26 results on '"Velázquez-Villegas LA"'
Search Results
2. Taenia solium TAF6 and TAF9 bind to a downstream promoter element present in the Tstbp1 gene core promoter.
- Author
-
Rodríguez-Lima O, García-Gutiérrez P, Jiménez L, Velázquez-Villegas LA, Zarain-Herzberg A, Lazzarini R, Estrada K, and Landa A
- Subjects
- Animals, Protein Binding, Binding Sites, Helminth Proteins genetics, Helminth Proteins metabolism, TATA-Box Binding Protein metabolism, TATA-Box Binding Protein genetics, Transcription Initiation Site, Molecular Dynamics Simulation, Gene Expression Regulation, Promoter Regions, Genetic, Taenia solium genetics, Taenia solium metabolism, TATA-Binding Protein Associated Factors genetics, TATA-Binding Protein Associated Factors metabolism
- Abstract
Transcription regulation in cestodes has been little studied. Here, we characterize the Taenia solium TATA-binding protein (TBP) gene. We found binding sites for transcription factors such as NF1, YY1, and AP-1 in the proximal promoter. We also identified two TATA-like elements in the promoter; however, neither could bind TBP. Additionally, we mapped the transcription start site (A+1) within an initiator and identified a putative downstream promoter element (DPE) located at +27 bp relative to the transcription start site. These two elements are important and functional for gene expression. Moreover, we identified the genes encoding T. solium TBP-Associated Factor 6 (TsTAF6) and 9 (TsTAF9). A Western blot assay revealed that both factors are expressed in the parasite; electrophoretic mobility shift assays and super-shift assays revealed interactions between the DPE probe and TsTAF6-TsTAF9. Finally, we used molecular dynamics simulations to formulate an interaction model among TsTAF6, TsTAF9, and the DPE probe; we stabilized the model with interactions between the histone fold domain pair in TAFs and several pairs of nucleotides in the DPE probe. We discuss novel and interesting features of the TsTAF6-TsTAF9 complex for interaction with DPE on T. solium promoters., Competing Interests: The authors declare that they have no conflict of interest., (Copyright: © 2024 Rodríguez-Lima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
3. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial.
- Author
-
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, and Velázquez-Villegas LA
- Subjects
- Adult, Female, Humans, Male, Middle Aged, Intermittent Fasting, Lipopolysaccharides, Oxygen Consumption, Signal Transduction, Caloric Restriction methods, Diet, Ketogenic methods, Gastrointestinal Microbiome, Mitochondria metabolism, Monocytes metabolism, Obesity diet therapy, Obesity metabolism
- Abstract
Background: Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota., Methods and Findings: A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n
2 p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study., Conclusions: We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials., Trial Registration: This trial was registered with ClinicalTrials.gov (NCT05200468)., Competing Interests: Declaration of conflict of interest Laura A. Velázquez-Villegas received research funding from Laboratorios Senosiain S.A. de C.V., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance.
- Author
-
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, and Guevara-Cruz M
- Subjects
- Humans, Male, Female, Adult, Middle Aged, Insulin blood, Blood Glucose metabolism, MicroRNAs blood, MicroRNAs genetics, Insulin Resistance, Postprandial Period, Dietary Proteins administration & dosage, Obesity blood, Obesity diet therapy, Obesity genetics, Obesity metabolism, Circulating MicroRNA blood, Circulating MicroRNA genetics, Amino Acids blood
- Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin ( p = 0.04) and the plasma concentrations of branched-chain ( p = 0.007) and gluconeogenic ( p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p ( p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
- Published
- 2024
- Full Text
- View/download PDF
5. IFN-γ stimulates Paneth cell secretion through necroptosis mTORC1 dependent.
- Author
-
Encarnacion-Garcia MR, De la Torre-Baez R, Hernandez-Cueto MA, Velázquez-Villegas LA, Candelario-Martinez A, Sánchez-Argáez AB, Horta-López PH, Montoya-García A, Jaimes-Ortega GA, Lopez-Bailon L, Piedra-Quintero Z, Carrasco-Torres G, De Ita M, Figueroa-Corona MDP, Muñoz-Medina JE, Sánchez-Uribe M, Ortiz-Fernández A, Meraz-Ríos MA, Silva-Olivares A, Betanzos A, Baay-Guzman GJ, Navarro-Garcia F, Villa-Treviño S, Garcia-Sierra F, Cisneros B, Schnoor M, Ortíz-Navarrete VF, Villegas-Sepúlveda N, Valle-Rios R, Medina-Contreras O, Noriega LG, and Nava P
- Abstract
Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut., (© 2024 The Author(s). European Journal of Immunology published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
6. Ramon Flour ( Brosimum alicastrum Swartz) Ameliorates Hepatic Lipid Accumulation, Induction of AMPK Phosphorylation, and Expression of the Hepatic Antioxidant System in a High-Fat-Diet-Induced Obesity Mouse Model.
- Author
-
Cu-Cañetas TE, Velázquez-Villegas LA, Manzanilla-Franco M, Ayora-Talavera TDR, Acevedo-Fernández JJ, Barbosa-Martín E, Márquez-Mota CC, López-Barradas AM, Noriega LG, Guevara-Cruz M, Gutiérrez-Solís AL, and Avila-Nava A
- Abstract
Excessive consumption of fat and carbohydrates, together with a decrease in traditional food intake, has been related to obesity and the development of metabolic alterations. Ramon seed is a traditional Mayan food used to obtain Ramon flour (RF) with high biological value in terms of protein, fiber, micronutrients, and bioactive compounds such as polyphenols. However, few studies have evaluated the beneficial effects of RF. Thus, we aimed to determine the metabolic effects of RF consumption on a high-fat-diet-induced obesity mouse model. We divided male BALB/c mice into four groups ( n = 5 each group) and fed them for 90 days with the following diets: Control (C): control diet (AIN-93), C + RF: control diet adjusted with 25% RF, HFD: high-fat diet + 5% sugar in water, and HFD + RF: high-fat diet adjusted with 25% RF + 5% sugar in water. The RF prevented the increase in serum total cholesterol (TC) and alanine transaminase (ALT) that occurred in the C and HFD groups. Notably, RF together with HFD increased serum polyphenols and antioxidant activity, and it promoted a decrease in the adipocyte size in white adipose tissue, along with lower hepatic lipid accumulation than in the HFD group. In the liver, the HFD + RF group showed an increase in the expression of β-oxidation-related genes, and downregulation of the fatty acid synthase ( Fas ) gene compared with the HFD group. Moreover, the HFD + RF group had increased hepatic phosphorylation of AMP-activated protein kinase (AMPK), along with increased nuclear factor erythroid 2-related factor 2 (NRF2) and superoxide dismutase 2 (SOD2) protein expression compared with the HFD group. Thus, RF may be used as a nutritional strategy to decrease metabolic alterations during obesity.
- Published
- 2023
- Full Text
- View/download PDF
7. Genistein-mediated thermogenesis and white-to-beige adipocyte differentiation involve transcriptional activation of cAMP response elements in the Ucp1 promoter.
- Author
-
Fuentes-Romero R, Velázquez-Villegas LA, Vasquez-Reyes S, Pérez-Jiménez B, Domínguez Velázquez ZN, Sánchez-Tapia M, Vargas-Castillo A, Tobón-Cornejo S, López-Barradas AM, Mendoza V, Torres N, López-Casillas F, and Tovar AR
- Subjects
- Mice, Rats, Animals, Transcriptional Activation, Genistein pharmacology, Uncoupling Protein 1 genetics, Uncoupling Protein 1 metabolism, Adipose Tissue, White metabolism, Thermogenesis genetics, Response Elements, Adipose Tissue, Brown metabolism, Adipocytes, Beige metabolism
- Abstract
Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders., (© 2023 Federation of American Societies for Experimental Biology.)
- Published
- 2023
- Full Text
- View/download PDF
8. Astrocytic circadian clock control of energy expenditure by transcriptional stress responses in the ventromedial hypothalamus.
- Author
-
Mendoza-Viveros L, Marmolejo-Gutierrez C, Cid-Castro C, Escalante-Covarrubias Q, Montellier E, Carreño-Vázquez E, Noriega LG, Velázquez-Villegas LA, Tovar AR, Sassone-Corsi P, Aguilar-Arnal L, and Orozco-Solis R
- Subjects
- Mice, Animals, Astrocytes metabolism, Hypothalamus metabolism, Transcription Factors genetics, Transcription Factors metabolism, Energy Metabolism genetics, Circadian Clocks genetics
- Abstract
Hypothalamic circuits compute systemic information to control metabolism. Astrocytes residing within the hypothalamus directly sense nutrients and hormones, integrating metabolic information, and modulating neuronal responses. Nevertheless, the role of the astrocytic circadian clock on the control of energy balance remains unclear. We used mice with a targeted ablation of the core-clock gene Bmal1 within Gfap-expressing astrocytes to gain insight on the role played by this transcription factor in astrocytes. While this mutation does not substantially affect the phenotype in mice fed normo-caloric diet, under high-fat diet we unmasked a thermogenic phenotype consisting of increased energy expenditure, and catabolism in brown adipose and overall metabolic improvement consisting of better glycemia control, and body composition. Transcriptomic analysis in the ventromedial hypothalamus revealed an enhanced response to moderate cellular stress, including ER-stress response, unfolded protein response and autophagy. We identified Xbp1 and Atf1 as two key transcription factors enhancing cellular stress responses. Therefore, we unveiled a previously unknown role of the astrocytic circadian clock modulating energy balance through the regulation of cellular stress responses within the VMH., (© 2023 Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
9. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice.
- Author
-
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, and Aguilar-Arnal L
- Subjects
- Mice, Male, Female, Animals, Circadian Rhythm physiology, NAD metabolism, Diet, Liver metabolism, Circadian Clocks, Metabolic Diseases metabolism
- Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD
+ . Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+ -based therapies and support a chronobiology-based approach., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
10. Genistein Stimulation of White Adipose Tissue Thermogenesis Is Partially Dependent on GPR30 in Mice.
- Author
-
Vásquez-Reyes S, Vargas-Castillo A, Noriega LG, Velázquez-Villegas LA, Pérez B, Sánchez-Tapia M, Ordaz G, Suárez-Monroy R, Ulloa-Aguirre A, Offner H, Torres N, and Tovar AR
- Subjects
- Adipose Tissue, White metabolism, Animals, Body Weight, Energy Metabolism, Glucose metabolism, Mice, Mice, Inbred C57BL, Thermogenesis genetics, Adipose Tissue, Brown metabolism, Genistein metabolism, Genistein pharmacology
- Abstract
Scope: Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study is to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30
+/+ and GPR30-/- mice., Methods and Results: GPR30+/+ and GPR30-/- mice are fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance, and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes are evaluated. Genistein consumption reduces body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure is lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration, and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improves glucose tolerance in GPR30+/+ , but this is partially observed in GPR30-/- mice., Conclusion: The results show that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance., (© 2022 Wiley-VCH GmbH.)- Published
- 2022
- Full Text
- View/download PDF
11. Dietary bioactive compounds as modulators of mitochondrial function.
- Author
-
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, and Tovar AR
- Subjects
- AMP-Activated Protein Kinases metabolism, Animals, Gastrointestinal Microbiome, Humans, Mitochondria pathology, Oxygen Consumption, Sirtuin 1 metabolism, Thermogenesis, Functional Food analysis, Mitochondria metabolism
- Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
12. Central anorexigenic actions of bile acids are mediated by TGR5.
- Author
-
Perino A, Velázquez-Villegas LA, Bresciani N, Sun Y, Huang Q, Fénelon VS, Castellanos-Jankiewicz A, Zizzari P, Bruschetta G, Jin S, Baleisyte A, Gioiello A, Pellicciari R, Ivanisevic J, Schneider BL, Diano S, Cota D, and Schoonjans K
- Subjects
- Animals, Anorexia etiology, Anorexia metabolism, Cell Line, Eating, Gene Expression Regulation, Hypothalamus metabolism, Hypothalamus physiopathology, Male, Mice, Mice, Knockout, Mice, Transgenic, Neurons metabolism, Neuropeptides metabolism, Receptors, G-Protein-Coupled agonists, Bile Acids and Salts metabolism, Receptors, G-Protein-Coupled genetics, Receptors, G-Protein-Coupled metabolism
- Abstract
Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain
1 , yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3-8 . Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho-ROCK-actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.- Published
- 2021
- Full Text
- View/download PDF
13. PPARα/RXRα downregulates amino acid catabolism in the liver via interaction with HNF4α promoting its proteasomal degradation.
- Author
-
Tobón-Cornejo S, Vargas-Castillo A, Leyva-Martínez A, Ortíz V, Noriega LG, Velázquez-Villegas LA, Aleman G, Furosawa-Carballeda J, Torres N, and Tovar AR
- Subjects
- Animals, Down-Regulation genetics, HEK293 Cells, Hep G2 Cells, Humans, Male, Metabolism genetics, Mice, Mice, Inbred C57BL, Mice, Knockout, PPAR alpha genetics, Proteasome Endopeptidase Complex metabolism, Protein Binding, Proteolysis, Retinoid X Receptor alpha genetics, Amino Acids metabolism, Hepatocyte Nuclear Factor 4 metabolism, Liver metabolism, PPAR alpha physiology, Retinoid X Receptor alpha physiology
- Abstract
The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity., Competing Interests: Declaration of competing interest None., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
14. Genistein increases the thermogenic program of subcutaneous WAT and increases energy expenditure in mice.
- Author
-
Palacios-González B, Vargas-Castillo A, Velázquez-Villegas LA, Vasquez-Reyes S, López P, Noriega LG, Aleman G, Tovar-Palacio C, Torre-Villalvazo I, Yang LJ, Zarain-Herzberg A, Torres N, and Tovar AR
- Subjects
- 3T3-L1 Cells, AMP-Activated Protein Kinases metabolism, Adipose Tissue, Beige drug effects, Animals, Cell Differentiation drug effects, Fibronectins metabolism, Gene Expression Regulation drug effects, Glucose metabolism, Male, Mice, Mice, Inbred C57BL, Thermogenesis drug effects, Adipose Tissue, White drug effects, Adipose Tissue, White metabolism, Energy Metabolism drug effects, Genistein pharmacology
- Abstract
White adipose tissue (WAT) can differentiate into beige adipose tissue by the browning process. Some polyphenols, including isoflavones, particularly genistein, are suggested to increase the expression of browning markers. There is evidence that consumption of genistein can attenuate body weight gain and improve glucose tolerance and blood lipid levels. The aim of the present study was to investigate the potential mechanisms of stimulation by which genistein activates the browning of WAT. We studied the stimulation of the expression of browning markers in the following models: mice fed genistein; preadipocytes from 3 T3-L1 cells; and the stromal vascular fraction (SVF) from the inguinal adipose tissue of mice. The results indicated that genistein can stimulate the browning process by at least two mechanisms. An indirect mechanism was involved in the induction of PGC-1α/FNDC5 in skeletal muscle leading to an increase in the myokine irisin. In preadipocytes, irisin was able to increase the expression of Ucp1 and Tmem26, markers of browning, to increase energy expenditure. Interestingly, genistein was also able to activate browning by a direct mechanism. Incubation of preadipocytes with genistein increased UCP1 expression as well as some biomarkers of browning in a concentration-dependent manner, possibly via phosphorylation of AMPK. The effect of genistein was accompanied by an increase in the number of mitochondria as well as in the maximum respiration rate of the adipocytes. In conclusion, this study indicated that genistein can increase energy expenditure by stimulating the browning process directly in preadipocytes and indirectly by increasing the circulating levels of irisin., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
15. Long-Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxemia, and Cognitive Function in Mice Fed a High-Fat Diet.
- Author
-
López P, Sánchez M, Perez-Cruz C, Velázquez-Villegas LA, Syeda T, Aguilar-López M, Rocha-Viggiano AK, Del Carmen Silva-Lucero M, Torre-Villalvazo I, Noriega LG, Torres N, and Tovar AR
- Subjects
- Animals, Diet, High-Fat, Disks Large Homolog 4 Protein analysis, Energy Metabolism, Inflammation prevention & control, Lipids blood, Lipopolysaccharides blood, Male, Mice, Mice, Inbred C57BL, Weight Gain, Cognition drug effects, Endotoxemia prevention & control, Gastrointestinal Microbiome drug effects, Genistein administration & dosage, Glucose metabolism
- Abstract
Scope: The aim of this study is to assess whether the long-term addition of genistein to a high-fat diet can ameliorate the metabolic and the cognitive alterations and whether the changes can be associated with modifications to the gut microbiota., Methods and Results: C57/BL6 mice were fed either a control (C) diet, a high-fat (HF) diet, or a high-fat diet containing genistein (HFG) for 6 months. During the study, indirect calorimetry, IP glucose tolerance tests, and behavioral analyses were performed. At the end of the study, plasma, liver, brain, and fecal samples were collected. The results showed that mice fed the HFG diet gained less weight, had lower serum triglycerides, and an improvement in glucose tolerance than those fed an HF diet. Mice fed the HFG diet also modified the gut microbiota that was associated with lower circulating levels of lipopolysaccharide (LPS) and reduced expression of pro-inflammatory cytokines in the liver compared to those fed HF diet. The reduction in LPS by the consumption of genistein was accompanied by an improvement of the cognitive function., Conclusions: Genistein is able to regulate the gut microbiota, reducing metabolic endotoxemia and decreasing the neuroinflammatory response despite the consumption of a HF diet., (© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
16. An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function.
- Author
-
Li H, Wang X, Rukina D, Huang Q, Lin T, Sorrentino V, Zhang H, Bou Sleiman M, Arends D, McDaid A, Luan P, Ziari N, Velázquez-Villegas LA, Gariani K, Kutalik Z, Schoonjans K, Radcliffe RA, Prins P, Morgenthaler S, Williams RW, and Auwerx J
- Subjects
- Animals, Carnitine O-Palmitoyltransferase genetics, Carnitine O-Palmitoyltransferase physiology, Databases, Genetic, Genome-Wide Association Study, Genotype, Mice, Mice, Inbred Strains genetics, Phenotype, Polymorphism, Single Nucleotide genetics, Quantitative Trait Loci, Ribosomal Proteins genetics, Ribosomal Proteins physiology, Systems Biology methods, Transcriptome, Gene Expression Profiling methods, Genomics methods, Proteomics methods
- Abstract
Identifying genetic and environmental factors that impact complex traits and common diseases is a high biomedical priority. Here, we developed, validated, and implemented a series of multi-layered systems approaches, including (expression-based) phenome-wide association, transcriptome-/proteome-wide association, and (reverse-) mediation analysis, in an open-access web server (systems-genetics.org) to expedite the systems dissection of gene function. We applied these approaches to multi-omics datasets from the BXD mouse genetic reference population, and identified and validated associations between genes and clinical and molecular phenotypes, including previously unreported links between Rpl26 and body weight, and Cpt1a and lipid metabolism. Furthermore, through mediation and reverse-mediation analysis we established regulatory relations between genes, such as the co-regulation of BCKDHA and BCKDHB protein levels, and identified targets of transcription factors E2F6, ZFP277, and ZKSCAN1. Our multifaceted toolkit enabled the identification of gene-gene and gene-phenotype links that are robust and that translate well across populations and species, and can be universally applied to any populations with multi-omics datasets., (Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
17. Recycling of glucagon receptor to plasma membrane increases in adipocytes of obese rats by soy protein; implications for glucagon resistance.
- Author
-
Velázquez-Villegas LA, Tovar-Palacio C, Palacios-González B, Torres N, Tovar AR, and Díaz-Villaseñor A
- Subjects
- Adipocytes metabolism, Adipose Tissue, White drug effects, Adipose Tissue, White metabolism, Animals, Cell Membrane metabolism, Diabetes Mellitus, Type 2 blood, Diabetes Mellitus, Type 2 drug therapy, Diet, Disease Models, Animal, Gene Expression Regulation, Hyperglycemia blood, Hyperglycemia drug therapy, Male, Obesity drug therapy, Rats, Rats, Zucker, Receptors, Glucagon genetics, Triglycerides blood, rab GTP-Binding Proteins genetics, rab GTP-Binding Proteins metabolism, Adipocytes drug effects, Glucagon blood, Obesity blood, Receptors, Glucagon metabolism, Soybean Proteins pharmacology
- Abstract
Scope: Hyperglucagonemia contributes to hyperglycemia in type 2 diabetes (T2D). Previously, we have found that soy protein normalized fasting hyperglucagonemia in obese Zucker (fa/fa) rats, sensitizing the HSL-lipolytic signaling pathway in white adipose tissue (WAT), however the mechanism remains unknown., Methods and Results: Zucker (fa/fa) rats were fed casein or soy protein diet in combination with soybean or coconut oil. Glucagon receptor (GR) was increased at the plasma membrane of adipocytes of rats fed soy protein compared to those fed casein, without changes in total GR abundance. The protein abundance of Rab4, a GTPase involved in GR fast recycling, was dramatically up-regulated in adipocytes of rats fed soy protein. The proportion of GR bound to Rab4 or to RAMP2, involved in promoting GR ligand-binding and G protein selectivity, increased when soy protein was combined with soybean oil as fat source. In rats fed soy protein with coconut oil, Rab11 levels, a protein involved in the slow recycling of GR, was also increased., Conclusion: Soy protein increases GR recycling to the membrane of adipocytes and its ligand-binding and G protein selectivity, suggesting, it could be used in T2D dietary treatment to reestablish glucagon sensitivity in WAT, leading to the regulation of circulating glucagon levels., (© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2017
- Full Text
- View/download PDF
18. Insulin and SGK1 reduce the function of Na+/monocarboxylate transporter 1 (SMCT1/SLC5A8).
- Author
-
López-Barradas A, González-Cid T, Vázquez N, Gavi-Maza M, Reyes-Camacho A, Velázquez-Villegas LA, Ramírez V, Zandi-Nejad K, Mount DB, Torres N, Tovar AR, Romero MF, Gamba G, and Plata C
- Subjects
- Animals, DNA, Complementary metabolism, Humans, Male, Oocytes metabolism, Pancreas metabolism, RNA, Messenger metabolism, Rats, Rats, Wistar, Xenopus laevis metabolism, Zebrafish metabolism, Immediate-Early Proteins metabolism, Insulin metabolism, Monocarboxylic Acid Transporters metabolism, Protein Serine-Threonine Kinases metabolism, Sodium metabolism
- Abstract
SMCTs move several important fuel molecules that are involved in lipid, carbohydrate, and amino acid metabolism, but their regulation has been poorly studied. Insulin controls the translocation of several solutes that are involved in energetic cellular metabolism, including glucose. We studied the effect of insulin on the function of human SMCT1 expressed in Xenopus oocytes. The addition of insulin reduced α-keto-isocaproate (KIC)-dependent
22 Na+ uptake by 29%. Consistent with this result, the coinjection of SMCT1 with SGK1 cRNA decreased the KIC-dependent22 Na+ uptake by 34%. The reduction of SMCT1 activity by SGK1 depends on its kinase activity, and it was observed that the coinjection of SMCT1 with S442D-SGK1 (a constitutively active mutant) decreased the KIC-dependent22 Na+ uptake by 50%. In contrast, an SMCT1 coinjection with K127M-SGK1 (an inactive mutant) had no effect on the KIC-dependent Na+ uptake. The decreasing SMCT1 function by insulin or SGK1 was corroborated by measuring [1-14 C]acetate uptake and the electric currents of SMCT1-injected oocytes. Previously, we found that SMCT2/Slc5a12-mRNA, but not SMCT1/Slc5a8-mRNA, is present in zebrafish pancreas (by in situ hybridization); however, SLC5a8 gene silencing was associated with the development of human pancreatic cancer. We confirmed that the mRNA and protein of both transporters were present in rat pancreas using RT-PCR with specific primers, Western blot analysis, and immunohistochemistry. Additionally, significant propionate-dependent22 Na+ uptake occurred in pancreatic islets and was reduced by insulin treatment. Our data indicate that human SMCT1 is regulated by insulin and SGK1 and that both SMCTs are present in the mammalian pancreas.- Published
- 2016
- Full Text
- View/download PDF
19. Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL6 mice.
- Author
-
Leal-Díaz AM, Noriega LG, Torre-Villalvazo I, Torres N, Alemán-Escondrillas G, López-Romero P, Sánchez-Tapia M, Aguilar-López M, Furuzawa-Carballeda J, Velázquez-Villegas LA, Avila-Nava A, Ordáz G, Gutiérrez-Uribe JA, Serna-Saldivar SO, and Tovar AR
- Abstract
Obesity and its comorbidities are a severe public health problem worldwide. The use of bioactive compounds found in some foods has been demonstrated to ameliorate the metabolic abnormalities associated with obesity. The purpose of this study was to assess whether the bioactive compounds present in aguamiel concentrate (AC) from Agave salmiana could attenuate glucose intolerance and hepatic steatosis in mice fed a high fat (HF) diet. HPLC-ELSD analysis showed that AC contained several saponins. The consumption of an AC extract rich in saponins reduced weight gain and fat mass and lowered serum glucose, insulin and LDL-cholesterol levels in mice fed a HF diet. Additionally, mice fed the saponin extract exhibited a reduced HOMA index and hepatic lipid levels and increased expression of genes involved in fatty acid oxidation. Saponins increased white adipose tissue browning, AMPK phosphorylation, fatty acid oxidation, and mitochondrial activity in skeletal muscle and energy expenditure in mice fed the HF diet. These metabolic changes were accompanied by an increase in the abundance of Akkermansia muciniphila in the gut microbiota. Therefore, Agave salmiana saponins can be an alternative to attenuate the metabolic changes that accompany obesity.
- Published
- 2016
- Full Text
- View/download PDF
20. PPARα Downregulates Hepatic Glutaminase Expression in Mice Fed Diets with Different Protein:Carbohydrate Ratios.
- Author
-
Velázquez-Villegas LA, Charabati T, Contreras AV, Alemán G, Torres N, and Tovar AR
- Subjects
- Animals, Base Sequence, Diet, Dietary Carbohydrates administration & dosage, Dietary Proteins administration & dosage, Gene Expression Regulation, Enzymologic, Glutaminase genetics, Hep G2 Cells, Hepatocyte Nuclear Factor 4 genetics, Hepatocyte Nuclear Factor 4 metabolism, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, PPAR alpha genetics, RNA, Messenger genetics, RNA, Messenger metabolism, Up-Regulation, Down-Regulation, Glutaminase metabolism, Liver enzymology, PPAR alpha metabolism
- Abstract
Background: Glutamine is catabolized in the liver by glutaminase 2 (GLS2). Evidence suggests that peroxisome proliferator-activated receptor α (PPARα) represses the expression of several amino acid-catabolizing enzymes, but for Gls2 this is unknown., Objective: The aim of the study was to assess whether PPARα regulates Gls2 expression., Methods: For 8 d, 7-9-wk-old male C57BL/6 wild-type (WT) and Ppara-null mice weighing 23.4 ± 0.5 g were fed diets with different dietary protein:carbohydrate (DP:DCH) ratios (6%:77%, 20%:63%, or 50%:33%). Liver samples were obtained after 16 h of feed deprivation or 3 h of refeeding, and microarrays were performed. Hepatic glutaminase expression was measured by quantitative polymerase chain reaction and Western blotting. Cotransfection analyses in hepatocellular carcinoma cell line (HepG2) cells with PPARα and hepatocyte nuclear factor 4α (HNF4α) expression vectors were performed., Results: The microarray results showed that Gls2 was the only upregulated gene in WT mice, but not in the Ppara-null mice. In the feed-deprived WT mice, the Gls2 mRNA and protein abundances in the 50%:33% group were 2.5- and 1.1-fold greater (P < 0.05), respectively, than those in the 20%:63% group, which were 2.3- and 0.4-fold greater than those in the 6%:77% group (P < 0.01). Gls2 mRNA expression in the 6%:77% group of feed-deprived Ppara-null mice was 33-fold greater than that in the same group of WT mice (P < 0.0001). GLS2 protein abundance in HepG2 cells was 78% greater than that in the controls (P < 0.0001) after HNF4α overexpression, and it was 99% greater after transfection with a short hairpin targeting PPARα., Conclusions: In Ppara-null mice, Gls2 mRNA expression was greater than in WT mice, regardless of the DP:DCH ratio. In HepG2 cells overexpressing HNF4α, Gls2 expression increased, an effect repressed by overexpression of PPARα. This suggests that Gls2 depends on the PPARα/HNF4α counterregulatory transcriptional control., (© 2016 American Society for Nutrition.)
- Published
- 2016
- Full Text
- View/download PDF
21. Jatropha curcas Protein Concentrate Stimulates Insulin Signaling, Lipogenesis, Protein Synthesis and the PKCα Pathway in Rat Liver.
- Author
-
León-López L, Márquez-Mota CC, Velázquez-Villegas LA, Gálvez-Mariscal A, Arrieta-Báez D, Dávila-Ortiz G, Tovar AR, and Torres N
- Subjects
- Animals, Blood Glucose metabolism, Dietary Proteins pharmacology, Jatropha classification, Liver drug effects, Liver metabolism, Mexico, Phorbol Esters pharmacology, Plant Extracts pharmacology, Rats, Sprague-Dawley, Seeds chemistry, Signal Transduction, Species Specificity, Transcription Factors metabolism, Insulin metabolism, Jatropha chemistry, Lipogenesis drug effects, Phorbol Esters adverse effects, Plant Proteins pharmacology, Protein Biosynthesis drug effects, Protein Kinase C-alpha metabolism
- Abstract
Jatropha curcas is an oil seed plant that belongs to the Euphorbiaceae family. Nontoxic genotypes have been reported in Mexico. The purpose of the present work was to evaluate the effect of a Mexican variety of J. curcas protein concentrate (JCP) on weight gain, biochemical parameters, and the expression of genes and proteins involved in insulin signaling, lipogenesis, cholesterol and protein synthesis in rats. The results demonstrated that short-term consumption of JCP increased serum glucose, insulin, triglycerides and cholesterol levels as well as the expression of transcription factors involved in lipogenesis and cholesterol synthesis (SREBP-1 and LXRα). Moreover, there was an increase in insulin signaling mediated by Akt phosphorylation and mTOR. JCP also increased PKCα protein abundance and the activation of downstream signaling pathway targets such as the AP1 and NF-κB transcription factors typically activated by phorbol esters. These results suggested that phorbol esters are present in JCP, and that they could be involved in the activation of PKC which may be responsible for the high insulin secretion and consequently the activation of insulin-dependent pathways. Our data suggest that this Mexican Jatropha variety contains toxic compounds that produce negative metabolic effects which require caution when using in the applications of Jatropha-based products in medicine and nutrition.
- Published
- 2015
- Full Text
- View/download PDF
22. Nutrition and Atherosclerosis.
- Author
-
Torres N, Guevara-Cruz M, Velázquez-Villegas LA, and Tovar AR
- Subjects
- Animals, Antioxidants therapeutic use, Atherosclerosis etiology, Atherosclerosis prevention & control, Atherosclerosis therapy, Diet, Mediterranean, Food, Humans, Nutritional Status, Atherosclerosis epidemiology, Diet
- Abstract
Cardiovascular disease (CVD) is a universal problem in modern society. Atherosclerosis is the leading cause of CVD resulting in high rate of mortality in the population. Nutrition science has focused on the role of essential nutrients in preventing deficiencies, at the present time, the nutritional strategies are crucial to promote health and intervene with these global noncommunicable diseases. In many cases, diet is a major driving force, which is much easier to change and follow than other factors. It is important to establish that the first strategy to treat atherosclerosis is to modify lifestyle habits, focusing on the beneficial properties of specific nutrients. In the last decades, epidemiological, clinical and experimental studies have demonstrated that diet plays a central role in the prevention of atherosclerosis. In this review we will focus on the effect of specific foods, nutrients and bioactive compounds, including epidemiological facts, potential mechanisms of action and dietary recommendations to reduce the risk of atherosclerosis. In particular, we include information about fiber, plant sterols and stanols, niacin, taurine, olive oil, omega 3 fatty acids, antioxidants, minerals, methyl nutrients and soy. In addition, we also show that dysbiosis of the intestinal microbiota associated with a consumption of certain animal food sources can generate some metabolites that are involved in the development of atherosclerosis and its consequences on CVD. According to the epidemiological, clinical and experimental studies we suggest a recommendation for some dietary foods, nutrients and bioactive compounds to support the complementary clinical management of patients with atherosclerosis., (Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
23. Prolactin and the dietary protein/carbohydrate ratio regulate the expression of SNAT2 amino acid transporter in the mammary gland during lactation.
- Author
-
Velázquez-Villegas LA, López-Barradas AM, Torres N, Hernández-Pando R, León-Contreras JC, Granados O, Ortíz V, and Tovar AR
- Subjects
- Adipose Tissue metabolism, Amino Acid Transport System A genetics, Animal Nutritional Physiological Phenomena, Animals, Dietary Carbohydrates administration & dosage, Dietary Proteins administration & dosage, Female, Gene Expression Regulation, Lactation blood, Lactation genetics, Liver metabolism, Maternal Nutritional Physiological Phenomena, Milk Proteins biosynthesis, Nutritional Status, Pregnancy, Prolactin blood, Promoter Regions, Genetic, RNA, Messenger metabolism, Rats, Wistar, Tissue Culture Techniques, Transfection, Weaning, Amino Acid Transport System A metabolism, Dietary Carbohydrates metabolism, Dietary Proteins metabolism, Lactation metabolism, Mammary Glands, Animal metabolism, Prolactin metabolism
- Abstract
The sodium coupled neutral amino acid transporter 2 (SNAT2/SAT2/ATA2) is expressed in the mammary gland (MG) and plays an important role in the uptake of alanine and glutamine which are the most abundant amino acids transported into this tissue during lactation. Thus, the aim of this study was to assess the amount and localization of SNAT2 before delivery and during lactation in rat MG, and to evaluate whether prolactin and the dietary protein/carbohydrate ratio might influence SNAT2 expression in the MG, liver and adipose tissue during lactation. Our results showed that SNAT2 protein abundance in the MG increased during lactation and this increase was maintained along this period, while 24 h after weaning it tended to decrease. To study the effect of prolactin on SNAT2 expression, we incubated MG explants or T47D cells transfected with the SNAT2 promoter with prolactin, and we observed in both studies an increase in the SNAT2 expression or promoter activity. Consumption of a high-protein/low carbohydrate diet increased prolactin concentration, with a concomitant increase in SNAT2 expression not only in the MG during lactation, but also in the liver and adipose tissue. There was a correlation between SNAT2 expression and serum prolactin levels depending on the amount of dietary protein/carbohydrate ratio consumed. These findings suggest that prolactin actively supports lactation providing amino acids to the gland through SNAT2 for the synthesis of milk proteins., (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
24. PPARα via HNF4α regulates the expression of genes encoding hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis.
- Author
-
Contreras AV, Rangel-Escareño C, Torres N, Alemán-Escondrillas G, Ortiz V, Noriega LG, Torre-Villalvazo I, Granados O, Velázquez-Villegas LA, Tobon-Cornejo S, González-Hirschfeld D, Recillas-Targa F, Tejero-Barrera E, Gonzalez FJ, and Tovar AR
- Abstract
The liver is the main organ involved in the metabolism of amino acids (AA), which are oxidized by amino acid catabolizing enzymes (AACE). Peroxisome proliferator-activated receptor-α (PPARα) stimulates fatty acid β-oxidation, and there is evidence that it can modulate hepatic AA oxidation during the transition of energy fuels. To understand the role and mechanism of PPARα's regulation of AA catabolism, the metabolic and molecular adaptations of Ppara-null mice were studied. The role of PPARα on AA metabolism was examined by in vitro and in vivo studies. In wild-type and Ppara-null mice, fed increasing concentrations of the dietary protein/carbohydrate ratio, we measured metabolic parameters, and livers were analyzed by microarray analysis, histology and Western blot. Functional enrichment analysis, EMSA and gene reporter assays were performed. Ppara-null mice presented increased expression of AACE in liver affecting AA, lipid and carbohydrate metabolism. Ppara-null mice had increased glucagon/insulin ratio (7.2-fold), higher serum urea (73.1 %), lower body protein content (19.7 %) and decreased several serum AA in response to a high-protein/low-carbohydrate diet. A functional network of differentially expressed genes, suggested that changes in the expression of AACE were regulated by an interrelationship between PPARα and HNF4α. Our data indicated that the expression of AACE is down-regulated through PPARα by attenuating HNF4α transcriptional activity as observed in the serine dehydratase gene promoter. PPARα via HNF4α maintains body protein metabolic homeostasis by down-regulating genes involved in amino acid catabolism for preserving body nitrogen.
- Published
- 2015
- Full Text
- View/download PDF
25. Transcriptional regulation of the sodium-coupled neutral amino acid transporter (SNAT2) by 17β-estradiol.
- Author
-
Velázquez-Villegas LA, Ortíz V, Ström A, Torres N, Engler DA, Matsunami R, Ordaz-Rosado D, García-Becerra R, López-Barradas AM, Larrea F, Gustafsson JÅ, and Tovar AR
- Subjects
- Amino Acid Transport System A, Amino Acid Transport Systems metabolism, Animals, Antigens, Nuclear metabolism, Base Sequence, Cell Nucleus metabolism, DNA-Binding Proteins metabolism, Epithelium metabolism, Estrogen Receptor alpha metabolism, Female, Glyceraldehyde-3-Phosphate Dehydrogenases metabolism, HeLa Cells, Humans, Ku Autoantigen, Mammary Glands, Animal metabolism, Molecular Sequence Data, Peptide Fragments metabolism, Poly(ADP-ribose) Polymerases metabolism, Pregnancy, Protein Binding drug effects, Protein Binding genetics, Rats, Response Elements genetics, Amino Acid Transport Systems genetics, Estradiol pharmacology, Gene Expression Regulation drug effects, Transcription, Genetic drug effects
- Abstract
The sodium-coupled neutral amino acid transporter 2 (SNAT2) translocates small neutral amino acids into the mammary gland to promote cell proliferation during gestation. It is known that SNAT2 expression increases during pregnancy, and in vitro studies indicate that this transporter is induced by 17β-estradiol. In this study, we elucidated the mechanism by which 17β-estradiol regulates the transcription of SNAT2. In silico analysis revealed the presence of a potential estrogen response element (ERE) in the SNAT2 promoter. Reporter assays showed an increase in SNAT2 promoter activity when cotransfected with estrogen receptor alpha (ER-α) after 17β-estradiol stimulation. Deletion of the ERE reduced estradiol-induced promoter activity by 63%. Additionally, EMSAs and supershift assays showed that ER-α binds to the SNAT2 ERE and that this binding competes with the interaction of ER-α with its consensus ERE. An in vivo ChIP assay demonstrated that the binding of ER-α to the SNAT2 promoter gradually increased in the mammary gland during gestation and that maximal binding occurred at the highest 17β-estradiol serum concentration. Liquid chromatography-elevated energy mass spectrometry and Western blot analysis revealed that the SNAT2 ER-α-ERE complex contained poly(ADP-ribose) polymerase 1, Lupus Ku autoantigen protein p70, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) proteins and that the silencing of each of these proteins nearly abolished 17β-estradiol-stimulated SNAT2 promoter activity. Nuclear levels of GAPDH increased progressively during gestation in the mammary gland, and GAPDH binding was nucleotide-specific for the SNAT2 ERE. Thus, this study provides new insights into how the mammary epithelium adapts to control amino acid uptake through the transcriptional regulation of the SNAT2 transporter via 17β-estradiol.
- Published
- 2014
- Full Text
- View/download PDF
26. The dietary protein/carbohydrate ratio differentially modifies lipogenesis and protein synthesis in the mammary gland, liver and adipose tissue during gestation and lactation.
- Author
-
Velázquez-Villegas LA, Tovar AR, López-Barradas AM, and Torres N
- Subjects
- Animals, Female, Pregnancy, Rats, Rats, Wistar, Adipose Tissue metabolism, Dietary Carbohydrates metabolism, Dietary Proteins metabolism, Lactation physiology, Lipogenesis physiology, Liver metabolism, Mammary Glands, Animal metabolism, Protein Biosynthesis physiology
- Abstract
During gestation and lactation, a series of metabolic changes that are affected by the diet occurs in various organs of the mother. However, little is known about how the dietary protein (DP)/carbohydrate (DCH) ratio regulates the expression of metabolic genes in the mother. Therefore, the purpose of this work was to study the effect of consuming different percentages of DP/DCH, specifically 10/73, 20/63 and 30/53%, on the expression of genes involved in lipogenesis and protein synthesis in the mammary gland, liver and adipose tissue during gestation and lactation in dams. While the amount of weight gained during gestation was similar for all groups, only dams fed with 30/53% DP/DCH maintained their weight during lactation. In the mammary gland, the expression of the genes involved in lipogenesis, specifically SREBP1 and FAS, was dramatically increased, and the expression of the genes involved in protein synthesis, such as mTOR1, and the phosphorylation of its target protein, S6K, were also increased throughout pregnancy and lactation, regardless of the concentration of DP/DCH. In the liver and adipose tissue, the expression of the genes and proteins involved in lipid metabolism was dependent on the proportion of DP/DCH. The consumption of a low-protein/high-carbohydrate diet increased the expression of lipogenic genes in the liver and adipose tissue and the amount of lipid deposition in the liver. Conversely, the consumption of a high-protein/low-carbohydrate diet increased the expression of genes involved in amino acid oxidation in the liver during gestation. The metabolic adaptations reflected by the changes in the expression of metabolic genes indicate that the mammary gland has a priority for milk synthesis, whereas the adaptations in the liver and adipose tissue are responsible for providing nutrients to the mammary gland to sustain milk synthesis.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.