closed access), The core phenotype of Kleefstra syndrome (KS) is characterized by intellectual disability, childhood hypotonia, and a characteristic facial appearance. This can be caused by either submicroscopic 9q34 deletions or loss of function mutations of the EHMT1 gene. Remarkably, in three patients with a clinical suspicion of KS, molecular cytogenetic analysis revealed an interstitial 9q34 microdeletion proximal to the coding region of the EHMT1 gene based on the NM_ 024757.3 transcript. Because we found a mono-allelic EHMT1 transcript suggestive for haploinsufficiency of EHMT1 in two of these patients tested, we hypothesized that a deletion of regulatory elements or so far unknown coding sequences in the 5' region of the EHMT1 gene, might result in a phenotype compatible with KS. We further characterized the molecular content of deletions proximal to the transcript NM_ 024757.3 and confirmed presence of a novel predicted open reading frame comprising 27 coding exons (NM_ 024757.4). Further analysis showed that all three deletions included the presumed novel first exon of the EHMT1 gene. Subsequent testing of 75 individuals without previously detectable EHMT1 aberrations showed one additional case with a deletion comprising only this 5' part of the gene. These results have important implications for the genetic screening of KS and for studies of the functional significance of EHMT1.
- Published
- 2011
20. Social Responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism.
- Author
-
Daalen, E. van, Kemner, C., Verbeek, N.E., Zwaag, B. van der, Dijkhuizen, T., Rump, P., Houben, R., Slot, R. van 't, Jonge, M.V. de, Staal, W.G., Beemer, F.A., Vorstman, J.A., Burbach, J.P.H., Amstel, H.K. van, Hochstenbach, R., Brilstra, E.H., Poot, M., Daalen, E. van, Kemner, C., Verbeek, N.E., Zwaag, B. van der, Dijkhuizen, T., Rump, P., Houben, R., Slot, R. van 't, Jonge, M.V. de, Staal, W.G., Beemer, F.A., Vorstman, J.A., Burbach, J.P.H., Amstel, H.K. van, Hochstenbach, R., Brilstra, E.H., and Poot, M.
- Abstract
1 november 2011, Contains fulltext : 98353.pdf (publisher's version ) (Open Access), Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient's phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders.
- Published
- 2011
21. A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder
- Author
-
Zwaag, B. (Bert) van der, Staal, W.G. (Wouter), Hochstenbach, R. (Ron), Poot, M. (Martin), Spierenburg, H.A. (Henk), Jonge, M.V. (Maretha) de, Verbeek, N.E. (Nienke), Slot, R. (Ruben) van 't, Es, M.A. (Michael) van, Freitag, C.M. (Christine), Buizer-Voskamp, J.E. (Jacobine), Nelen, M.R. (Marcel), Berg, L.H. (Leonard) van den, Ploos van Amstel, H.K. (Hans), Engeland, H. (Herman) van, Burbach, J.P.H. (Peter), Zwaag, B. (Bert) van der, Staal, W.G. (Wouter), Hochstenbach, R. (Ron), Poot, M. (Martin), Spierenburg, H.A. (Henk), Jonge, M.V. (Maretha) de, Verbeek, N.E. (Nienke), Slot, R. (Ruben) van 't, Es, M.A. (Michael) van, Freitag, C.M. (Christine), Buizer-Voskamp, J.E. (Jacobine), Nelen, M.R. (Marcel), Berg, L.H. (Leonard) van den, Ploos van Amstel, H.K. (Hans), Engeland, H. (Herman) van, and Burbach, J.P.H. (Peter)
- Abstract
High resolution genomic copy-number analysis has shown that inherited and de novo copy-number variations contribute significantly to autism pathology, and that identification of small chromosomal aberrations related to autism will expedite the discovery of risk genes involved. Here, we report a microduplication of chromosome 15q11.2, spanning only four genes, co-segregating with autism in a Dutch pedigree, identified by SNP microarray analysis, and independently confirmed by FISH and MLPA analysis. Quantitative RT-PCR analysis revealed over 70% increase in peripheral blood mRNA levels for the four genes present in the duplicated region in patients, and RNA in situ hybridization on mouse embryonic and adult brain sections revealed that two of the four genes, CYFIP1 and NIPA1, were highly expressed in the developing mouse brain. These findings point towards a contribution of microduplications at chromosome 15q11.2 to autism, and highlight CYFIP1 and NIPA1 as autism risk genes functioning in axonogenesis and synaptogenesis. Thereby, these findings further implicate defects in dosage-sensitive molecular control of neuronal connectivity in autism. However, the prevalence of this microduplication in patient samples was statistically not significantly different from control samples (0.94%in patients vs. 0.42%controls, P=0.247), which suggests that our findings should be interpreted with caution and indicates the need for studies that include large numbers of control subjects to ascertain the impact of these changes on a population scale.
- Published
- 2010
- Full Text
- View/download PDF
22. The landscape of epilepsy-related GATOR1 variants
- Author
-
Johannes R. Lemke, Pia Zacher, Thomas Dorn, Laura Hernandez-Hernandez, Natasha E. Schoeler, Stéphanie Baulac, Sara Baldassari, Anne de Saint Martin, Eleni Panagiotakaki, Anne Fabienne Lepine, Markus Wolff, Arnaud Biraben, Renske Oegema, Edouard Hirsch, Anna Jansen, Charles Deckers, Nienke E. Verbeek, Fabienne Picard, Georg Dorfmüller, Sarah Ferrand-Sorbets, Barbora Benova, Francesca Bisulli, Inga Talvik, Kristin Lindstrom, Tilman Polster, Douglas R. Nordli, Tommaso Pippucci, Eva H. Brilstra, Shifteh Sattar, Erik H. Niks, Marie Line Jacquemont, Kees P.J. Braun, Karen Müller-Schlüter, Sanjay M. Sisodiya, Sarah Weckhuysen, Lysa Boissé Lomax, Sophie Julia, Brigitte Ricard-Mousnier, Mathilde Chipaux, Laura Licchetta, Gaetan Lesca, Bianca Berghuis, S. Krithika, Jamel Chelly, Renzo Guerrini, Hélène Catenoix, Annapurna Poduri, Melanie Jennesson, Pasquale Striano, Rikke S. Møller, Antonio Gambardella, Guillaume Achaz, Peter Uldall, Fabrice Bartolomei, Giuseppe d'Orsi, Laurence Faivre, Floor E. Jansen, An Sofie Schoonjans, Kevin Rostasy, Thomas Becher, Pavel Krsek, Julien Thevenon, Marjan J. A. van Kempen, Guido Rubboli, Cécile Marchal, Meral Balci, Boudewijn Gunning, Ilona Krey, Julitta de Bellescize, Veronique Darmency, Christopher J. Yuskaitis, Daniëlle de Jong, Giovanni Crichiutti, Paolo Tinuper, Katrien Stouffs, Valentin Sander, Anne-Sophie Lebre, Thomas Cloppenborg, Valerio Conti, Gabrielle Rudolf, Courtney Kiss, Eveline Hagebeuk, Caroline Nava, Eric LeGuern, Ilse Wegner, Christian Brandt, Martin Zenker, Simona Balestrini, Picard, Fabienne, Baldassari S., Picard F., Verbeek N.E., van Kempen M., Brilstra E.H., Lesca G., Conti V., Guerrini R., Bisulli F., Licchetta L., Pippucci T., Tinuper P., Hirsch E., de Saint Martin A., Chelly J., Rudolf G., Chipaux M., Ferrand-Sorbets S., Dorfmuller G., Sisodiya S., Balestrini S., Schoeler N., Hernandez-Hernandez L., Krithika S., Oegema R., Hagebeuk E., Gunning B., Deckers C., Berghuis B., Wegner I., Niks E., Jansen F.E., Braun K., de Jong D., Rubboli G., Talvik I., Sander V., Uldall P., Jacquemont M.-L., Nava C., Leguern E., Julia S., Gambardella A., d'Orsi G., Crichiutti G., Faivre L., Darmency V., Benova B., Krsek P., Biraben A., Lebre A.-S., Jennesson M., Sattar S., Marchal C., Nordli D.R., Lindstrom K., Striano P., Lomax L.B., Kiss C., Bartolomei F., Lepine A.F., Schoonjans A.-S., Stouffs K., Jansen A., Panagiotakaki E., Ricard-Mousnier B., Thevenon J., de Bellescize J., Catenoix H., Dorn T., Zenker M., Muller-Schluter K., Brandt C., Krey I., Polster T., Wolff M., Balci M., Rostasy K., Achaz G., Zacher P., Becher T., Cloppenborg T., Yuskaitis C.J., Weckhuysen S., Poduri A., Lemke J.R., Moller R.S., Baulac S., Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Department of Genetics [Utrecht, the Netherlands], University Medical Center [Utrecht], Service de Génétique [HCL Groupement Hospitalier Est], Groupement Hospitalier Lyon-Est (GHE), Hospices Civils de Lyon (HCL)-Hospices Civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Children's Hospital A. Meyer, Service de Neurologie [Strasbourg], CHU Strasbourg-Hopital Civil, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Clinical and Experimental Epilepsy, University College of London [London] (UCL), Academic Center for Epileptology Kempenhaeghe & Maastricht UMC+ [Heeze], Danish Epilepsy Centre, Denmark and Aarhus University, Aarhus, Centre Hospitalier Universitaire de La Réunion (CHU La Réunion), Service de Génétique Cytogénétique et Embryologie [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Service de génétique médicale [Toulouse], CHU Toulouse [Toulouse], Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), FHU TRANSLAD (CHU de Dijon), Université de Bourgogne (UB), Service de Neurophysiologie Clinique (CHU Dijon), CHU Pontchaillou [Rennes], Service de pédiatrie spécialisée et médecine infantile (neurologie, pneumologie, maladies héréditaires du métabolisme) [Hôpital de la Timone - APHM], Hôpital de la Timone [CHU - APHM] (TIMONE), Epilepsie, sommeil et explorations fonctionnelles neuropédiatriques, Hospices Civils de Lyon (HCL)-Hôpital Femme Mère Enfant, Equipe GAD (LNC - U1231), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université Bourgogne Franche-Comté [COMUE] (UBFC), Département d'Epilepsie, Sommeil et Neurophysiologie Pédiatrique [HCL, Lyon], Hospices Civils de Lyon (HCL), Institute of Human Genetics, University Hospital Magdeburg, Institut de Systématique, Evolution, Biodiversité (ISYEB ), Muséum national d'Histoire naturelle (MNHN)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Groupement hospitalier Lyon-Est, Centre de recherche en neurosciences de Lyon (CRNL), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), and CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse]
- Subjects
Male ,0301 basic medicine ,Proband ,DEPDC5 ,SUDEP ,030105 genetics & heredity ,Bioinformatics ,Loss of Function Mutation/genetics ,Epilepsy ,INDEL Mutation ,Loss of Function Mutation ,mTORC1 pathway ,Genetics(clinical) ,Child ,Genetics (clinical) ,Multiprotein Complexes/genetics ,Brugada Syndrome ,DNA Copy Number Variation ,Brugada syndrome ,INDEL Mutation/genetics ,GTPase-Activating Proteins ,NPRL3 ,Seizure ,Phenotype ,Pedigree ,3. Good health ,Brugada Syndrome/genetics ,Child, Preschool ,Female ,Human ,Signal Transduction ,DNA Copy Number Variations ,Adolescent ,Seizures/complications ,Mechanistic Target of Rapamycin Complex 1/genetics ,DNA Copy Number Variations/genetics ,Mechanistic Target of Rapamycin Complex 1 ,Tumor Suppressor Proteins/genetics ,Article ,Focal cortical dysplasia ,03 medical and health sciences ,Seizures ,GTPase-Activating Proteins/genetics ,medicine ,Humans ,Genetic Predisposition to Disease ,Genetic focal epilepsy ,Epilepsy/complications ,Repressor Proteins/genetics ,business.industry ,GTPase-Activating Protein ,Tumor Suppressor Proteins ,Infant, Newborn ,Correction ,Infant ,Repressor Protein ,Cortical dysplasia ,medicine.disease ,ddc:616.8 ,Repressor Proteins ,030104 developmental biology ,Frontal lobe seizures ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,Multiprotein Complexes ,Multiprotein Complexe ,Signal Transduction/genetics ,Human medicine ,business - Abstract
Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia (20%). Infantile spasms were reported in 10% of the probands. Sudden unexpected death in epilepsy (SUDEP) occurred in 10% of the families. Novel classification framework of all 140 epilepsy-related GATOR1 variants (including the variants of this study) revealed that 68% are loss-of-function pathogenic, 14% are likely pathogenic, 15% are variants of uncertain significance and 3% are likely benign.\ud \ud Conclusion:\ud \ud Our data emphasize the increasingly important role of GATOR1 genes in the pathogenesis of focal epilepsies (>180 probands to date). The GATOR1 phenotypic spectrum ranges from sporadic early-onset epilepsies with cognitive impairment comorbidities to familial focal epilepsies, and SUDEP.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.